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Equations of motion for the geometrically non-linear analysis of flexible sliding beams,
deployed or retrieved through a rigid channel, are derived through an extension of
Hamilton’s principle. Based on the assumptions of Euler–Bernoulli beam theory, the
equations of motion account for small strains but large rotations. Also provided is an
alternative formulation wherein by superposition of a prescribed axial velocity the beam
is brought to rest and the channel assumes the prescribed velocity. The consistency of the
two formulations is shown through an appropriate transformation of the governing
equations to a fixed domain. The fixed domain provides a very convenient frame work for
numerical solution of the equations of motion. Discretization procedures using Galerkin’s
method, and numerical examples involving large amplitude vibrations of the flexible sliding
beam are presented in part II.
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1. INTRODUCTION

The flexible extendible beam problem falls under the broad topic of axially moving solid
continua. Axially moving materials arise in problems associated with cable tramways,
spacecraft antennas, band saws, cold and hot rolling processes, magnetic tape drives and
fan belts. Since these systems have one large dimension (along the axis of motion) and two
smaller ones, they are usually analysed as one-dimensional string or beam problems. In
some applications, however, account must be taken of a second large dimension. For
instance, the deployment of solar arrays in space applications requires modelling the array
as a moving membrane or plate. A recent survey of these problems is given by Wickert
and Mote [1].

A related problem is that of pipes conveying fluid. Literature on pipes conveying fluids
is very extensive and an excellent survey of these problems is given by Paı̈doussis [2]. From
a materials perspective, these problems fall within the domain of solid mechanics, although
the flow aspect of these problems gives them a flavour of fluid mechanics. For instance,
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in the motion of a computer tape between two reels, it is not practical to follow the
individual particles of tape in time, since some tape particles leave (while others enter) the
domain of interest. One must then use the Eulerian window over the domain of interest.
If the tracking of particles is relinquished, then conservation of mass will not be
automatically satisfied. That is, new mass elements enter the domain and, depending on
the boundary conditions, some mass elements may leave the domain, with the result that
the mass in the domain may change with time. In these problems, the rate at which mass
elements enter and leave the domain is prescribed.

Most investigations of axially moving beams deal with beams supported at two fixed
points, and it is the transverse motion of the beam within the span that is of interest
(Wickert and Mote [1]). If the beam is assumed to be axially rigid, then under these
conditions, the mass of the system within the domain of interest may be conserved for small
amplitude motions. But for cantilevered sliding beams mass is not conserved, as new mass
elements enter the domain of interest (the protruding part of the beam) even for small
amplitude oscillations.

A derivation of the non-linear, coupled longitudinal and transverse equations of motion
of the flexible extendible beam has been provided by Tabarrok et al. [3] through Newton’s
second law. In addition, it was shown that for a constant axial velocity, oscillatory motions
dominate the response during the initial stage of deployment and that, at least within the
linear theory, the transverse deflection becomes unbounded with time. Their findings were
confirmed by simulations using the assumed-modes technique. The same technique was
employed in an investigation by Cherchas and Gossain [4] of the dynamics of a large
flexible solar array as it deploys from a spinning spacecraft. Several investigators have also
examined the stability of beams under harmonic longitudinal motion for beams of constant
length (Elmaraghy and Tabarrok [5]) and variable length (Zajaczkowski and Lipinski [6],
Zajaczkowski and Yamada [7]). Regions of stability and instability in the excitation
amplitude and frequency parameter space were identified. Although such excitation does
not occur in most band-and-wheel systems, many robotic and mechanism components
execute periodic axial motions.

Recently, flexible extendible beams have gained prominence due to new applications in
the area of robotics, specifically in the modelling of flexible links travelling through
prismatic joints. Wang and Wei [8] used a modified Galerkin method to solve the equation
of motion of an axially moving beam. However, their derivation of the governing equation,
through Newton’s second law, leaves out certain terms. Yuh and Young [9] used the
assumed-modes method and compared their simulation results with those obtained
experimentally. Buffinton [10] also used the assumed-modes technique to model the
moving beam as an unconstrained body, and treated the beam’s finite number of supports
as kinematical constraints. Kim and Gibson [11] used the finite element approach to model
a sliding flexible link. However, the derivation of the complementary kinetic energy of the
sliding flexible link, outlined by Kim [12], also leaves out certain terms. Stylianou and
Tabarrok [13] used the finite element method and develop elements with time-varying
domains to investigate the dynamics of the flexible extendible beam under more general
configurations. Most of these works are concerned with linear axially inextensible sliding
beams. In an important paper, Vu-Quoc and Li [14] present a very comprehensive study
of the axially translating beam and introduce novel ideas for the analysis of this system.
They employ the so called geometrically exact beam theory (Simo and Vu-Quoc [15]) and
consider large angle maneuvers. They used the finite element method and shed new light
on the mechanics of this problem.

In the present work, equations of motion for geometrically non-linear flexible sliding
beams, deployed or retrieved through prismatic joints, are derived. The beams can undergo
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large rotations in a plane. Based on the assumptions of Euler–Bernoulli beam theory, the
equations of motion are derived for small deformations through an extension of
Hamilton’s principle. Following the approach outlined by Vu-Quoc and Li, an alternative
formulation wherein the beam is brought to rest and the channel assumes a prescribed
velocity is outlined. Using an appropriate transformation, the two formulations are shown
to be consistent.

2. SLIDING BEAM FORMULATION

The natural way to formulate the flexible sliding beam problem is to view the beam
sliding through a rigid channel and undergoing large overall motions when it has emerged
from the channel. Thus at any instant, as noted by Vu-Quoc and Li [14], three different
configurations can be distinguished, namely: the initial undeformed or material
configuration in the channel, the spatially fixed intermediate configuration and the sliding
deformed configuration.

The intermediate configuration is an artifice introduced for purposes of formulation.
That is, the beam does not follow a sequence of configurations from within the channel
to the intermediate and finally to the deformed configuration. Rather to describe the
deformed configuration we need an underformed reference configuration and it is for this
purpose that the intermediate configuration is introduced.

The intermediate configuration can be seen as an Eulerian domain with respect to the
translating undeformed beam and a Lagrangian domain with respect to the current
deformed beam. The intermediate configuration is a fixed spatial configuration used as
reference for the deformed state. In this configuration the boundary extends in time, that
is this configuration has a moving boundary.

The mapping from the material configuration to the intermediate configuration is a
prescribed sliding rigid body motion along the channel axis. This can be seen by looking
at the material point M that passes by inertially fixed points and at time t coincides with
m̄. Then, the deformation from the intermediate configuration to the current configuration
is a Lagrangian description from the inertially fixed point m̄ to the spatial point m; see
Figure 1.

Viewing the sliding beam as a system of changing mass, one assumes that the part of
the beam inside the channel is non-deformable and has a prescribed motion. Thus, the task
is to determine the motion of the beam as it emerges from the channel.

Figure 1. Sliding beam: initial undeformed, sliding undeformed and deformed configurations.
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2.1.  

The distance dS0, between two points lying on the centerline of the beam in the
undeformed state may be written as

(dS0)2 = (dx1)2 + (dx2)2 (1)

and the distance, dS, between the same two points after deformation is given by

(dS)2 = (dx1)2 + (dx2)2, (2)

where x1 = x1(x1, x2) and x2 = x2(x1, x2).
Therefore, the change of distance between these two points is given by

(dS)2 − (dS0)2 = (dx1)2 + (dx2)2 − [(dx1)2 + (dx2)2]. (3)

For the beam initially lying along the I1-axis (dS0 = dx1, dx2 =0):

dx1 = (1x1/1x1)dx1, dx2 = (1x2/1x1)dx1. (4)

Hence, equation (2) may be expressed as

dS=z(1x1/1x1)2 + (1x2/1x1)2dx1 (5)

and equation (3) may be written as

(dS)2 − (dS0)2 =$01x1

1x11
2

+01x2

1x11
2

−1%(dx1)2. (6)

For the axially inextensible beam, dS= dS0, and for this case the inextensibility
condition from equation (6) is found as

(1x1/1x1)2 + (1x2/1x1)2 =1. (7)

It will be also useful to express the above conditions in terms of displacement
components of the centerline u1, u2; see Figure 2.

Noting that

u1 = x1 − x1, u2 = x2, (8, 9)

where for the present case along the centerline x2 =0, then

1x1/1x1 = 1u1/1x1 +1 and 1x2/1x1 = 1u2/1x1. (10, 11)

Figure 2. Centerline kinematics of a deformed beam.
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Therefore, equations (5–7) may be rewritten in terms of the displacements as

dS=z(1u1/1x1 +1)2 + (1u2/1x1)2dx1, (12)

(dS)2 − (dS0)2 = [(1u1/1x1 +1)2 + (1u2/1x1)2 −1](dx1)2, (13)

and

(1u1/1x1 +1)2 + (1u2/1x1)2 =1. (14)

In general for the axially extensible beam, dS$ dS0, and the axial strain o of the
centerline may be defined through the engineering strain definition as

dS=(1+ o)dx1 or 1x1/1S=1/(1+ o). (15, 16)

Substituting the above expression into equations (5) and (12), the following relations are
obtained:

1+ o=z(1x1/1x1)2 + (1x2/1x1)2, 1+ o=z(1u1/1x1 +1)2 + (1u2/1x1)2. (17, 18)

If a is the angle between the tangent at a point along the centerline of the beam and
the I1-axis, Figure 2, then the curvature of the beam’s centerline may be expressed as

k= 1a/1S. (19)

Now, using equation (16), one may write

k=(1a/1x1)(1x1/1S)= (1/[1+ o])1a/1x1. (20)

To express k in terms of the displacement components, one proceeds to relate 1a/1x1

to the displacements. From the centerline curve, one has that

cos a= 1x1/1S=(1x1/1x1)(1x1/1S)=1/(1+ o)(1+ 1u1/1x1) (21)

and

sin a= 1x2/1S=(1x2/1x1)(1x1/1S)=1/(1+ o) 1u2/1x1. (22)

Differentiating equations (22) with respect to x1, one obtains

(1a/1x1) cos a=[(12u2/1x2
1 )(1+ o)− (1u2/1x1) 1o/1x1]/(1+ o)2. (23)

Substituting for cos a from equation (21) and using the relation (18), in equation (23)
one finds

1a

1x1
=012u2

1x2
1 $01u1

1x1
+11

2

+01u2

1x11
2

%−
1u2

1x1 $12u1

1x2
1 01u1

1x1
+11

+
1u2

1x1

12u1

1x2
1%>(1+ o)201u1

1x1
+11, (24)

which upon simplification results in

1a

1x1
=0 1

1+ o1
2

$12u2

1x2
1 01+

1u1

1x11−
1u2

1x1

12u1

1x2
1%. (25)

For the axially inextensible beam where o=0, the use of relations (10) and (11), in
equation (25) leads to

1a/1x1 = (12x2/1S2)(1x1/1S)− (12x1/1S2)(1x2/1S). (26)
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Further, using the inextensibility condition (7) and noting that in this case 1S= 1x1, it
can be shown that

1x1

1S
=X1−01x2

1S1
2

,
12x1

1S2 =−
12x2

1S2

1x2

1S>X1−01x2

1S1
2

. (27)

2.2.         

Deflection of the sliding beam may be large, hence non-linear terms of up to third order
will be retained in the governing equation of the beam.

2.2.1. Extended Hamilton’s Principle
Evidently sliding beams are systems of changing mass, that is, generally the number of

particles in the system at time t1 are different from that at time t2. Hamilton’s principle,
in its classical form applies to systems of particles that retain their identity and number,
i.e., the same particle system is considered at times t1 and t2. Hence, to apply Hamilton’s
principle to the flexible sliding beam problem some modifications, related to the identity
and aggregate of particles, are necessary.

It should be noted that the use of Hamilton’s principle for the axially rigid sliding
cantilever beams has been discussed by Tabarrok et al. [3] and the following is an
alternative approach in formulating the motion of sliding beams. The new approach sheds
further light on this dynamically rich problem.

As noted earlier, the sliding beam problem has some features of flow, conventionally
described by Eulerian formulations. There have been a number of studies to extend
Hamilton’s principle to ‘‘flow’’ problems, e.g., Veubeke [16], Leech [17] and Dost and
Tabarrok [18]. In these studies the difficult task of following the particles, as against
monitoring changes at specific points in space, is recognized and discussed. For the sliding
beam problem, the Lagrangian description, with its focus on the particles, can still be used
even though the number of particles in the system is not fixed. This problem of changing
mass was addressed by McIver [19] in a remarkable development. In the following the
salient points in McIver’s formulation is reviewed.

From D’Alembert principle, one has for a system of N particles:

s
N

i=1 0mi
D2ri

Dt2 +
1P

1ri
−Fi1 · dri =0, (28)

where P=P(r1, r2, · · · , rN ) is the potential energy of the particles, Fi denotes the forces
without potentials acting on the ith particle, ri is the position vector of this particle of mass
mi and dri is a virtual displacement. D()/Dt is the material time derivative following the
particle. One notes that

s
N

i=1 01P

1ri1 · dri = dP (29)

and

s
N

i=1

(Fi ) · dri = dW (30)



   523

and

s
N

i=1 0mi
D2ri

Dt21 · dri =
D
Dt $s

N

i=1 0mi
Dri

Dt1 · dri%− s
N

i=1 0mi
Dri

Dt1 · d
Dri

Dt
(31)

or

s
N

i=1 0mi
D2ri

Dt21 · dri =
D
Dt $s

N

i=1 0mi
Dri

Dt1 · dri%− dT*, (32)

where T* is the kinetic co-energy of the particles. Substituting from equations (29), (30)
and (32) into equation (28), one may express D’Alembert’s principle as

dL+ dW−
D
Dt $s

N

i=1 0mi
Dri

Dt1 · dri%=0, (33)

where L=T*−P is the Lagrangian of the system.
Starting from this point, in a remarkable paper McIver [19], considered a generalization

from a discrete to a continuous system. In keeping with the precepts of conservation of
mass and preservation of the identity of particles, McIver expressed equation (33) as

dLc + dW−
D
Dt 0gvc(t)

(rU) · dr dv1=0, (34)

where r denotes the density and U is the velocity of the particle at time t and Lc and dW
are the Lagrangian of the system and the virtual work performed by the generalized forces
undergoing virtual displacements. The subscript c denotes a fixed material system enclosed
in a volume vc .

Hamilton’s principle is obtained by integrating equation (34) with respect to time over
a time interval t1 to t2, yielding

d g
t2

t1

Lc dt+g
t2

t1

dw dt−gvc(t)

(rU) · dr dvb
t2

t1

=0. (35)

If one now imposes the requirement that at time t1 and t2 the configuration be prescribed,
i.e., dr=0, then the last term in equation (35) drops out, leaving

d g
t2

t1

Lc dt+g
t2

t1

dW dt=0. (36)

Now to proceed from a closed material system to an open system Reynold’s transport
theorem is invoked which states that

d
dt gvo(t)

(–) dv=
D
Dt gvc(t)

(–) dv+gso(t)

(( )(V−U) · n) dS. (37)

In the above expression, vo (t) is the open control volume with the moving control surface
so (t) which advances with the velocity V · n, in the outward normal direction n and across
which mass is transported. The control volume vo (t) is pervious to the particles and thus
the system is not necessarily of constant mass or, if of constant mass, it need not always
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contain the same set of particles. At instant t, the open control volume, vo (t), coincides
with the closed control volume vc (t) with the boundary sc (t) for which V · n=U · n; see
Figure 3.

It is important to be clear about the operators d( )/dt and D( )/Dt. The operator d( )/dt
refers to the time derivative following a control volume whether of constant mass or not.
It is obvious that when the control volume contains the same particles, i.e., it is the so
called material control volume, then this derivative is equivalent to the material time
derivative D( )/Dt.

Using Reynold’s transport theorem (37), the virtual work equation (37), for a system
of changing mass, can be written as

dLo + dW−
d
dt gvo(t)

r(U · dr) dv+gso(t)

[r(U · dr)(V−U) · n] ds=0, (38)

where in the Lagrangian Lo of the open system the mass is not fixed.
Now integrating with respect to time over the interval t1, t2 and again requiring the

system configurations at t1, t2 be prescribed, the extended form of Hamilton’s principle for
a system of changing mass can be expressed as

d g
t2

t1

Lo dt+g
t2

t1

dW dt+g
t2

t1

dt gso(t)

[r(U · dr)(V−U) · n] ds=0, (39)

where dW is the virtual work performed by the non-potential forces acting on the same
system. If one only considers the contribution of virtual work due to surface tractions
acting on the open and closed boundary of the system, then the extended Hamilton’s
principle for a system of changing mass becomes

d g
t2

t1

Lo dt+g
t2

t1

dt+gso(t)

(s · n) · dr ds+g
t2

t1

dt gso(t)

× ([s+ rU(V−U)] · n) · dr ds=0, (40)

where s is the stress tensor and s · n represents the surface traction vector.
It should be noted that not all virtual displacement distributions are permissible. The

virtual displacements should not only satisfy the imposed geometrical constraints ensuring

Figure 3. System of changing mass: open and closed control volumes.
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Figure 4. Sliding beam: open and closed control volumes: U$ 0, V=0, dr=0.

that there is no contribution of virtual work due to constraint forces, but must also satisfy
the conservation of mass.

It is also worth noting that Hamilton’s principle for closed systems for which there are
no non-potential forces, is an extremum principle. This is not the case for systems of
changing mass. This follows from the term accounting for changing mass in equation (39)
which is in the form of a virtual work expression. In certain cases, by choosing particular
boundary velocities, it is possible to render Hamilton’s principle for a system of changing
mass, a stationary principle, see McIver [19].

Returning to the sliding beam problem which is a system of changing mass, one applies
the extended Hamilton’s principle to obtain the governing equation of motion.

Figure 4 shows open and closed control volumes chosen for the sliding beam. At the
tip of the beam the velocity of the material point is equal to the velocity of the moving
boundary, i.e., VTip −UTip =0. For simplicity, the only type of surface traction considered
is a prescribed tip load independent of displacements. Hence, its virtual work can be
expressed as a total differential.

At the root, the control surface does not move, but the material point on the centerline
of the beam has the velocity Uroot . Here, one invokes the previous assumption on the
motion of the beam being prescribed inside the channel where the beam is considered rigid.
This precludes the existence of a non-conservative force at the root (see equation (40)).
Now, since the lateral deflection and the slope of the beam (for a cantilever support) at
the root are prescribed as zero, virtual displacements vanish at the wall and there is no
virtual work contribution from the wall reaction shear force and moment.

Implementing the above statements into equation (40), the extended Hamilton’s
principle for the sliding beam, outside the channel, with the variable length L(t) can be
expressed as

d g
t2

t1

Lodt=0, (41)

which is the form of Hamilton’s principle used by Tabarrok et al. [3].

2.2.2. Complementary kinetic energy
In the absence of rotary inertia effects, the velocity of point m, on the centerline of the

sliding beam, Figure 5, is made of two parts:
(1) Due to rigid body sliding motion of the beam:

Vrb =Vt=V(1x1/1S)I1 +V 1x2/1SI2, (42)
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Figure 5. Axially inextensible sliding beam undergoing large overall motion: kinematics of deformation.

where V is the prescribed sliding velocity of the beam and t is the unit vector tangent to
the centerline of the beam at the same material point.

(2) Due to elastic deformation:

Ve =(1u1/1t)I1 + (1u2/1t)I2 (43)

or

Ve =(1x1/1t)I1 + (1x2/1t)I2. (44)

Therefore, the kinetic co-energy for the sliding beam may be written as

T*=g
L(t)

0

1
2rA$01x1

1t
+V

1x1

1S1
2

+01x2

1t
+V

1x2

1S1
2

% dS. (45)

2.2.3. Strain energy
For an axially inextensible beam (o=0) in the case of large rotations and small strains,

the strain energy correct to O(o4) was given by Stoker [20] as

P=g
L(t)

0

EI
2

k2 dS, (46)

where I is the appropriate second moment of area and E is Young’s modulus of the beam
material. Now, substituting for the curvature from equation (26), the strain energy may
be expressed as

P=g
L(t)

0

EI
2 012x2

1S21
2

$1+01x2

1S1
2

% dS. (47)
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2.2.4. Lagrangian
For a flexible sliding beam which undergoes large overall motion and is axially

inextensible, using equations (45) and (47), the Lagrangian can be expressed as

Lo =T*−P

=g
L(t)

0

1
2rA$01x1

1t
+V

1x1

1S1
2

+01x2

1t
+V

1x2

1S1
2

% dS

− g
L(t)

0

EI
2 012x2

1S21
2

$1+01x2

1S1
2

% dS. (48)

2.2.5. Equation of motion
After many straight forward but tedious manipulations, the governing equation of

motion for an axially inextensible flexible sliding beam, in the absence of traction and body
forces, may be obtained as the stationary condition of the extended Hamilton’s principle
(41) as follows (see Behdinan [21]):

In the domain:

rA012x2

1t2 +2V
12x2

1t1S $1+01x2

1S1
2

%+V2 12x2

1S2 $1+01x2

1S1
2

%
+

1V
1t

12x2

1S2 (L−S)$1+ 3
201x2

1S1
2

%1
+EI014x2

1S4 $1+01x2

1S1
2

%+012x2

1S21
3

+4
1x2

1S
12x2

1S2

13x2

1S31
+ rA

1x2

1S g
S

0 $1x2

1S
13x2

1t21S
+0 12x2

1t1S1
2

% dS

− rA
12x2

1S2g
L(t)

S g
S

0 $1x2

1S
13x2

1t21S
+0 12x2

1t1S1
2

% dS dS

− rA
12x2

1S2 g
L(t)

S $12 1V
1t 01x2

1S1
2

+2V
1x2

1S
12x2

1t1S
+V2 1x2

1S
12x2

1S2% dS=0. (49)

At the boundaries:

EI613x2

1S3 $1+ 1
201x2

1S1
2

%+012x2

1S21
2
1x2

1S7dx2b
L(t)

0

=0,

EI
12x2

1S2 $1+ 1
201x2

1S1
2

%d01x2

1S1b
L(t)

0

=0. (50)
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Equation (49) is a non-linear partial integro-differential equation. Equations (50)
provide all the boundary conditions, namely the essential boundary conditions for
prescribed kinematic variables and the corresponding natural boundary conditions for
force variables.

Removing terms of second and higher order, one obtains the following linear equation
of motion:

rA$12x2

1t2 +2V
12x2

1t1S
+V2 12x2

1S2 +
1V
1t

12x2

1S2 (L−S)%+EI
14x2

1S4 =0, (51)

which expresses the dynamic equilibrium for the linear axially inextensible flexible sliding
beam first derived by Tabarrok et al. [3].

2.2.6. Sliding beam in uniform gravitational field
The potential energy of the flexible sliding beam in a uniform gravitational field g along

x1 is given by

G= rAg g
L(t)

0

x1 dS. (52)

For the inextensible case, the inclusion of the potential energy due to gravity gives rise
to two additional terms on the left side of the governing equation of motion (49), namely:

rAg
1x2

1S $1+ 1
201x2

1S1
2

%− rAg
12x2

1S2 (L−S)$1+ 3
201x2

1S1
2

%.
2.3.         

In this case, the beam is axially extensible, i.e., o$ 0, and one needs to account for
transverse and axial motions. Thus for the axially flexible sliding beam two non-linear
coupled partial differential equations are to be derived. It is important to note that the
discussion in the previous section (inextensible sliding beams) remains valid and the
equations of motion may be obtained from the extended Hamilton’s principle as given in
equation (41).

2.3.1. Complementary kinetic energy
The velocity of a material point on the centerline of the beam can be expressed as,

Figure 6:

dx/dt=(dx1/dt)I1 + (dx2/dt)I2. (53)

Now, substituting the relations (8) and (9) into equation (53), one obtains

dx
dt

=0dx1

dt
+

1u1

1x1

1x1

1t
+

1u1

1t 1I1 +01u2

1x1

1x1

1t
+

1u2

1t 1I2, (54)

where 1x1/1t is the prescribed velocity V of the beam. Equation (54) may be simplified to

dx
dt

=$1u1

1t
+V01+

1u1

1x11%I1 +$1u2

1t
+V

1u2

1x1%I2, (55)



Sliding deformed beam

Rigid channel

χ1

m

m (x1, x2)

L (t)

u2 u1

J1

V I1

J2
I2

^

   529

Figure 6. Flexible sliding beam undergoing large overall motion: kinematics of deformation.

which describes the velocity of a material point on the centerline of the beam. Using
equation (55), the kinetic co-energy of the sliding beam may be expressed as

T*=g
L
 (t)

0

1
2r0A6$1u1

1t
+V01+

1u1

1x11%
2

+$1u2

1t
+V

1u2

1x1%
2

7 dx1, (56)

where L
 (t) is the length of the protruding part of the undeformed sliding beam and r0 is
the mass density of the undeformed beam.

2.3.2. Strain energy
For an axially flexible beam undergoing large overall motions with finite rotations and

small strains, Stoker [20] has shown that if shear is neglected, the axial strain may be
expressed as

ox1 = o−(1+ o)kx2. (57)

Then an increment of the strain energy is taken to be

dP=(Eb/2)o2
x1

dx1 dx2, (58)

where b is the width of the beam. Now one can express the strain energy of the beam as

P=g
h/2

−h/2 g
L
 (t)

0

Eb
2

[o−(1+ o)kx2]2 dx1 dx2, (59)

where h is the height of the beam’s cross section. After simplifying the above relation, the
strain energy becomes

P=g
L
 (t)

0

E
2

[Ao2 + I(1+ o)2k2] dx1, (60)



.   .530

where A is the undeformed cross-sectional area of the beam. Expressing o and k via
equations (18), (20) and (25), one may write the strain energy in terms of the displacement
components as follows:

P=g
L
 (t)

0

1
2EA$1u1

1x1
+ 1

201u2

1x11
2

%
2

dx1

+ g
L
 (t)

0

1
2EI$012u2

1x2
11

2

−2012u2

1x2
11

2
1u1

1x1
−2012u2

1x2
11

2

01u2

1x11
2

−2
1u2

1x1

12u2

1x2
1

12u1

1x2
1% dx1. (61)

2.3.3. Equations of Motion
With expression for T* and P at hand the equations of motion from Hamilton’s

principle are derived as follows. In this case one has two independent variables (x1, t) and
two dependent variables and (u1, u2).

In the domain:

r0A$12u1

1t2 +
1V
1t 01+

1u1

1x11+2V
12u1

1t1x1
+V2 12u1

1x2
1%

−EA$12u1

1x2
1
+

1u2

1x1

12u2

1x2
1%−EI$12u2

1x2
1

13u2

1x3
1
+

1u2

1x1

14u2

1x4
1%=0, (62)

r0A$12u2

1t2 +
1V
1t

1u2

1x1
+2V

12u2

1t1x1
+V2 12u2

1x2
1%−EA$1u1

1x1

12u2

1x2
1
+

1u2

1x1

12u1

1x2
1
+ 3

201u2

1x11
2
12u2

1x2
1%

− EI$3 13u1

1x3
1

12u2

1x2
1
+2

1u1

1x1

14u2

1x4
1
+

1u2

1x1

14u1

1x4
1
+201u2

1x11
2
14u2

1x4
1
+8

1u2

1x1

12u2

1x2
1

13u2

1x3
1

+ 2012u2

1x2
11

3

+4
13u2

1x3
1

12u1

1x2
1
−

14u2

1x4
1%=0. (63)

At the boundaries:

6EA$1u1

1x1
+ 1

201u2

1x11
2

%+EI
1u2

1x1

13u2

1x3
17du1b

L
 (t)

0

=0,

EI
1u2

1x1

12u2

1x2
1

d01u1

1x11b
L
 (t)

0

=0, (64)
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6EA
1u2

1x1 $1u1

1x1
+ 1

201u2

1x11
2

%−EI$13u2

1x3
1
−2

13u2

1x3
1

1u1

1x1
−2

12u2

1x2
1

12u1

1x2
1
−2

13u2

1x3
1 01u2

1x11
2

− 2012u2

1x2
11

2
1u2

1x1
−

1u2

1x1

13u1

1x3
1%7du2b

L
 (t)

0

=0,

6EI$12u2/1x2
1 −2

12u2

1x2
1

1u1

1x1
−2

12u2

1x2
1 01u2

1x11
2

−
1u2

1x1

12u1

1x1
2%7d01u2

1x11b
L
 (t)

0

=0. (65)

Equations (62) and (63) are two non-linear, coupled partial differential equations which
describe the dynamics of an axially extensible flexible sliding beam undergoing large overall
motion. Through numerical techniques one can obtain approximate solutions for these
governing equations. These will be discussed in part II of this paper. Equations (64) and
(65) express the kinematic and natural boundary conditions of the beam.

In the next section, an alternative formulation wherein the beam remains fixed (no axial
motion) and the channel moves with a prescribed velocity along the beam is considered.

3. ALTERNATIVE FORMULATION—THE SLIDING CHANNEL

In the sliding beam problem the beam emerges with a prescribed velocity from a rigid
channel which is at rest. The inertial reference frame is attached to the channel and the
motion is observed by an inertial observer placed, say, on the channel. Now a translational
velocity is superimposed on the system with the intent of bringing the beam to rest. Then
the channel and the observer will move with this imposed velocity. In the following the
equations of motion of the system as seen by the same observer which is now moving will
be obtained.

It is important to note that in this case the reference axes attached to the moving channel
is not, in general, an inertial frame. The exception occurs when the superimposed
translational velocity is constant. Then the moving axes is an acceptable inertial frame and
it is related to the original fixed inertial frame through a Galilean transformation. Now
the initial undeformed configuration which is fixed in space will be taken as the material
configuration. The part inside the channel is assumed to be rigid and the protruding part
undergoes large overall motion with a moving boundary with respect to the material frame;
see Figure 7.

Figure 7. Sliding channel: material and spatial configurations.
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Figure 8. Axially inextensible beam with sliding channel undergoing large overall motion: kinematics of the
deformation.

Evidently, the defined material configuration has the role of the Lagrangian domain with
respect to the deformed configuration. In this case, the structural deformation is described
by a mapping, which is time dependent, from the material configuration to the deformed
configuration.

3.1.  

As noted earlier one will obtain the differential equation of motion as seen by an
observer O moving with the channel.

If one considers the beam to be initially lying along the J1 axis (Figure 8), then the length
of the beam inside the channel is given by

C(t)= [LB −L(t)]J1, (66)

where LB is the total length of the beam and L(t) is the time varying length of the beam
outside the channel.

The deformation from the material configuration to the deformed configuration is a
Lagrangian description; thus a point M on the centerline of the undeformed beam maps
to a new position m in the deformed configuration. Since the part of the beam inside the
channel is considered to be rigid, one may refer the displacement vector ū(X1, t), from M
to m, to the spatial frame I1 and I2. Now the position vector of a point m on the centerline
of the deformed beam may be expressed as (Figure 8):

Rm =[X1 −C(t)]I1 + ū. (67)

3.2.       

In this section, only terms up to the third order will be retained in the governing
equations of motion.

3.2.1. Extended Hamilton’s principle
Since the boundary is moving and the length of the beam outside the channel changes

with time, this problem can also be viewed as a system of changing mass. Following the
discussion for axially inextensible sliding beams, the governing equation of motion for the
moving boundary problem is obtained via the extended Hamilton’s principle.

Figure 9 shows the open and closed control volumes for the problem at hand. At the
tip of the beam the velocity of the moving open control surface is equal to the velocity
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Figure 9. Sliding channel: open and closed control volumes; U=0, V$ 0, dr=0.

of the material points. Once again, one assumes that the virtual work of possible prescribed
traction forces at the tip is expressed as a total differential.

At the root, one has a moving boundary with a prescribed sliding velocity; therefore
the open control surface has the prescribed velocity Vroot . Since the beam is considered
axially fixed, the material point on the centerline at the root of the beam is motionless.
Also, it should be noted that the beam is considered to be axially rigid inside the channel
and the lateral deflection and slope are prescribed at the root. Hence, there are no virtual
work terms from the reaction forces at the root. Under these conditions the extended
Hamilton’s principle takes the form given in equation (41).

3.2.2. Complementary kinetic energy
As seen by the observer on the moving channel (see Figure 8), the velocity of a mass

point m(x1, x2) on the centerline of the beam in the deformed configuration may be
obtained by differentiating equation (67) i.e.:

Vm = 1Rm /1t=(1C/1t)I1 + (1/1t)ū (68)

or

Vm =(V+ 1ū1/1t)I1 + (1ū2/1t)I2. (69)

Thus, the kinetic co-energy with reference to the moving axes I1, I2 for the part of the
beam outside the channel can be expressed as

T*=g
LB

C(t)

1
2rA[(V+ 1ū1/1t)2 + (1ū2/1t)2] dX1, (70)

or in terms of the spatial co-ordinates (x̄1, x̄2), using the relations

x̄1 =X1 −C(t)+ ū1, x̄2 = ū2. (71)

The kinetic co-energy may be expressed as

T*=g
LB

C(t)

1
2rA$01x̄1

1t 1
2

+01x̄2

1t 1
2

% dX1. (72)
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3.2.3. Strain energy
For an axially inextensible beam, the expression for the strain energy is as given in

equation (47), namely

P=g
LB

C(t)

EI
2 012x̄2

1S21
2

$1+01x̄2

1S1
2

% dS. (73)

3.2.4. Equation of motion
Now obtaining the Lagrangian L=T*−P and substituting the Lagrangian into the

extended Hamilton’s principle and carrying out the indicated variation, one obtains the
governing equation of motion of the axially inextensible flexible beam with time dependent
moving boundary as follows.

In the domain:

rA
12x̄2

1t2 +EI014x̄2

1S4$1+01x̄2

1S1
2

%+012x̄2

1S21
3

+4
1x̄2

1S
12x̄2

1S2

13x̄2

1S31
+ rA

1x̄2

1S g
S

C(t) $1x̄2

1S
13x̄2

1t21S
+0 12x̄2

1t1S1
2

% dS

− rA
12x̄2

1S2 g
LB

S g
S

C(t) $1x̄2

1S
13x̄2

1t21S
+0 12x̄2

1t1S1
2

% dS dS=0. (74)

At the boundaries:

EI613x̄2

1S3 $1+ 1
201x̄2

1S1
2

%+012x̄2

1S21
2
1x̄2

1S7dx̄2b
LB

C(t)

= 0,

EI
12x̄2

1S2 $1+ 1
201x̄2

1S1
2

%d01x̄2

1S1b
LB

C(t)

= 0. (75)

Equation (74) is a non-linear partial integro-differential equation. It will be noted that
this equation appears simpler than that obtained for the sliding beam given in equation
(49). This justifies the advantages of the new formulation. Since the beam is fixed, there
are no convective terms in the kinetic co-energy. Accordingly this formulation may be
considered as a full Lagrangian formulation. Equation (75) gives the kinematic and natural
boundary conditions of the system. Details of the derivation of the above equations may
be found in Behdinan [21].

3.3.           

For the axially extensible beam, o$ 0, two non-linear coupled equations are expected.
The extended Hamilton’s principle in the form used in the previous section will also be
used for this problem.
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Figure 10. Flexible beam with sliding channel undergoing large overall motion: kinematics of deformation.

3.3.1. Complementary kinetic energy
The kinetic co-energy may be written as, see Figure 10:

T*=g
LB

C(t)

1
2r0A$0V+

1ū1

1t 1
2

+01ū2

1t 1
2

% dX1. (76)

It should be noted that in this case, ū1(X1, t) and ū2(X1, t) are independent.

3.3.2. Strain energy
The expression in equation (61) may also be used for the strain energy of the deformed

beam outside the moving channel:

P=g
LB

C(t)

1
2EA$1ū1

1X1
+ 1

201ū2

1X11
2

%
2

dX1+g
LB

C(t)

1
2EI$012ū2

1X2
11

2

−2012ū2

1X2
11

2
1ū1

1X1

− 2012ū2

1X2
11

2

01ū2

1X11
2

−2
1ū2

1X1

12ū2

1X2
1

12ū1

1X2
1% dX1. (77)

3.3.3. Equation of motion
Since the Lagrangian L=T*−P is a second order functional with two independent

variables (X1, t) and two dependent functions (ū1(X1, t), ū2(X1, t)), two coupled
Euler–Lagrange equations are obtained from the stationary conditions of Hamilton’s
principle [21]. Using the extended Hamilton’s principle one finds the stationary conditions
as follows:

In the domain:

r0A$12ū1

1t2 +
1V
1t %−EA$12ū1

1X2
1
+

1ū2

1X1

12ū2

1X2
1%−EI$12ū2

1X2
1

13ū2

1X3
1
+

1ū2

1X1

14ū2

1X4
1%=0, (78)
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r0A$12ū2

1t2 %−EA$1ū1

1X1

12ū2

1X2
1
+

1ū2

1X1

12ū1

1X2
1
+ 3

201ū2

1X11
2
12ū2

1X2
1%

−EI$3 13ū1

1X3
1

12ū2

1X2
1
+2

1ū1

1X1

14ū2

1X4
1
+

1ū2

1X1

14ū1

1X4
1

+201ū2

1X11
2
14ū2

1X4
1
+8

1ū2

1X1

12ū2

1X2
1

13ū2

1X3
1
+2012ū2

1X2
11

3

+4
13ū2

1X3
1

12ū1

1X2
1
−

14ū2

1X4
1%=0. (79)

At the boundaries:

6EA$1ū1

1X1
+ 1

201ū2

1X11
2

%+EI
1ū2

1X1

13ū2

1X3
17dū1b

LB

C(t)

= 0,

EI
1ū2

1X1

12ū2

1X2
1
d01ū1

1X11b
LB

C(t)

= 0, (80)

6EA
1ū2
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201ū2
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1
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1
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2
1ū2
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−

1ū2

1X1

13ū1

1X3
1%7dū2b

LB

C(t)

= 0,

6EI$12ū2

1X2
1
−2

12ū2

1X2
1

1ū1

1X1
−2

12ū2

1X2
1 01ū2

1X11
2

−
1ū2

1X1

12ū1

1X2
1%7d01ū2

1X11b
LB

C(t)

= 0. (81)

Equations (78) and (79) are non-linear coupled partial differential equations describing
the dynamics of the flexible beam with a moving boundary. Equations (80) and (81) provide
the consistent kinematic and force boundary conditions for the same problem.

4. COMPARISON OF THE TWO FORMULATIONS

Since the two formulations describe the motion of the same physical system, they are
related through a transformation. The required transformation relates the material and
intermediate co-ordinates (Figures 5 and 10) and is given by

X1 = x1 +C(t), X2 = x2. (82)

In one formulation, namely the sliding beam, the equations contain convective
acceleration terms whereas in the other there are no convective accelerations.

Also, one has seen that the two formulations lead to non-linear equations of motion
defined on the variable time domain (0, L(t)) for the sliding beam and (C(t), LB ) for the
alternative formulation. It is interesting to map the equations of the two formulations to
a fixed domain at time t, i.e.:

u(X1, t):û(h1(X1, t), t) (83)
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and

ū(x1(X1, t), t):û(h1(X1, t), t). (84)

To this end one writes for the sliding beam formulation:

h1 = x1/L(t), where (0Q h1 E 1);

h2 = x2, where (−h/2Q h2 E h/2); (85)

or for mapping back:

x1 =L(t)h1, where (0Q x1 EL(t));

x2 = h2, where (−h/2Q x2 E h/2). (86)

For the alternative formulation, to obtain the governing equation of motion in the fixed
domain, one uses the transformation:

h1 = [X1 −C(t)]/L(t), where (0Q h1 E 1);

h2 =X2, where (−h/2Q h2 E h/2); (87)

or for mapping back:

X1 =L(t)h1 +C(t), where (C(t)QX1 ELB );

X2 = h2, where (−h/2QX2 E h/2). (88)

Substituting transformation (85) for the sliding beam formulation into equations (62)
and (63), one finds the transformed equations as follows:

r0A$L2 12û1

1t2 +L2 1V
1t

+2LV(1− h1)
12û2

1t1h1
+V2(1− h1)2 12û1

1h2
1

+ (1− h1)0L 1V
1t

−2V21 1û1

1h1%−EA$12û1

1h2
1
+

1
L 01û2

1h1

12û2

1h2
11%

−
EI
L3 $12û2

1h2
1

13û2

1h3
1
+

1û2

1h1

14û2

1h4
1%=0 (89)

and

r0A$L2 12û2

1t2 +2LV(1− h1)
12û2

1t1h1
+V2(1− h1)2 12û2

1h2
1
+ (1− h1)0L 1V

1t
−2V21 1û2

1h1%
−

EA
L $1û1

1h1

12û2

1h2
1
+

1û2

1h1

12û1

1h2
1
+

3
2L 01û2

1h11
2
12û2

1h2
1%

−
EI
L2 $3

L
13û1

1h3
1

12û2

1h2
1
+

2
L

1û1

1h1

14û2

1h4
1
+

1
L

1û2

1h1

14û1

1h4
1
+

2
L2 01û2

1h11
2
14û2

1h4
1
+

8
L2

1û2

1h1

12û2

1h2
1

13û2

1h3
1

+
2
L2 012û2

1h2
11

3

+
4
L

13û2

1h3
1

12û1

1h2
1
−

14û2

1h4
1%=0. (90)
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It remains now to use equation (87) for the alternative formulation into equations (78)
and (79) to obtain the equation of motion for this problem in the fixed domain. Not
surprisingly, these latter equations are identical to equations (89) and (90). This result
confirms the self consistency of the two formulations. Details of derivations can be found
in Behdinan [21].

5. CONCLUSIONS

A comprehensive formulation for the sliding beam problem has been outlined and an
alternative formulation provided. Non-linearities due to large deflections have been
considered in these formulations. The governing equations and the related boundary
conditions were obtained as stationary conditions of the extended Hamilton’s principle.

The Euler–Lagrange equations for both problems yield non-linear partial differential
equations for which closed form solutions do not exist. Consistency in the two
formulations has been demonstrated.

In both formulations, the special case of the axially inextensible beams has been
considered. Such a constraint leads to a single non-linear partial integro-differential
equation which in the case of the sliding beam problem, after eliminating the higher order
terms, yields the well known linear sliding beam equation of motion.

Clearly the governing equations of motion are too complicated to solve analytically. In
part II of this paper, numerical solutions for such dynamical systems will be explored.
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