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DYNAMICS OF FLEXIBLE SLIDING BEAMS—
NON-LINEAR ANALYSIS PART II: TRANSIENT
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In this paper the axially rigid sliding beam problem undergoing small deformations is
examined first, its governing equation and boundary conditions transformed to the
fixed domain and the well known Galerkin’s approach used to study the transient
response of this problem. The results obtained are then compared with those in the
literature. Subsequently the authors’ approach is extended to the non-linear, axially
inextensible sliding beams undergoing large amplitude vibrations and solve several
examples to show the differences between the solutions obtained via linear and non-linear
solvers.
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1. INTRODUCTION

In part I, the equations of motion for the sliding beam problem were obtained by two
formulations; by allowing the beam to move in a rigid and fixed channel and by holding
the beam fixed and allowing the channel to move along the beam. Also by mapping the
two formulations to the fixed domain, it was shown that the Eulerian–Lagrangian
formulation (sliding beam formulation) and the full Lagrangian formulation (sliding
channel formulation) lead to the same equation of motion. The fixed domain provides a
very effective means for obtaining solutions for this complex problem (see also Vu-Quoc
and Li [1]).

In this paper the inextensible sliding beams are considered and by using Galerkin’s
method, the transient response of the beam system obtained.

2. AXIALLY INEXTENSIBLE FLEXIBLE SLIDING BEAMS IN THE FIXED
DOMAIN

In part I a general transformation for the equation of motion of an extensible sliding
beam from a variable domain to a fixed domain was carried out. As an alternative, in the
following a similar transformation on the Lagrangian of the system will be carried out but
will restrict ones attention to the inextensible case.

0022–460X/97/490541+25 $25.00/0/sv971168 7 1997 Academic Press Limited



S = 3/4L S  = 3/4

S  = 1/2S = 1/2L

At a later instant of time

S S

S S

0 1

0 1L(t)

.   . 542

2.1.     

The Lagrangian for the axially inextensible sliding beam may be written as [2]
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Subtituting the relations derived from the inextensibility condition [3]:
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into equation (1), one obtains
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In order to map equation (4) onto the fixed domain, one needs the following
transformation:

S=S/L (where 0ESE 1), (5)

where L=L(t) is the time varying length of the beam outside the channel and S, t are
the independent variables. Transformation (5) shows that a fixed point in space S (through
which particles pass) does not map to a fixed point in space S, see Figure 1.

Figure 1. Mapping a fixed point in S to a moving point in S.
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From equation (5), one deduces that at time t:
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where

x2(S, t)0 x̂2(S(S, t), t), (7)

One notes that the partial operator 1( )/1t in the S space provides the time rate of change
at a fixed (Eulerian) point S. That is, as various particles pass this point, 1( )/1t=S provides
a measure of the changes occurring at this point over the passage of time. The authors
have also noted that the fixed Eulerian point S transforms to a moving point S in the S
space. Hence, the 1( )/1t operator must be transformed as

(1/1t)( )=S =(1/1S)( )1S/1t+(1/1t)( )=S, (8)

Accordingly, one has
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From equation (5), it follows that

1S/1t=−(1/L2)(1L/1t)S=−(V/L2)S=−(V/L)S (11)

and then
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Substituting equations (11) and (12) into equations (9) and (10), one obtains the
following two relations:
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Also using relation (6), one may write
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By substituting relations (13), (14) and (15) into equation (4), the Lagrangian of the
sliding flexible beam at instant t, in the fixed domain, can finally be expressed as
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For the linear case, in the absence of a shortening effect, the Lagrangian (16) may be
simplified to the form:
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2.2.            

 

Using a Lagrangian (17) in Hamilton’s principle:

d g
t2

t1

L0L dt=0, (18)

and carrying out the variations [3], the equation of motion for the linear axially inextensible
flexible sliding beam, in the fixed domain, and in the absence of shortening effect can be
expressed as
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Now, one needs to account for the shortening effect. The term shortening effect has been
used by various researchers with slightly different meanings. It can be seen that as the beam
deflects in bending, material points on the beam will have not only a lateral deflection along
x2 but also a secondary motion along the x1-axis. There will be a kinetic co-energy
associated with this secondary motion which must be taken into account. It is to be noted
that this secondary motion takes place even when the beam is considered axially
inextensible. The additional kinetic co-energy term is considered as
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Here, one may use the Leibniz rule to integrate equation (20). After setting aside the
boundary terms and noting the prescribed terms, the additional Lagrangian term that
contributes to the equation of motion may be expressed as
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Using relations (6), equation (21) may also be transformed to the fixed domain and is
given by
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Now adding L
 add to L
 0L and carrying out the variation, the comprehensive form of
equation of motion of linear sliding flexible beam, including the shortening effect, in the
fixed domain is obtained as
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The solution of the above equation and its geometric and natural boundary conditions,
as derived in part I, lead to the transient response of the linear sliding flexible beams.

2.3.  : ’ 

One way of solving equation (23), is to use Galerkin’s method. To this end one first
transforms the governing equation of motion into a non-dimensional form. Introducing
the non-dimensional quantities:
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To obtain a solution, one expresses h in terms of modal functions Pj (S) as
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where qj (t) are the unknown modal coefficients. Substituting from equation (26) into
equation (25) and using Galerkin’s method, a set of ODEs in the time part of the solution
qj (t) is obtained. For the moment is must be implicitly assumed that the solution h

converges to the true solution as N:a. On physical grounds one can anticipate that for
problems with the majority of energy at low frequencies, the motion in low modes will
predominate and that such an approximation will thus converge rapidly onto the true
solution. Substituting relation (26) into equation (25) and following Galerkin’s method,
i.e., multiplying the residual obtained by Pi (S) and integrating over the beam length (0, 1),
one may obtain the second order ODE as

q̈i + aijq̇j + bijqj =0, (27)

where

aij =g
1

0

2v
l

(1−S)Pi
1Pj

1S
dS (28)

and

bij =g
1

0

Pi6$v2

l2
(1−S)2 +

1
l
1v
1t

(1−S)% 12Pj

1S2

−
1
l2 $l 1v

1t
S+2(1−S)v2% 1Pj

1S
+

1
l4

14Pj

1S47 dS. (29)

The coefficients aij and bij are time dependent making the governing equations of motion
non-autonomous. It is important to note the significant advantage of deriving these
equations in the fixed domain since for the computation of aij and bij the space dependent
eigenfunctions of the beam instead of time and space dependent eigenfunctions, as used
by other researchers [4], [5] may be used.

2.4.      

To integrate the system equations (27) in time and obtain the transient response of the
system, it is required to define a proper set of comparison functions [6]. For an axially
rigid flexible sliding beam emerging from a fixed rigid channel, the ortho-normal
eigenfunctions of the stationary cantilever provide a convenient set of comparison
functions in the form:

Pi =cos bih−cosh bih−
cos bi +cosh bi

sin bi +sinh bi
(sin bih−sinh bih), (30)

where the eigenvalues bi are roots of the characteristic equation

1+cos bi cosh bi =0. (31)

Since in the fixed domain the the comparison functions are only space dependent, by
substituting equation (30) into relations (28) and (29) and using the MAPLE symbolic
program, one can integrate and determine the matrices aij and bij as functions of prescribed
velocity of the sliding beam and the instantaneous length of the beam.

With the matrices aij and bij at hand, one may now integrate the set of ODEs in equation
(27) and obtain the transient response of the system. This has been done using the
IMSL/DIVPRK routine.
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Figure 2. Reverse spaghetti problem: constant velocity extrusion; ——, Behdinan; ---, Stylianou.

To validate the equations and their solutions, some examples studied by Stylianou [7]
are considered. These cases were also investigated experimentally and simulated by Yuh
and Young [8]. To compare results one need to define a non-negative, structural damping
force proportional to q̇j . Such a damping coefficient was determined experimentally by Yuh
and Young. In this case of variable length beam, the damping coefficient becomes length
dependent. Stylianou calculated an equivalent Rayleigh damping coefficient for his
discretized equations and was able to compare his results with the experimental responses
determined by Yuh and Young. For the present formulation of the sliding beam, in the
fixed domain, it is not evident how the damping coefficient (which is inserted in the
discretized equations and does not appear in the partial differential equation) should be
calculated. An indirect and relatively easy approach is to ‘‘guess’’ a damping coefficient
and on comparison of results with those of Stylianou, adjust the coefficient for excellent
agreement for small amplitude oscillations. Once this is accomplished, the same coefficient
may be used for large amplitudes of oscillations.

2.4.1. Spaghetti and reverse spaghetti problems: quadratic sliding motion
Let one consider a quadratic sliding motion as

L(t)=L0 +V0t+ a0t2/2. (32)

In the case of the reverse spaghetti problem, i.e., a beam extruding from a channel, a
constant velocity extrusion with the initial length L0 =0·4255 m and velocity
V0 =0·0410 m/s is examined. The beam properties are: r=3144·3858 kg/m3,
E=68·96×109 N/m2, A=4·3434×10−5 m2 and I=1·059×10−11 m4. The time history
of the tip deflection is given in Figure 2, which is in good agreement with the results
obtained in test case 2 by Stylianou [7].

Figure 3. Spaghetti problem: constant acceleration retraction; ——, Behdinan; ---, Stylianou.
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Figure 4. Reverse spaghetti problem: low frequency extrusion; ——, Behdinan; ---, Stylianou.

For the spaghetti problem, i.e., a beam retracting into a channel, one considers a
constant acceleration retracting beam with the initial length L0 =0·521 m and velocity
V0 =−0·0300 m/s and constant acceleration a0 =−0·0540 m/s2. Figure 3 shows the tip
response of the beam which is in good agreement with the results obtained in test case
3 of Stylianou [7].

2.4.2. Spaghetti and reverse spaghetti problems: repositional motion
For these simulations, the beam’s length is described by

L(t)=L0 + c0/t0[t−(t0/2p) sin (2pt/t0)], (33)

where in the case of the extrusion L0 =0·35 m, c0 =0·7 m and t0 =1·2 s and for retraction
these parameters are given as: L0 =1·05 m, c0 =−0·7 m and t0 =1·2 s. Equation (33)
allows us to consider axial motions made up of a constant and an oscillatory part. For
the oscillatory part it is of interest to examine frequencies higher and lower than the
fundamental natural frequency of the beam at the initial configuration, for the retraction
case, and the final configuration, for the extrusion case. The results are given in Figures
4 and 5 which are again in good agreement with those obtained in simulations 1 and 2
by Stylianou [7].

In the case of high frequency oscillation where the period of oscillation t0 =0·2 s, with
the same parameters, the results shown in Figures 6 and 7 are in good qualitative
agreement with those obtained in simulation cases 5 and 7 by Yuh and Young [8].

Figure 5. Spaghetti problem: low frequency retraction; ——, Behdinan; ---, Stylianou.
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Figure 6. Reverse spaghetti problem: high frequency extrusion; ——, Behdinan; ---, Stylianou.

Figure 7. Spaghetti problem: high frequency retraction; ——, Behdinan; ---, Stylianou.

Figure 8. Reverse spaghetti problem: high frequency perturbation; ——, perturbed; ---, unperturbed.

2.4.3. Reverse spaghetti problem: high frequency perturbation
It is possible to attenuate the transverse oscillations of flexible sliding beams by

introducing a high frequency, low amplitude perturbation to the otherwise constant-vel-
ocity axial motion. This was addressed by Golnaraghi [9] and Stylianou [7].

In this case the time varying length of the beam can be expressed as

L(t)=L0(1+ o sin v̂t)+V0t. (34)
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Zajaczkowski and Lipinski [10] used Bolotin’s approach [11] to obtain the region of
stability and instability for this problem. Based on the perturbation parameters o and
zv1/2v̂, where v1 is the instantaneous fundamental natural frequency of the sliding beam,
we may have a stable or unstable response. Here one considers the following parameters
in the stable region: L0 =0·4255 m, o=0·0133 and v̂=11v1. Figure 8 shows the resulting
suppression of oscillation. These simulations clearly demonstrate the change in frequency
and more importantly the amplitude of the oscillations due to the changing length of the
beam.

3. NON-LINEAR AXIALLY INEXTENSIBLE FLEXIBLE SLIDING BEAMS IN THE
FIXED DOMAIN

To study the transient response of the non-linear axially inextensible beam, the
governing equation of motion is mapped to the fixed domain and then using Galerkin’s
approach the system equations are discretized and obtain a set of ODEs in qi (t)
coefficients. Returning to equation (26), one then obtains the response of the system in
the fixed domain. Subsequently one may transform the response to the physical i.e.,
variable domain.

3.1. -           



Here as in section 2, one needs to use a one to one mapping from the time variable
domain to the fixed domain. Employing the transformation defined in equation (5) and
using the relations (6), (13–15) in the equation of motion of the axially inextensible sliding
beam given in part I, one obtains
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−
2VS

L
13x̂2

1t 1S2 +
V2S2

L2

13x̂2

1S3 +
13x̂2

1t2 1S1%L dS

−
1
L2

12x̂2

1S2 6g
1

S g
S

0

rA$0−VS
L2

12x̂2

1S2 +
1
L

12x̂2

1t 1S
−

V
L2

1x̂2

1S1
2

+
1
L2

1x̂2

1S 02V2 −L(1V/1t)
L2

1x̂2

1S
+

4V2S−L(1V/1t)S
L2

12x̂2

1S2

−
2V
L

12x̂2

1t 1S
−

2VS
L

13x̂2

1t 1S2 +
V2S2

L2

13x̂2

1S3 +
13x̂2

1t2 1S1%L2 dS dS

+g
1

S

rA$ 1
2L2

1V
1t 01x̂2

1S1
2

+
2V
L

1x̂2

1S 0−VS
L2

12x̂2

1S2 +
1
L

12x̂2

1t 1S

−
V
L2

1x̂2

1S1+
V2

L3

1x̂2

1S
12x̂2

1S2%L dS7. (38)

In equation (35), L1, N1 and N2 contain linear, non-linear and non-linear integral terms,
respectively.

Introducing the non-dimensional quantities in equation (24), we may express the
non-dimensional form of the governing equation of motion for the inextensible sliding
beam, in the fixed domain, as

L(h)+N1(h)+N2(h)=0, (39)

where

L(h)=
12h
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and
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The non-linear terms

g
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0
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13h

1t2 1S
dS and g

1

S g
S

0

1h

1S
13h

1t2 1S
dS dS

create some difficulties in the conventional solution procedures for dynamical systems. In
most cases the equations of motion have linear second order time derivative inertia terms.
One approach for dealing with these terms has been proposed by Li and Paı̈doussis [12].
In this approach one approximates these troublesome terms by first noting that while the
beam deflection can be large, from a practical point of view, only the values of deflection
much smaller than the length of the beam, i.e., h�1, need be considered. To identify the
relative magnitudes of various terms, one replaces h by zo h, where o�1, in equation (39).
This leads to

L(h)+ oN1(h)+ oN2(h)=0. (43)

It is now evident that the non-linear terms are considerably smaller than the linear terms.
Thus as a first approximation one may solve

L(h)=0 (44)

and from this expression the term 12h/1t2 may be isolated in equation (44) and expressions
obtained for

g
S

0

1h

1S
13h

1t2 1S
dS and g

1

S g
S

0

1h

1S
13h

1t2 1S
dS dS
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as:

g
S

0

1h

1S
13h

1t2 1S
dS=−g

S

0 62v
l

(1−S)
1h

1S
13h

1t 1S2 −
2v
l

1h

1S
12h

1t 1S

−$1l 1v
1t

(1+S)+
4v2

l2
(1−S)% 1h

1S
12h

1S2

+$1l 1v
1t

+
v2

l2
(1−S)% (1−S)

1h

1S
13h

1S3

−
1
l2 0l 1v

1t
−2v210 1h

1S1
2

+
1
l4

1h

1S
15h

1S57 dS. (45)

The other non-linear term may be obtained by integrating equation (45) from S to 1.
Substituting the transformed non-linear inertial term into equation (43) and returning

to the original variable h, after very laborious manipulations, one obtains the non-linear
partial integro-differential equation of motion of the inextensible flexible sliding beam as
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where
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To obtain the transient response of the inextensible flexible sliding beams, one needs to
solve the above integro-differential equation in the fixed domain and transform the
response back to the time variable domain.

3.2.         : ’ 

With reference to the discussion in section 2, one may use Galerkin’s method to solve
the governing PDE. Substituting for h from equation (26) in terms of modal functions
Pj (S) and the corresponding generalized coordinates qj (t) into the governing equation of
motion (46), multiplying by Pi (S) and integrating from 0 to 1, one obtains the desired
ODEs as
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q̈i + aijq̇j + bijqj + cijklqjqkql + dijklqjqkq̇l + eijklqjq̇kq̇l =0, (50)
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Figure 9. Test Case 1: constant velocity retraction V0 =−0·1145 m/s; ——, non-linear; ---, linear.
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and
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Although the coefficients aij , bij , cijkl , dijkl and eijkl are time dependent, one may take
advantage of the fixed domain by using the space dependent eigenfunctions of the beam.
This decreases the computation of these coefficients significantly.

3.3.    

Following the discussion in section 2, one needs to define a series of comparison
functions satisfying all the boundary conditions.

Figure 10. Test Case 1: constant velocity retraction V0 =−0·5725 m/s; ——, non-linear; ---, linear.
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Figure 11. Test Case 2: constant velocity extrusion V0 =0·041 m/s; ——, non-linear; ---, linear.

To study the response of the non-linear system, two types of boundary conditions are
examined: the cantilever i.e., a sliding beam with fixed–free boundary conditions and a
sliding beam with clamped–clamped boundary condition where the sliding beam emerges
from a fixed channel and at the other end is attached to a moving channel with the same
prescribed motion.

3.3.1. Sliding cantilever
In this case one uses the same ortho-normal eigenfunctions as given in equation (30).

Substituting these eigenfunctions into relations (51–55) and using the MAPLE symbolic
program, the desired system matrices in terms of the prescribed motion of the beam is
computed.

With the discrete equations derived, the set of ODEs is integrated and the transient
response is obtained.

The following examples illustrate the difference in the response of the linear and
non-linear systems. No physical damping is included in the system equations.

3.3.2. Spaghetti and reverse spaghetti problems: quadratic sliding motion
A quadratic sliding motion as given in equation (32) is used for the prescribed sliding

motion of the beam. In the test case 1, a constant velocity retraction with the initial length
L0 =1·5 m and velocity V0 =−0·1145 m/s is considered.

Figure 9 shows the difference between the linear and the nonlinear time histories of the
non-dimensional tip deflection h of the sliding beam. The differences in frequencies and
amplitudes of oscillations become noticeable when the sliding velocity of the beam is
increased (see Figure 10).

Figure 12. Test Case 2: constant velocity extrusion V0 =0·123 m/s; ——, non-linear; ---, linear.
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In test case 2, a constant velocity extrusion with the same initial length and at three
different sliding speeds V0 =0·041, V0 =0·123 and 0·205 m/s is examined. The effect of
including the non-linear terms as well as increasing the extrusion velocity can be seen in
the linear and the non-linear solutions of the system (see Figure 11, 12 and 13).

It is interesting to add a constant acceleration term to the previous reverse spaghetti
problem. In this case two different prescribed velocity and acceleration terms for the sliding
motion of the beam are considered as follows: V0 =0·004 m/s, a0 =0·0075 m/s2 and
V0 =0·008 m/s, a0 =0·015 m/s2. The difference between the linear and the non-linear
solutions, both in amplitude and frequency of oscillations, will be noticed in Figures 14
and 15.

Figure 13. Test Case 2: constant velocity extrusion V0 =0·205 m/s; ——, non-linear; ---, linear.

Figure 14. Test Case 4: constant acceleration extrusion V0 =0·004 m/s, a0 =0·0075 m/s; ——, non-linear; ---,
linear.

Figure 15. Test Case 4: constant acceleration extrusion V0 =0·008 m/s, a0 =0·015 m/s2; ——, non-linear; ---,
linear.
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Figure 16. Test Case 5: low frequency extrusion c0 =0·7 m; ——, non-linear; ---, linear.

Figure 17. Test Case 5: low frequency extrusion c0 =2·1 m; ——, non-linear; ---, linear.

Figure 18. Test Case 5: low frequency extrusion c0 =3·5 m; ——, non-linear; ---, linear.

Figure 19. Test Case 6: high frequency extrusion c0 =0·7 m; ——, non-linear; ---, linear.
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Figure 20. Test Case 6: high frequency extrusion c0 =1·05 m; ——, non-linear; ---, linear.

3.3.3. Spaghetti and reverse spaghetti problems: repositional motion
The variable length of the beam is given in equation (33). In test case 5, a low frequency

extrusion L0 =1·5 m, c0 =0·7 m and t0 =20·8 s is considered. Figure 16 shows the
response of the system using the linear and the non-linear equations. The effect of
increasing the prescribed velocity of the sliding and the axial oscillation of the beam can
be seen in Figures 17 and 18.

In test case 6, the high frequency oscillation reverse spaghetti problem is examined.
Increasing the frequency drastically changes the response of the system. In this case
t0 =0·875 s in two different prescribed velocities where c0 =0·7 m and c0 =1·05 m is
considered. In this case one may notice the considerable difference between the linear
response and non-linear response of the system where increasing the velocity leads to
unstable solution for the linear case while the non-linear solution is bounded (see Figures
19 and 20).

In test case 7, the high frequency spaghetti problem with initial length L0 =3 m and
c0 =−0·7 m is considered. Figure 21 shows the transient response of the system in two
different, linear and non-linear, cases. Increasing the retraction velocity has also a
significant effect on the system (see Figure 22).

3.3.4. Reverse spaghetti problem: high frequency perturbations
In this case the constant velocity extrusion is modified by introducing an axial

perturbation as given in equation (34).
Here one considers the following parameters to study the effects of non-linear terms in

the response of the system: L0 =1·5 m, o=0·0133 and v̂=11v1 where v1 is the
instantaneous fundamental natural frequency of the sliding beam. In this test physical
damping as defined in section 2 is concluded. Figures 23 and 24 show the transient response
of the system and the difference between the linear and the non-linear solutions for the
two extruding velocities V0 =0·1145 m/s and V0 =0·3435 m/s.

3.3.5. Sliding clamped–clamped
For the sliding beam with clamped–clamped boundary condition, one uses the

ortho-normal eigenfunctions of the stationary clamped–clamped beam given by

Pi =cosh bih−cos bih−
cos bi −cosh bi

sin bi −sinh bi
(sinh bih−sin bih), (56)
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where the eigenvalues bi are the roots of the characteristic equation

cos bi cosh bi −1=0. (57)

Using these modal functions one calculates the system matrices as functions of the time
varying length and the sliding velocity of the beam.

Figure 25 shows the non-dimensional mid-span deflection of the beam with initial length
L0 =1·5 m extruding with constant velocity V0 =0·5725 m/s.

In another case, one considers the variable length of the beam as defined in equation
(33). For the reverse spaghetti problem, the parameters are chosen: L0 =1·5 m, c0 =0·7 m
and t0 =0·875 s. The response of the system is give in Figure 26. Increasing the velocity
leads to an unstable solution for the linear system (see Figure 27).

Figure 21. Test Case 7: high frequency retraction c0 =−0·7 m; ——, non-linear; ---, linear.

Figure 22. Test Case 7: high frequency retraction c0 =−2·1 m; ——, non-linear; ---, linear.

Figure 23. Test Case 8: high frequency perturbation extrusion V0 =0·1145 m/s; ——, non-linear perturbed;
---, non-linear unperturbed.
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Figure 24. Test Case 8: high frequency perturbation extrusion V0 =0·3435 m/s; ——, non-linear perturbed;
---, non-linear unperturbed.

Figure 25. Test Case 9: constant velcoity extrusion V0 =0·5725 m/s; ——, non-linear; ---, linear.

Figure 26. Test Case 10: high frequency extrusion c0 =0·7 m; ——, non-linear; ---, linear.

Figure 27. Test Case 10: high frequency extrusion c0 =0·931 m; ——, non-linear; ---, linear.
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Figure 28. Test Case 11: high frequency retraction c0 =−0·7 m; ——, non-linear; ---, linear.

In test case 11, the high frequency retraction case with the initial length of the beam
L0 =3·0 m is examined (see Figure 28). In this test physical damping as defined in section
2 is included.

4. NON-LINEAR AXIALLY INEXTENSIBLE FLEXIBLE SLIDING BEAMS IN UNIFORM
GRAVITATIONAL FIELD AND IN THE FIXED DOMAIN

Additional terms due to gravity may be obtained as outlined in part I and in the fixed
domain they may be expressed as

rAg
l

1x̂2

1S $1+
1
2l2 01x̂2

1S1
2

%−rAg
l

(1−S)$1+
3
2l2 01x̂2

1S1
2

% 12x̂2

1S2.

Figure 29. Spaghetti problem: uniform gravitational field, constant velocity retraction V0 =−0·1145 m/s;
——, non-linear gravity; ---, linear–gravity.

Figure 30. Spaghetti problem: uniform gravitational field, constant velocity retraction V0 =−0·5725 m/s;
——, non-linear gravity; ---, linear–gravity; . . . , non-linear–no gravity.
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Thus the additional linear and non-linear terms take the form

LG
1 =

rAg
l

1x̂2

1S
−

rAg
l

(1−S)
12x̂2

1S2 (58)

and

NG
1 =

rAg
2l3 01x̂2

1S1
3

−
3rAg
2l3

(1−S)01x̂2

1S1
2
12x̂2

1S2. (59)

To express the above additional terms in dimensionless form, it is required to define a
new non-dimensional term as

G=(rAg/EI)L3
0 . (60)

Therefore, dimensionless additional linear and non-linear terms become

LG
1 (h)=

G
l

1h

1S
−

G
l

(1−S)
12h

1S2 (61)

and

NG
1 (h)=

G
2l3 0 1h

1S1
3

−
3G
2l3

(1−S) 0 1h

1S1
2

12h

1S2. (62)

When transforming the PDE to ODEs, the above additional terms introduce additional
linear and non-linear stiffness matrices derived as

bG
ij =g

1

0

Pi$Gl 1Pj

1S
−

G
l

(1−S)
12Pj

1S2% dS (63)

and

cG
ijkl =g

1

0

Pi
1Pj

1S
1Pk

1S $G
2l3

1Pl

1S
−

3G
2l3

(1−S)
12Pl

1S2% dS. (64)

With the inclusion of these stiffness matrices in the governing equations of motion
obtained in section 2, one may study the transient response of the axially rigid sliding
beams in a uniform gravitation field.

Here test case 1 under a uniform gravitational field is considered. Figures 29 and 30 show
the necessity of including the non-linear terms in the solution as well as the effects of
uniform gravity field in the response of the system.

5. CONCLUSIONS

In this paper the transient response of axially inextensible sliding beams has been
computed. One started with the linear case and transformed the governing equation of
motion to the fixed domain. Subsequently Galerkin’s method with space dependent modal
functions was used to obtain the system discrete set of ODE’s. Numerical solutions of the
ODE’s were in good agreement with the simulation and experimental work reported in
the literature [7, 8].
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The analysis was further extended to the non-linear case and system equation obtained
in part I transformed to the fixed domain. Again using Galerkin’s method one obtained
a set of non-linear ODE’s which upon solution provided the response of the system. Several
illustrative cases were considered and the results exposed the differences between the linear
and the non-linear solutions to these problems. Also, the effect of uniform gravitational
field on the response of the system was studied.

In this paper the effect of axial flexibility which can have a crucial role on the response
of the system was neglected. This effect has not been considered by other researchers since
the large difference between the axial and flexural rigidities of slender beams would indicate
that the axial flexibility has a negligible effect on the motion of the system. In reference
[13] the finite element method as used for the solution of axially extensible sliding beams.
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