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A multiple harmonic balance method is presented in this paper for obtaining the internal
resonant steady state vibration of a Jeffcott rotor with a piecewise-linear non-linearity at
the bearing support. The method utilizes the hypertime concept, which isolates each
frequency component of a response into pseudo-time domains. Explicit Jacobians are
derived to obtain stable convergence solutions in the iteration process. The frequency
components of the non-linear restoring force part are analytically expressed from those of
the displacement part, using the Galerkin technique to guarantee a convergent solution.
As the method utilizes general and systematic computational procedures, it can be applied
to analyze the multi-tone or combination-tone responses for higher-dimensional non-linear
systems such as multi-disk rotors or automotive drivelines with multiple excitational inputs.
To demonstrate the accuracy and effectiveness of the proposed method, various simulation
results are studied and the results of multiple HBM are compared with those from
numerical integration.
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1. INTRODUCTION

It is well known that the harmonic balance method (HBM) is one of the most commonly
used approaches for analyzing strong non-linear dynamical systems [1, 2]. Although HBM
requires the prior determination of the retained harmonic terms and involves elaborate
algebraic formulation, it has been successfully applied to the analysis of the responses of
various non-linear systems in several engineering fields.

Nevertheless, the application of the aforementioned method is limited to predicting
periodic vibrations only, whereas, in reality, many engineers and researchers often
encounter problems of analyzing and designing the vibration of self-excited aperiodic rotor
systems or dual rotor systems in aircraft gas turbines, or analyzing non-linear dynamical
systems subjected to multi-frequency excitations, such as the ALP (articulated loading
platform) in structural engineering, or designing communication circuits such as
modulators and mixers in electrical engineering.
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During the past decade, several attempts have been made to devise methods for
obtaining steady state, aperiodic or internal resonant responses of systems under single-
or multi-excitation frequencies. The methods developed so far may be classified into three
categories: (1) a frequency domain approach [3, 4]; (2) a time domain approach [5–8]; and
(3) a hybrid approach in which time and frequency domains are alternatively utilized [9].

Lau et al. [3] developed the incremental harmonic balance method in obtaining the
steady state aperiodic solutions in a clamped–hinged beam, in which they utilized a
multiple integration formula by applying the Galerkin procedure. Their method could
provide each frequency component involved in the system response, and it requires an
approximate solution form where the incremental step starts. Ushida and Chua [4]
presented a frequency domain approach based on a generalized harmonic balance method
(GHBM) with alternating discrete and inverse discrete Fourier transform techniques for
the analysis of non-linear systems with two excitation frequencies. They used equally
spaced time intervals to obtain a discrete Fourier transform matrix for an almost periodic
signal. As they used a least squares approximation to obtain the inverse discrete Fourier
coefficients, ill-conditioning problems might occur unless a more elaborate and lengthy
numerical scheme is utilized as mentioned by Kundert [4]. A fixed point algorithm (FPA),
a shooting-type method for almost periodic solutions of a system with multi-inputs, was
introduced by Kaas-Peterson [5, 6]. Kaas-Peterson reformulated the problem of finding
aperiodic solutions of a system with two forcing frequencies as a fixed point problem in
the redefined Poincaré mapping. An interpolation process is utilized to obtain a fixed point
in the Poincaré space. Ling [7] presented a modified version of FPA method by introducing
the Jacobian matrix using analytical derivatives instead of numerical differentiation. The
FPA, however, has a drawback in its use of an interpolation technique to locate the fixed
point in the Poincaré map. It requires very careful selection of the Poincaré points and
the interpolation scheme. Moreover, the selection schemes might differ if other systems are
involved (see reference [8]).

Figure 1. A Jeffcott rotor model with bearing clearances.
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T 1

Frequency component comparison (V=2·0, a=1·0, z=0·2, g=0·3)

Frequency component Double HBM FFT

DC component for x 8·255811 8·255395
DC component for y −27·521273 −27·520680

v1 1·2987677 1·299063
2v1 4·3728×10−5 4·0785×10−5

3v1 1·3586×10−5 2·2445×10−5

T 2

Frequency component comparison (V=2·3, a=5·0, z=0·2, g=0·3)

Frequency component Double HBM FFT

DC component for x 12·940489 12·940490
DC component for y −22·585759 −22·585760

v1 1·0913874 1·091388
2v1 2·1235×10−5 1·4324×10−5

3v1 0·8745×10−5 0·3133×10−5

T 3

Frequency component comparison (V=3·0, a=1·0, z=0·2, g=0·3)

Frequency component Double HBM FFT

DC component for x 8·256881 8·256882
DC component for y −27·522936 −27·522940

v1 1·110939 1·110940
2v1 0·2498×10−5 0·4567×10−5

3v1 1·7347×10−5 1·4986×10−5

Meanwhile, in a non-linear rotor system with a cross-coupled stiffness, a self-excited
vibration has been mentioned [11, 12]. The self-excited or internally resonant vibration is
unpredictable since the internal resonant vibration frequency is neither the integer nor an
integer multiple of the excitational forcing frequency. Due to internal resonant vibration,
a rotor can rotate severely far below or far above the first critical speed. In particular,
internal resonant rotor vibration is well represented as an oil whirl for a non-linear rotor
system with hydraulic dynamic bearings [12]. Numerical integration is widely used to
obtain the steady state solution and to study the stability criteria for these internally
resonant vibrations. However, a more systematic procedure to obtain a steady state
whirling response for the internal resonant rotor system has not been well addressed as
yet.

In this paper, the direct HBM is generalized to multiple time scales, whereby the solution
is expanded into a multiple Fourier series containing a number of frequencies that are
incommensurable with one another. Theoretically, there is no limitation on the number
of time scales used, and hence a very general aperiodic solution of any accuracy can be
obtained if the proper frequencies and a sufficient number of corresponding harmonic
terms are included. As the proposed method can directly detect the harmonic components
involved, it is very straightforward to study the possible combination resonances or
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Figure 2. Synchronous whirling motion: V=2, a=1·0, z=0·3, g=0·3. ——, Runge–Kutta; multiple HBM.

internal ones for the non-linear system. The aim of the present paper is primarily to
introduce the essence of the new approach, and therefore only some important cases of
a non-linear rotor problem are described to show the effectiveness of the method.

2. METHOD OF ANALYSIS

The equations of motion for a horizontal Jeffcott rotor with bearing clearances (see
Figure 1) can be written as

mX0+ cX'+ ksX+QsY+FkbX01−
d

zX2 +Y21− mFkbY01−
d

zX2 +Y21
= mev2 cos vt,

mY0+ cY'+ ksY−QsX+FkbY01−
d

zX2 +Y21+ mFkbX01−
d

zX2 +Y21
= mev2 sin vt−mg, (1)

Figure 3. A three-dimensional view of displacement x(t1, t2).
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Figure 4. A convergence diagram: V=2, a=1·0, z=0·2, g=0·4.

where ks is the shaft stiffness, Qs is the cross-coupling stiffness, c is the system damping,
m is the friction coefficient, and d is the radial clearance of the bearing. A prime denotes
a derivative with respect to time t and the discrete function F has the form

F=61, zX2 +Y2 q d,

0, zX2 +Y2 E d.

To study the effect of the parameters on the behavior of the system, the following
non-dimensional groups are introduced: vn =zK/m, K=4kskb /(zk2 +zkb)2, x=X/e,
y=Y/e, V=v/vn , z= c/2mvn , g=Qs /K, a= kb /ks , d*= d/e, f= g/v2

ne, r*=zx2 + y2

and nu=vt. Here n denotes the subharmonic ratio (n=1 for the harmonic case, and n= n
for an nth subharmonic case). Equation (4) can be written as

ẍ+2z
n

V
ẋ+

(n2/V2)(1+za)2

4a
x+ g

n2

V2 y+T(u)− mF(u)= n2 cos nu,

ÿ+2z
n

V
ẏ+

(n2/V2)(1+ za)2

4a
+T(u)y− g

n2

V2 x+ mT(u)= n2 sin nu−f
n2

V2 , (2)

Figure 5. A geometrical interpretation of the frequency components satisfying equations (24) and (25).
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Figure 6. The power spectrum of the internal resonance motion: V=2, a=1·0, z=0·2, g=0·4. ——,
Numerical integration; ,, multiple HBM.

where a dot represents a derivative with respect to dimensionless time u and F are unity
if r* is greater than d*; otherwise, they are zero. T(u) and F(u) are given by the following
expressions:

T(u)=F
n2

V2

(1+za)2

4
x01−

d*

zx2 + y21,
F(u)=F

n2

V2

(1+za)2

4
y01−

d*

zx2 + y21, (3)

where

F=61, zx2 + y2 q d*,

0, zx2 + y2 E d*.

In periodic vibration, all frequencies are commensurable and, therefore, it is reasonable
to postulate that internal resonant motion could be made up of components with
incommensurable frequencies. Therefore, the solution of equations (1) and (2) can be
regarded as functions of v1u and v2u; i.e.,

x= x(v1u, v2u), (4)

where the frequencies v1 and v2 are incommensurable with one another in general. It is
reported that the incommensurable frequency component occurs as a result of the
cross-coupling stiffness terms in equation (2), and the second incommensurable frequency
component, v2, can be easily obtained as

v2
2 =

(b− z2)
2V2 2

1
2V2 [(z2 − b)2 + g2]1/2, (5)

where b=(1+za)2/4a. It should be noted that v1 =1 and that the positive sign of v2

is used in the paper.
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By introducting

tk =vku, k=1, 2, (6)

within the new time domain, where 0E tk E 2p (k=1, 2), equation (5) can be rewritten
as

x= x(t1, t2). (7)

Since tj (j=1, 2) are functions of t, the following operator relations can be obtained:

d
du

=v1
d

dt1
+v2

d
dt2

,

d2

du2 =v2
1

d2

dt2
1
+v2

2
d2

dt2
2
+2v1v2

d2

dt1 dt2
. (8)

Figure 7. (a) The time response of the x displacement using multiple HBM. (b) The time response of the x
displacement using numerical integration. V=2, a=1·0, z=0·2, g=0·4.
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Figure 8. Three-dimensional views of (a) the displacement x(t1, t2), (b) the displacement y(t1, t2) and (c) the
restoring force component A(t1, t2).

Substituting equation (7) into equation (2) leads to

v2
1
d2x
dt2

1
+2v1v2

d2x
dt1 dt2

+v2
2
d2x
dt2

2
+

2zn

V 0v1
dx
dt1

+v2
dx
dt21 n2

V2

(1+za)2

4a
x

+ g
n2

V2 y+T(x, y)− mF= n2 cos t1,

v2
1
d2y
dt2

1
+2v1v2

d2y
dt1 dt2

+v2
2
d2y
dt2

2
+

2zn

V 0v1
dy
dt1

+v2
dy
dt21 n2

V2

(1+za)2

4a
y− g

n2

V2 x

+F(x, y)+ mF(x, y)= n2 sin t1 −f
n2

V2 . (9)
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Using the two-dimensional frequency concept, the two-dimensional discrete time
solution for x and y in equation (9) with the (m, n)th component can be expanded as
follows:

x(m, n)= s
M

k=−M

s
M

l=−M 6axkl cos
2p

N
(mk+ nl)− bxkl sin

2p

N
(mk+ nl)7

= s
M

k=−M

s
M

l=−M 6axkl cos (kt1 + lt2)− bxkl cos (kt1 + lt2)7, (10a)

y(m, n)= s
M

k=−M

s
M

l=−M 6aykl cos
2p

N
(mk+ nl)− bykl sin

2p

N
(mk+ nl)7

= s
M

k=−M

s
M

l=−M 6aykl cos (kt1 + lt2)− bykl cos (kt1 + lt2)7, (10b)

where M represents the number of retained harmonic terms and N is the number of discrete
time steps. Remember that the indices m and n vary from 1 to N, respectively, in the
discrete time domain, and that k and l vary from −M to M, respectively, in the discrete
frequency domain. Equation (10) is the expression of the two-dimensional time domain
of the IDFT (inverse discrete Fourier transform). Similarly, the non-linear restoring forces
of T(u) and F(u) in equation (2) with the (m, n)th discrete time domain can be expanded
assuming that T(u) and F(u) have the same double harmonic components as

T(x, y)(m, n)= s
M

k=−M

s
M

l=−M 6cxkl cos
2p

N
(mk+ nl)− dxkl sin

2p

N
(mk+ nl)7, (11a)

F(x, y)(m, n)= s
M

k=−M

s
M

l=−M 6cykl cos
2p

N
(mk+ nl)− dykl sin

2p

N
(mk+ nl)7. (11b)

It should be noted that the concepts of the two-dimensional frequency and the
two-dimensional discrete time domain are clearly an extended version of the DFT (discrete
Fourier transform) and the IDFT of a single input non-linear system. Also, the non-linear
forcing terms, T(x, y)(m, n) and F(x, y)(m, n), in equation (11) are functions of the
discrete displacements, x(m, n) and y(m, n), in equation (10), satisfying equation (3) in the
(m, n)th time domain. Therefore, the unknown coefficients of cxkl , cykl , dxkl and dykl in
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equation (11) can be expressed using the unknown coefficients of axkl , axkl and bykl in the
two-dimensional discrete time domain, as

T(k, l)(m, n)=

g
G

G

F

f

n2

V2

(1+za)2

4
x(m, n)01−

d*

zx(m, n)2 + y(m, n)21,
0,

zx(m, n)2 + y(m, n)2 q d*,

zx(m, n)2 + y(m, n)2 E d*,

F(k, l)(m, n)=

g
G

G

F

f

n2

V2

(1+za)2

4
y(m, n)01−

d*

zx(m, n)2 + y(m, n)21,
0,

zx(m, n)2 + y(m, n)2 q d*,

zx(m, n)2 + y(m, n)2 E d*,

(12)
The unknown coefficients c(k, l) and d(k, l) can easily be obtained as

cxkl =
2
N2 s

N

n=0

s
N

n=0

T(x, y)(m, n) cos
2p

N
(mk+ nl),

cykl =
2
N2 s

N

n=0

s
N

n=0

T(x, y)(m, n) sin
2p

N
(mk+ nl),

dxkl =
2
N2 s

N

n=0

s
N

n=0

F(x, y)(m, n) cos
2p

N
(mk+ nl),

dykl =
2
N2 s

N

n=0

s
N

n=0

F(x, y)(m, n) sin
2p

N
(mk+ nl), (13)

where k and l vary from −M to M. If more than two input exciting frequencies are
involved in the system, it is only necessary to include more adequate harmonic or time
elements in equations (10–13). Substituting equations (10) and (11) into equation (2) and
rearranging the terms with the same trigonometric elements leads to the following:

(i) for constant terms,

n2

V2

(1+za)2

4a
ax0 + g

n2

V2 ay0 +Cx0 − mcy0 =0,

n2

V2

(1+za)2

4a
ay0 − g

n2

V2 ax0 + cy0 + mcx0 +f
n2

V2 =0; (14)
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(ii) for trigonometric terms

−0k2v2
1 +2klv1v2 + l2v2

2 +
n2

V2

(1+za)2

4a 1 axkl −02zn

V
v1k+

2zn

V
v2l1bxkl

+ g
n2

V2 aykl + cxkl − mcykl − n2F1(cos t1)=0,

0k2v2
1 +2klv1v2 + l2v2

2 −
n2

V2

(1+za)2

4a 1bxkl −02zn

V
v1k+

2zn

V
v2l1axkl

−g
n2

V2 bykl − dxkl + mdykl =0,

−0k2v2
1 +2klv1v2 + l2v2

2 −
n2

V2

(1+za)2

4a 1aykl −02zn

V
v1k+

2zn

V
v2l1bykl

−g
n2

V2 axkl + cykl + mcxkl =0,

−0k2v2
1 +2klv1v2 + l2v2

2 +
n2

V2

(1+za)2

4a 1axkl −02zn

V
v1k+

2zn

V
v2l1bxkl

+ g
n2

V2 aykl + cxkl − mcykl − n2F1(cos t1)=0, (15)

where (k, l=−M, −M+1, . . . , M−1, M), and F1 is 1 if n= k and l=0 and otherwise
is zero. By combining all the equations of (14) and (15), the following non-linear algebraic
equations can be obtained:

g1 =
n2

V2

(1+za)2

4a
ax0 + g

n2

V2 ay0 + cx0 − mcy0 =0,

···

g16k+4l−1 =−0k2v2
1 +2klv1v2 + l2v2

2 +
n2

V2

(1+za)2

4a 1axkl −02zn

V
v1k+

2zn

V
v2l1bxkl

+ g
n2

V2 aykl + cxkl − mcykl − n2F1(cos t1)=0,

g16k+4l =0k2v2
1 +2klv1v2 + l2v2

2 −
n2

V2

(1+za)2

4a 1bxkl −02zn

V
v1k+

2zn

V
v2l1axkl

−g
n2

V2 bykl − dxkl + mdykl =0, (16)

···

where k, l=−M, −M+1, . . . , M−1, M.
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Equation (16) is implicitly non-linear: therefore, a numerical iteration scheme such as
the Newton–Raphson method can be applied to obtain the solution. In equation (16) the
only unknowns are axkl , aykl , bxkl , . . . , bykl and the coefficients of cxkl , cykl , dxkl , . . . , dykl are
easily obtained using equations (12) and (13). In obtaining the non-linear algebraic
equations using HBM, Ushida and Chua [4] used one-dimensional frequency and the time
domain concept to obtain multi-input frequency systems, resulting in more unknown
coefficients than the number of algebraic equations during the process of transformation
between DFT and IDFT. As they utilized the least squares method to guess the extra
unknowns for the unknown harmonic coefficients, this inherently involves ill-conditioning
problems unless very elaborate and lengthy discrete time steps are selected. However, the
two-dimensional frequency domain approach proposed in this paper presents no
difficulties in the transformation process between the DFT and the IDFT using the
Galerkin technique, nor problems in representing non-linear force terms with assumed
harmonic components. It can always offer a very accurate Jacobian matrix which gives
the convergent solution for the iteration scheme.

If the vectors {p} and {q} represent the unknown components in equation (16), as

{p}=[ax00, ay00, ax01, bx01, ay01, by01, . . . , ayij , byij ]T, (17a)

{q}=[cx00, cy00, cx01, dx01, cy01, dy01, . . . , cyii , dyij ]T, (17b)

then the vector {q} can be represented from the unknown vector {p} using the Galerkin
technique, which implies a double integral from 0 to 2p in arguments t1 and t2, respectively,
as

g
T2

0 g
T1

0

{cxkl cos (kt1 + lt2)− dxkl sin (kt1 + lt2)}

×[. . . , cos (kt1 + lt2), . . . , sin (kt1 + lt2), . . . ]T dt1 dt2

=g
T2

0 g
T1

0

A{axmn cos (mt1 + nt2)− bxmn sin (mt1 + nt2)}

×[ . . . , cos (kt1 + lt2), . . . , sin (kt1 + lt2), . . . ]T dt1 dt2

−g
T2

0 g
T1

0

B{aymn cos (mt1 + nt2)− bymn sin (mt1 + nt2)}

×[. . . , cos (kt1 + lt2), . . . , sin (kt1 + lt2), . . . ]T dt1 dt2,

g
T2

0 g
T1

0

{cykl cos (kt1 + lt2)− dykl sin (kt1 + lt2)}

×[ . . . , cos(kt1 + lt2), . . . , sin (kt1 + lt2), . . . ]T dt1 dt2

=g
T2

0 g
T1

0

−C{axmn cos (mt1 + nt2)− bxmn sin (mt1 + nt2)}

×[. . . , cos (kt1 + lt2), . . . , sin (kt1 + lt2), . . . ]T dt1 dt2

+g
T2

0 g
T1

0

D{aymn cos (mt1 + nt2)− bymn sin (mt1 + nt2)}

×[ . . . , cos (kt1 + lt2), . . . , sin (kt1 + lt2), . . . ]T dt1 dt2, (18)
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where

A=F
n2

V2 $(1+za)2

4
(1+za)2

4
d*(x2 + y2)−3/2y2%,

C=D=F
n2

V2 $(1+za)2

4
(1+za)2

4
d*(x2 + y2)−3/2xy%,

D=F
n2

V2 $(1+za)2

4
(1+za)2

4
d*(x2 + y2)−3/2x2%.

The above relations can lead to solutions that can be summarized in discrete form as

1cxkl

1axmn
=

2
N2 s

N

i=0

s
N

j=0

Aij cos
2p(ik+ jl)

N
cos

2p(im+ jn)
N

,

1dxkl

1bymn
=−

2
N2 s

N

i=0

s
N

j=0

−Bij sin
2p(ik+ jl)

N
sin

2p(im+ jn)
N

,

1cykl

1axmn
=−

2
N2 s

N

i=0

s
N

j=0

Cij cos
2p(ik+ jl)

N
cos

2p(im+ jn)
N

,

1dykl

1bymn
=

2
N2 s

N

i=0

s
N

j=0

Dij sin
2p(ik+ jl)

N
sin

2p(im+ jn)
N

, (19)

where Aij , Bij , Cij and Dij are discrete time versions of A, B, C and D of equation (18).
In the above equations, the coefficients A, B, C and D represent the non-dimensional
discontinuous stiffness depending on F, where F=1 when the rotor contacts with its
housing and is otherwise zero when no contact occurs.

The non-linear algebraic equations can be solved using the iteration technique. One of
the most frequently used iteration processes is the Newton–Raphson method, if an explicit
Jacobian matrix is obtained from the given non-linear equations. Fortunately, our problem
considered in this paper is capable of obtaining the exact Jacobian terms using the Galerkin
procedure, as addressed before. The iteration procedure can be described by

{p}i = {p}i−1 − [J]−1{G}i−1, (20)

where the superscript i denotes the ith iteration step during the iteration process, {G} is
a column vector having the elements of equation (16), and [J] is the Jacobian matrix, which
has the components

[J]= [J1]+ [J2], (21)
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where
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in which

t1 =
n2

V2

(1+za)2

4a
, t2 =

2zn

V
and t3 = g

n2

V2 .

From equations (22) and (23), it is clear that the Jacobian matrix is explicitly expressed
with trigonometric functions. By rendering it explicit, the iteration process can always offer
convergent solutions if the parameters considered are located within the well-conditioned
ranges.

3. NUMERICAL RESULTS

For illustration, the methods developed in this study are applied to a non-linear Jeffcott
rotor with piecewise-linear bending characteristics. Due to the stiffness cross-coupling
terms in equation (1), it is widely known that the linear or non-linear rotor system with
cross-coupling force terms might lead to an unstable synchronous or unsynchronous whirl.
A prior systematic bifurcation study showed that a Hopf bifurcation leading to internal
resonant vibration with a single excitational input did occur, depending on the
cross-coupling stiffness coefficients [13]. In reference [13], the unstable unsynchronous whirl
appeared through Hopf bifurcation in which an internal resonance was developed
independent of the excitational whirl frequency. Usually, the second frequency induced by
internal resonance is not an integer fraction of an excitational whirl frequency (due to the
unbalance force), and hence it is very difficult to analyze further using the method
developed by Kim and Noah. Some researchers have tried to locate and separate internal
resonant frequencies through various numerical methods or experimental work for a
non-linear rotor system. Their methods have been partly successful in isolating internal
resonant non-linear frequencies; however, the conventional FFT algorithm was used after
numerical integration in identifying the internal resonance [14]. The rotor system
considered here is a truly two-dimensional system in which cross-coupling terms and
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non-linear restoring forces due to gap changes are expressed through two-directional
displacements, and the proposed method directly offers frequency components for internal
resonances.

The accuracy of the proposed method is first verified by comparison with the results of
the frequency components from FFT, in which 8192 discrete time data points from
numerical integration were used. In Tables 1–3 is shown the comparison between the
results of the two methods, in which no internal resonance occurs since the
non-dimensional cross-coupling stiffness coefficient term, g, is not large enough to induce
an internal resonant fractional frequency. The tables show that the proposed method gives
very accurate frequency components when no internal resonance occurs.

A polar plot for the case of Table 1 (V=2, a=1·0, z=0·3 and g=0·3) was displayed
as shown in Figure 2. In the figure, dots represent the responses obtained by double HBM
and the solid line denotes the results of numerical integration. As the present HBM
separates the real time domain into two hyper-time domains, in which each period varies
from 0 to 2p, respectively, the amplitudes of x(t1, t2) can be viewed three-dimensionally
in each hyper-time domain as shown in Figure 3. In the figure, the same non-dimensional
parameters were used as in Figure 2. Each mutual perpendicular horizontal axis represents
the hyper-time domain of t1 and t2 having a period of 2p. The figure also shows that the
amplitude of the i axis, which represents the first argument of t1, varies as the hyper-time
changes. However, the second argument of t2 does not contribute to the amplitude change.
This is true since the non-dimensional parameters utilized in this example show only
periodic synchronous whirling responses; i.e., only the involvement of whirling with the
t1 argument. In most simulation cases with parameter ranges used in Tables 1–3, the
maximum four iteration steps were enough to obtain synchronous whirling responses
within considerable accuracy with an error bound of 1×10−6. However, if the internal
resonant frequency is involved in the whirling response as the cross-coupling term g exceeds
certain values, the iteration process slows down to obtain the solution within the required
error bound. The convergence rates for this case are shown in Figure 4. In the figure,
non-dimensional parameters of V=2·0, a=1·0, z=0·2 and g=0·4 were used. In most
simulation cases more than 15 iterations were needed to obtain internal resonant
non-synchronous whirling within a certain error bound.

To find an adequate number of harmonic components of each input frequency in this
example, various numerical experiments were carried out. The combination of each
frequency component might be expressed as

2kt1 2 lt2, (24)

where k and l include all integers and satisfy

=k=+ =l=QB and 2kt1 2 lt2 q 0 (25)

for a properly chosen integer value B. The frequency component satisfying equations (24)
and (25) can be represented geometrically by dots in the frequency diagram, as shown in
Figure 5. Here, each solid dot located at (k, l) corresponds to a frequency component
2kt1 2 lt2 satisfying equation (25), and the other empty upper triangle marks are
frequency components excluded in equation (24). The decision on how many harmonic
components to include for each frequency term in this example has been made from the
numerical experiments. From various numerical experiments, the integer value of B and
the non-dimensional discrete time number N are taken as 3 and 16, respectively, and good
results were obtained, as shown in Figure 2 and Tables 1–3. If one takes the larger value
of B, the corresponding accuracy of the method will be better. However, the computational
speed will be much slower and more memory space will be needed.
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One of the main advantages of this proposed method is the direct decomposition of each
frequency component, which makes it easy to study the coupling effects (i.e., internal
resonance or combination resonance) for the given non-linear Jeffcott rotor system. A
comparison between the doubly harmonic balance method and numerical integration in
the frequency domain is shown in Figure 6, with the same parameters as used in Figure
4. The figure shows good agreement between the two methods in the frequency domain.
Only the excitational frequency v1 is involved for the unbalance response; the non-integer
fractional frequency v2 appears suddenly (v2 =0·42), which implies that the non-linear
rotor system gets into severe non-synchronous whirling even though the rotor does not
pass the first critical speed due to the cross-coupling force terms.

The time history for x-directional response with a non-integer fractional frequency is
calculated in the discrete time domain from the frequency response of the multiple HBM,
as shown in Figure 7(a). The time response is compared with that from numerical
integration, as displayed in Figure 7(b). Both figures reveal that the doubly harmonic
balance method can offer very accurate results for the non-linear system considered here
in the time and frequency domains. In Figure 7(b) sufficient time should be allowed to
obtain steady state whirling due to low damping. However, doubly HBM directly offers
a steady state response without regard to the damping terms. In Figure 8(a) is shown the
three-dimensional x-axis response for the non-integer fractional frequency case. The figure
clearly shows that each argument of t1 and t2 varies from 0 to 2p, separately. As non-linear
contacts happen in all directions (i.e., both the x and y directions), the y-axis response also
shows double periodic changes, as shown in Figure 8(b). The non-linear restoring force
term A(t1, t2) is displayed in each hyper-time domain, as shown in Figure 8(c). As the
non-linear forcing term of A(t1, t2) has a discontinuous characteristic depending on the
contact conditions, as expressed in equation (12), the figure clearly shows the discontinuous
function for the restoring force element.

4. CONCLUSIONS

The doubly harmonic balance method is developed and applied to the two-dimensional
non-linear Jeffcott rotor system to show its effectiveness and accuracy. The method is
proved to be superior in obtaining direct frequency components as compared with
numerical integration for a high damping system. Although a detailed internal resonance
analysis was not performed in this paper, the present method can serve as a tool to examine
internal or combinational resonant vibration for a non-linear rotor with parameter
variations. Moreover, the proposed method can be extended to apply easily to a
two-dimensional system with multiple exciting input frequencies, such as a dual- or
triple-rotor system.
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