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1. 

A reasonable amount of finite element models has been developed for dealing with thin,
orthotropic plates. Among them, the one developed by Tsay and Reddy [1] is very
convenient, especially when dealing with every-day design-type problems.

On the other hand, and when dealing with vibrating, thin rectangular isotropic plates,
the element developed by Bogner et al. [2] appears to be one of the most accurate ones,
ideal for scientific, academically oriented investigations.

The present study deals with an extension of the rectangular, thin plate element
developed by Bogner et al. in the 1960s [2] for static, elastic stability and vibration
problems of thin, rectangular orthotropic plates. The essential details of the analysis are
given in this note, as well as some examples which show the convenience and accuracy
of the approach.

2.     

The rectangular element referred to the local co-ordinate system x, y and the adopted
local numbering system of the nodes is shown in Figure 1.

The transverse displacement w and its derivatives 1w/1x, 1w/1y and 12w/1x 1y are the
degrees of freedom corresponding to each node. The vector of the nodal displacements is
expressed as

{we}t = [w1 (1w/1x)1 (1w/1y)1 (12w/1x 1y)1 · · · (12w/1x 1y)4]. (1)

Now introducing the dimensionless variables j= x/a, h= y/b and using the interpolation
polynomials used in reference [2] one obtains the following shape functions:

N1 (j, h)= (2j3 −3j2 +1) (2h3 −3h2 +1), N9 (j, h)= j2h2(3−2j) (3−2h),

N2 (j, h)= aj(j2 −2j+1) (2h3 −3h2 +1), N10 (j, h)= aj2h2(j−1) (3−2h),

N3 (j, h)= bh(2j3 −3j2 +1) (h2 −2h+1), N11 (j, h)= bj2h2(3−2j) (h−1),

N4 (j, h)= abjh(j2 −2j+1) (h2 −2h+1), N12 (j, h)= abj2h2(j−1) (h−1),

N5 (j, h)= h2(2j3 −3j2 +1) (3−2h), N13 (j, h)= j2(3−2j) (2h3 −3h2 +1),

N6 (j, h)= ajh2(j2 −2j+1) (3−2h), N14 (j, h)= aj2(j−1) (2h3 −3h2 +1),

N7 (j, h)= bh2(2j3 −3j2 +1) (h−1), N15 (j, h)= bj2h(3−2j) (h2 −2h+1),

N8 (j, h)= abjh2(j2 −2j+1) (h−1), N16 (j, h)= abj2h(j−1) (h2 −2h+1). (2)

The displacement at an arbitrary point of the element is now given by

w(j, h)= [N]{we}. (3)
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Figure 1. The finite element and the local numbering of its nodes.

Considering the case in which the directions of orthotropy coincide with the co-ordinate
axes, one expresses the strain energy of the plate by [3]

U= 1
2 gg 6D1012w

1x21
2

+2n2 D1
12w
1x2

12w
1y2 +D2012w

1y21
2

+4Dk0 12w
1x 1y17 dx dy, (4)

where

D1 =
E1 h3

12(1− n1 n2)
, D2 =

E2 h3

12(1− n1 n2)
, Dk =

Gh3

12
(5)

and where h is the plate thickness; E1 and E2 are the orthotropic elasticity moduli; n1 and
n2 are the orthotropic Poisson moduli (E1 n2 =E2 n1); and G is the transverse elasticity
coefficient.

Substituting equation (3) in equation (4) and integrating over the rectangular element
subdomain one obtains

U= 1
2 {we}t D1

ab
[a2[k(1)]+ da−2[k(2)]+8[k(3)]+ n2 [k(4)]]{we}, (6)

where

a= b/a, d=D2/D1, 8=2Dk /D1 (7)

and

[k(1)]=g
1

0 g
1

0

[Njj ]t[Njj ] dj dh, [k(2)]=g
1

0 g
1

0

[Nhh ]t[Nhh ] dj dh,

[k(3)]=2 g
1

0 g
1

0

[Njh ]t[Njh ] dj dh, [k(4)]=g
1

0 g
1

0

{[Njj ]t[Nhh ]+ [Nhh ]t[Njj ]} dj dh. (8)



   866

The subscripts denote the derivatives with respect to the dimensionless spatial variables.
In the case of an isotropic plate one has

n1 = n2 = n, d=1, 8=1− n, (9)

and, accordingly, the stiffness matrix of the isotropic element is

[k]=
D
ab

{a2[k(1)]+ a−2[k(2)]+ [k(3)]+ n[k(4)]− n[k(3)]}, (10)

where D=Eh3/12(1− n2).
Bogner et al. [2] give the following expression for the generic component of the same

matrix:

q̃ij =
D
ab

[a2g̃(1)
ij + a−2g̃(2)

ij + g̃(3)
ij + ng̃(4)

ij ]al	 i jbm̃ij . (11)

Also, Table 6 of reference [2] contains the numerical values of g̃(1)
ij , g̃(2)

ij , g̃(3)
ij , g̃(4)

ij , l	 i j and m̃ij

for i=1, . . . , 16 and j=1, . . . , i.
Comparing equations (10) and (11) one immediately concludes that

k(1)
ij = g̃(1)

ij al	 i jbm̃i j, k(2)
ij = g̃(2)

ij al	 i jbm̃ij ,

k(3)
ij = g̃(3)

ij al	 i jbm̃ij , k(4)
ij =(g̃(3)

ij + g̃(4)
ij )al	 i jbm̃ij . (12)

Accordingly, the numerical values given in reference [2] allow for the straightforward
transcription of the stiffness matrix of the orthotropic plate element. Regarding the inertia
matrix, its generic component is [2]

mij = r
abh
1225

g̃(5)
ij al	 i jbm̃ij , (13)

where r is the mass density and the values of g̃(5)
ij being given in Table 6 of reference [2].

3.  

In order to investigate the advantages and accuracy of the orthotropic element
developed in this study, several problems were solved in cases in which exact or very

T 1

The frequency coefficients of a simply supported, square, isotropic plate

Number of Degrees of
elements freedom V1 V2 =V3 V4 V5 =V6

25 100 19·7403 49·4014 79·0265 99·3402
100 400 19·7393 49·3514 78·9611 98·7390
225 900 19·73922 49·3587 78·9577 98·7046
400 1600 19·739213 49·3482 78·9571 98·6988
625 2500 19·739211 49·3481 78·9569 98·6972

225* 900 19·739210 49·34806 78·9569 98·6966
400* 1600 19·739209 49·34804 78·95685 98·6962
625* 2500 19·7392089 49·348027 78·956842 98·69611

2500† 7500 19·7400 49·3513 78·9698 98·7034

Exact solution 19·7392088 49·348022 78·956835 98·69604

* Results obtained using the present element considering 1/4 of the plate.
† Results obtained using ALGOR, considering also 1/4 of the plate.
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T 2

The frequency coefficients of a simply supported, square, orthotropic plate (D2/D1 =0·5,
D3/D1 =0·5, n2 =0·3)

Number of Degrees of
elements freedom V1 V2 V3 V4

25 100 15·6062 35·6226 44·7449 62·4856
100 400 15·6053 35·5877 44·6903 62·4249
225 900 15·60523 35·5858 44·6873 62·4217
400 1600 15·60522 35·5855 44·6868 62·4211
625 2500 15·605216 35·58543 44·6866 62·42096

225* 900 15·6052155 35·58539 44·68658 62·42091
400* 1600 15·6052150 35·585374 44·68655 62·42088
625* 2500 15·6052148 35·585369 44·686541 62·420865

2500† 7500 15·6059 35·5882 44·6888 62·4311

Exact solution 16·6052147 35·585365 44·686534 62·420859

* Results obtained using the present element considering 1/4 of the plate.
† Results obtained using ALGOR, considering also 1/4 of the plate.

accurate results were known. Three of those problems are reported herein. The eigenvector
and corresponding eigenvalues were determined by the method of inverse iteration [4].

In Table 1 are depicted the lower eigenvalues Vi =vi a2zrh/D in the case of a simply
supported square isotropic plate. The frequency coefficients have been evaluated using (1)
the newly developed orthotropic plate element degenerated into the isotropic case and (2)
the ALGOR system [5]. Excellent agreement with the exact eigenvalues is achieved.

In Table 2 is shown a comparison of natural frequency coefficients, Vi =vi a2zrh/D1,
in the case of a square simply supported, orthotropic plate. The exact eigenvalues have
been computed using the well known expression for the rectangular simply supported, thin
orthotropic plate:

Vnm = a2zrh/D1vnm = p2[n4 +2n2m2(a/b)2D3 /D1 +m4(a/b)4D2 /D1]1/2, (14)

T 3

The frequency coefficients of a clamped, square, orthotropic plate (D2/D1 =0·5, D3/D1 =0·5,
n2 =0·3)

Number of Degrees of
elements freedom V1 V2 V3 V4

25 100 30·0006 54·5135 68·0546 88·5513
100 400 29·9797 54·3484 67·8148 88·1860
225 900 29·9795 54·3390 67·8011 88·1647
400 1600 29·9793 54·3374 67·7988 88·1609
625 2500 29·9792 54·3370 67·7981 88·1598

225* 900 29·97919 54·3368 67·7979 88·1595
400* 1600 29·97917 54·3367 67·7977 88·1592
625* 2500 29·979169 54·33668 67·79768 88·15914

2500† 7500 29·9813 54·3434 67·8030 88·1801

Reference [6] 29·979167 54·336663 67·797655 88·159097

* Results obtained using the present element considering 1/4 of the plate.
† Results obtained using ALGOR, considering also 1/4 of the plate.
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where

D3 = n2 D1 +2Dk . (15)

Finally, in Table 3 are shown results for the case of a vibrating, thin, clamped
orthotropic square plate.
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