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Vibrations of cylindrical shells parametrically excited by axial forcing are considered. The
governing system of two coupled non-linear partial differential equations is discretized by
using Lagrange equations. The computation is simplified significantly by the application
of computer algebra and as a result low dimensional models of shell vibrations are readily
obtained. After applying numerical continuation techniques and ideas from dynamical
systems theory, complete bifurcation diagrams are constructed. The principal aim is to
investigate the interaction between different modes of shell vibration. Results for system
models with two of the lowest modes are discussed.
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1. INTRODUCTION

The thin cylinder under axial load is a fundamental problem in shell theory mainly due
to its wide use as a structural element in several engineering areas: civil, mechanical,
aeronautical, and nuclear. The complete circular cylindrical shell combines a simple
geometric shape with an extremely complex behaviour under external loading. Cylindrical
shells have been the subject of a great number of studies, mainly within the context of
elastic buckling under static loading; see e.g. references [1–5]. At the same time the
behaviour of cylindrical shells under dynamic loading is much less understood [6, 7]. An
important problem in structural dynamics concerns parametrically excited shell vibrations.
They have been treated mostly by classical linear methods from dynamic stability theory
[8–10]. Such stability analyses provide only an outline of the parameter regimes where
non-linear effects are of significance. They cannot reveal important details about the
bifurcations and detect only the loss of stability of the trivial solution without giving
answers about the possible outcomes of the bifurcation. The analysis of more complicated
motions is usually limited to a simple numerical integration [11, 12].

An important phenomenon connected with shell dynamics is the possible coupling or
interaction between different modes [13, 14]. It is well known that there is a basic difference
in the frequency spectrum of a cylinder as compared to those of strings, membranes,
beams, and plates [15]. The frequency spectrum of a cylinder rarely follows any simple rule.
Often several successive frequencies are very closely grouped together. The high modal
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densities in shells facilitate the modal interactions. Results on modal interaction in shells
have been reported in reference [16], where the main problems are stated and the analytical
analysis is performed together with some experiments. Zones of dynamic instability are
identified by the reduction to equations of Mathieu type and the successive application
of perturbation methods. Although the perturbation analysis delineates modal
interactions, this is clearly only the first step towards the understanding of the full picture.

The aim of the present study is to investigate as completely as possible bifurcations and
stability of solutions of low dimensional models of parametrically excited cylindrical shells.
The main concern is the modal interactions and their relevance to the behaviour of the
structure under consideration. The mathematical modelling is based on the equations of
the shallow shell theory, namely the Donnell equations. This formulation is selected on
the basis that it is the simplest approach which retains the essential non-linear features of
the problem. We have been very careful in our choice of appropriate approximation
functions in order to capture the essential dynamics. The system equations are discretized
by the use of Lagrange equations and all analytical manipulations are performed through
symbolic computations. The main tool of our study of bifurcations and stability of
solutions is numerical continuation techniques.

2. MECHANICAL SYSTEM

The structure considered is an infinitely long circular cylindrical shell subjected to a
uniformly distributed periodic forcing acting in the surface of the shell, namely the
parametric excitation; see Figure 1. Within the infinitely long shell, we focus on
deformations that are axially periodic with wavelength L. The points at the periodic
boundaries are allowed to pulsate radially, in a way that the local cross-section always
remains circular and concentric with its original configuration. By considering an infinitely
long cylinder we concentrate on the modal interactions and avoid the well-known problems
that arise by satisfying the boundary conditions at both ends of the cylinder. We are aware
that the complete satisfaction of the boundary conditions is a difficult mathematical task
and may also be of importance for some applications. We refer the reader to reference [17]
for an extensive discussion on that issue. The shell is made of homogeneous material such
as steel or aluminium. We take into consideration dissipation of energy both in the
environment and in the shell, namely linear viscous damping from the surrounding air,
plus viscoelastic material damping, respectively.

Figure 1. Cylindrical shell under parametric excitation.
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All physical parameters except the loading are usually fixed, and we thus investigate the
phenomena observed when the forcing is varied. For moderate static load and small
dynamic amplitude the shell vibrates in a radially symmetric mode. This is predominantly
axial with some dilation due to Poisson’s ratio effects. For the small vibrations covered
by Donnell’s equations, the bending associated with such dilation (due to the change of
curvature) is assumed negligible. On increasing the dynamic forcing amplitude such
cylindrical motions can lose stability: lateral-flexural motions arise which are
out-of-cylinder sinusoidal oscillations, both in the axial and circumferential directions.
This is the so-called parametric resonance: one puts energy directly into the axial mode
but obtains motions involving modes orthogonal to the excitation.

A completely new behaviour occurs under a further increase of the static component
of the loading. The shell can snap through to a large amplitude, stable equilibrium where
the shell has buckled into a checkerboard pattern of lateral deflections, and vibrations in
the vicinity of this new deformed state can occur. This static snap-through buckling
phenomena has been studied extensively [1–3].

3. MATHEMATICAL MODEL

Non-linear vibrations of a thin cylindrical shell are described by a system of two coupled
partial differential equations of the form

m
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In equations (1) and (2) and Figure 1, x is the meridional length co-ordinate, y the
circumferential length co-ordinate, t time, R radius of the cylinder, h shell thickness, w
normal displacement (positive inwards), F in-plane stress (Airy) function and D2 is the
biharmonic operator. The material is elastic, isotropic and the mid-surface is used as a
reference surface. Thus, E is the Young’s modulus, n the Poisson’s ratio, m mass per unit
area, b1 and b2 damping coefficients, and D=Eh3/12(1− n2) is the bending stiffness of the
shell.

The periodic excitation has the form

p(t)= p0 + p1 cos (vt)

where p0 is the static load, p1 the amplitude of the dynamic part of the load and v is the
frequency of excitation.

The governing PDEs are of quasi-linear hyperbolic type. This system was introduced
by von Kármán in 1910 for plates: i.e., without the terms depending on the radius R.
Subsequently in 1933 Donnell suggested equations (1) and (2) for shallow shell problems.

The main assumptions in the derivation of equations (1) and (2) are as follows: in-plane
inertia is neglected and consequently only transversal bending motions are considered; the
non-linearities in curvature strains are ignored, but the non-linearities in the mid-plane
stretching strain terms are retained in the strain-displacement relations; Donnell’s
approximation a/RE p/5, where a is the circumferential half wavelength, is assumed to
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hold; and h�R (the usual thin shell assumption) and transverse shear and rotatory inertia
efforts are neglected.

4. FINITE DIMENSIONAL MODELS

The usual approach when dealing with infinite dimensional systems represented by PDEs
is to reduce them to approximate finite dimensional systems. There are several well-known
methods for performing this task: the Rayleigh–Ritz method, Galerkin approximations,
finite differences, finite and boundary element methods, and recently inertial manifolds.
One approximates the motion with a finite number of degrees of freedom in the hope that
the essential dynamics is captured.

Here we obtain finite dimensional models by using Lagrange equations with appropriate
approximation functions for the lateral displacement. At this stage the main difficulties are
the choice of the approximation (ansatz) functions, and the calculation in the Lagrange
equations requires a significant amount of analytical manipulations. We can satisfactorily
solve the second problem by using general computer algebra routines. The main advantage
of their use is that the system is treated relatively easily with as many d.o.f. as required.
We will describe briefly the corresponding procedure. The deflection w is represented
notionally in the form [17]

w(x, y, t)= s
a

k=0

s
a

n=0

qkn (t)h cos 0kpx
L 1 cos 0ny

R1. (3)

Usually, one takes only the first few terms in equation (3). For dynamical problems
vibration modes with different numbers of waves both axially and circumferentially must
be included in the analysis, when their frequencies are related through resonance
conditions between them and the frequency of the loading. We will illustrate this point
with the results. The frequency of excitation is the major factor that determines which
modes come into play.

For a general discussion on the choice of the form for w within the context of elastic
buckling, see reference [18]. Briefly, the motivation is based on the post-buckling behaviour
of the shell and is as follows. Large transversal deflections of the cylinder carry an
underlying asymmetry, inwards being fundamentally different from outwards. Each of the
modes taken into consideration is symmetric in its own right, being harmonic axially and
circumferentially. It is only by combining that the modes can satisfy the required
asymmetry, and this makes mode interaction inevitable. There is a principal difference
between the mode interaction in the static and dynamic case, in the sense that completely
different modes can interact with each other in both cases.

Our system is as idealized as possible, being an infinitely long, thin cylindrical shell, with
periodic boundary conditions, imperfection free, restrained against overall buckling as a
column. Our main interest focuses on the interaction between the separate modes taken
into consideration.

The total potential energy manifests important properties of the system under
investigation. In some cases it is even more suitable for the analysis than the governing
partial differential equations. By making use of potential energy expressions in Lagrange
equations we will derive systems of ordinary differential equations which govern the
dynamics of the cylindrical shell. This approach is also widely used for other problems such
as bars, rods, beams, and plates, and it is known as the Rayleigh–Ritz method.
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The Lagrange equation for any generalized co-ordinate of a general mechanical system
is

d
dt 01L

1q̇i1−
1L
1qi

=Qi , i=1, 2, . . . , (4)

where qi is the generalized co-ordinate, and the Lagrangian function L0T−V, where
T is the kinetic energy and V the potential energy of the system. The Qi are those
generalized forces not derivable from a potential function. In our case these are friction
forces and time-variant forcing functions. It is important to note that all load-dependent
terms will be considered through the generalized forces Qi , and not through the potential
energy function V as is the usual case when studying elastic buckling.

We will introduce briefly the relevant energy expressions; for more details see references
[4, 5]. The total potential energy in our case is the strain energy of the cylindrical shell.
The strain energy consists of stretching or extensional elastic energy Us and bending energy
Ub . The stretching elastic energy can be written as
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while the bending energy is
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In both expressions the integration is over the surface area of the shell and D stands for
the Laplace operator. A simplified form of equations (5) and (6) is obtained after
integrating by parts and by employing the fact that only periodic variations in x and y
of w are considered:
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Finally the total potential energy of the shell is obtained as
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The kinetic energy is written as
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In order to calculate the generalized forces Qi one needs expressions for the virtual work
done by the applied axial loading and friction forces. The virtual work done by the external
forces is written as
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A similar reduction as for the potential energy function may be used, to give
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L
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0 01w
1x1

2

dx dy. (12)

The usual approach when dealing with friction forces in the context of the Lagrange
equations is to calculate the Rayleigh dissipation function [19] which in our case is
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2b1 g
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0 01w
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dx dy+ 1
2b2 g

L

0 g
2pR

0 0D 1w
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2
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The first term stands for linear viscous forces due to air resistance while the second one
is for viscoelastic material forces, respectively.

The generalized forces are obtained by a simple differentiation of the above functions

Qi =−1Re /1q̇i + 1Wp /1qi . (14)

Now after approximating the system by a finite number of degrees of freedom it is
possible to define Lagrange equations. Apart from w the stress function F is needed.
Substituting equation (3) into the right side of equation (2) one may solve for F as a
particular solution Fpar which is completely determined by equation (2). With F expressed
in terms of qi (t) (i=0, 1, 2, . . . ), one obtains Lagrange equation by the use of equations
(7), (8), (10), (12) and (13). We can satisfactorily perform all calculations involved by using
general computer algebra routines.

A note on the calculation of the stress function F is necessary. We have taken only the
particular solution of F because in our case the homogeneous solution is equal to zero.
One usually takes into accout the contribution of the static axial loading with the
homogeneous solution. However, in the Lagrangian formulation it seems to us more
appropriate to consider the contribution of the periodic axial loading through the
generalized forces in the expression for virtual work Wp . Nevertheless, the most important
problem with respect to the so-obtained function F from the physical point of view, is that
the assumed form for w effectively defines stresses different from zero and periodic in y
at x=0, L. The peculiarity is that their contribution is negligible on the average
(integrally). As we previously mentioned, we consider an infinitely long cylinder in order
to avoid all problems connected with the exact (pointwise) satisfaction of the boundary
conditions in stresses.

Let us take now for the approximation function the following expression [11]:

w(x, y, t)= q0(t)h+ q1(t)h cos (px/L) cos (ny/R)

+ q2(t)h cos (2px/L)+ q3(t)h cos (2ny/R). (15)

Here the q0-term takes into account the radial displacements of the points at the
boundaries. The second term corresponds to small amplitude bending deflections
according to the linear buckling and vibration theory. The last two terms are of significance
when dealing with large displacements and generate asymmetric structural response in the
direction of the inwards and outwards normal to the cylinder. The above chosen
combination of modes is capable of describing the well-known Yoshimura or diamond
pattern.

After using our symbolic algebra code we obtain, for the potential function,
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This expression for the potential function is exact but is written in the form of a Taylor
expansion about the unloaded equilibrium state, represented by superscript 0, the
coefficients being given by
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Here for simplicity of notations we have factored out a common multiplier:

Vc = p3EhRL/16.

The following non-dimensional parameters have been introduced in the above expressions:

a= h/R, b= h/L, g=Ln/pR.

Here the wavelength parameter g is defined as the ratio of the axial to the circumferential
wavelength of the q1-mode. The expression (16) for the potential energy is given in
reference [18] in slightly different notations.

The kinetic energy is

T= 1
2T00q̇2

0 + 1
2T11q̇2

1 + 1
2T22q̇2

2 + 1
2T33q̇2

3, (17)

where the coefficients are

T00 =2pmh2RL, T11 = 1
2pmh2RL, T22 = pmh2RL, T33 = pmh2RL.

Similar computations give for the Rayleigh dissipation function

Re = 1
2R00q̇2

0 + 1
2R11q̇2
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2R33q̇2

3, (18)

where

R00 =2pb1h2RL, R11 = 1
2pb1h2RL+ 1

2p
5b2(b3/a)(1+ g2)2,

R22 = pb1h2RL+16p5b2(b3/a), R33 = pb1h2RL+16p5b2(b3g4/a),

and for the virtual work done by external forces

Wp = 1
2W11q2

1 + 1
2W22q2

2, (19)

where

8W11 =W22 =4p(t)(p3h2R/L).

5. DISCUSSION OF PROPERTIES FOR THE DISCRETE MODELS

It seems reasonable to analyze some properties of the discrete models obtained for a
better understanding of the shell vibrations. If we look at the expressions for the potential
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energy (16), the kinetic energy (17), the Rayleigh dissipation function (18) and the virtual
work (19), and take only the quadratic terms in equation (16), it is evident that all these
forms are simultaneously diagonalized through the choice of the approximation function
(15). The different terms in equation (15) are normal modes of vibration for the linearized
system. It is easy now to obtain quantities with important physical meaning for the
problem investigated, namely frequencies of linear vibration, critical loads, damping ratios,
etc.

The small-amplitude linear vibrations are governed by the system

Tiiq̈i +Riiq̇i +V 0
iiqi =0, i=0, 1, 2, 3. (20)

The frequencies of vibration vi are given by

v2
i =V 0

ii/Tii , (21)

while for the damping ratios ai one has

ai = 1
2Rii /Tii . (22)

The potential energy function is independent of q0, and consequently the frequency of the
corresponding mode is zero. The physical reason is that in this mode the system performs
only translation and dilation, which have no strain energy within the Donnell
approximation.

Let us assume now that the system is static: i.e., p(t)= p0 = const. Then it is possible
to obtain the critical loads for the second and third mode according to the linear buckling
theory from the equations

V0
iiqi =Wiiqi , i=1, 2, (23)

which give a linear system of algebraic equations with unknown p0. There are no critical
loads connected with the first and the last mode in equation (15).

An additional insight into the shell behaviour is provided by the analysis of the total
potential energy of the system approximated with a finite number of d.o.f. For a better
geometric presentation let us analyze the potential energy function of a system model with
two d.o.f. Under static loading the deflection parameters q1 and q2 are constant in time
in

w(x, y)= q1h cos (px/L) cos (ny/R)+ q2h cos (2px/L), (24)

and the total potential energy depends on them. We include in this case the contribution
of the external static load to the total potential energy. One can apply results from
singularity (catastrophe) theory [20] in order to study buckling phenomena [21]
systematically. We should point out that a common drawback in the application of
catastrophe theory to elasticity problems is the lack of exact expressions for the potential
energy. We can easily calculate the necessary results with the aid of computer algebra. In
Figure 2 energy contours for V(q1, q2) are shown, for the case of p0 =0. The potential well
corresponds to the trivial solution. In Figure 3 energy contours for the case p0 1 1

2pc , where
pc is the critical load according to the linear buckling theory, are shown. The system now
possesses three potential wells. One of them corresponds to the trivial solution, the other
to deformed symmetric in q1 buckled states. The exact values of q1 and q2 at all equilibria
are calculated by using the fact that they are critical points of the potential energy function
and satisfy the equations

1V/1q1 =0, 1V/1q2 =0.



1.5

–0.3

0.0

0.3

0.6

0.9

1.2

–0.6
–8–10 –6 –4 –2 0 2 4 6 8 10

q1

q2

1.8

2.1

2.4

1.5

–0.3

0.0

0.3

0.6

0.9

1.2

–0.6
–8–10 –6 –4 –2 0 2 4 6 8 10

q1

q2

1.8

2.1

2.4

-   171

Figure 2. Potential energy contours for a two d.o.f. system; p0 =0, h=0·002 m, R=0.2 m, L=0·4 m,
E=2·1×108 kN/m2, and n=0·3.

More exactly at these values of q1 and q2, the potential energy has minima. They are zero
and q1 =27·47320, q2 =1·77566. There are two other solutions of the above equations
which correspond to the saddle points at q1 =24·00416, q2 =0·537373.

Since our main concern in this paper is the parametrically excited vibrations of the shell,
it is worth showing the form of the equations in this case. For example, for a system model
with two d.o.f. after using an approximation function like equation (24), but with
deflection parameters q1 and q2 that now depend on the time t, we obtain

T11q̈1 +R11q̇1 + (V 0
11 −W11)q1 +V 0

112q1q2 + 1
2V

0
1122q1q2

2 + 1
6V

0
1111q3

1 =0, (25)

T22q̈2 +R22q̇2 + (V 0
22 −W22)q2 + 1

2V
0
112q2

1 + 1
2V

0
1122q2

1q2 =0. (26)

In view of the expressions for the different coefficients in the previous section, it is
interesting to note that all coefficients are positive except V 0

112. The V 0
112-terms are

responsible for the softening type of structural behaviour observed in a later section.

Figure 3. Potential energy contours for a two d.o.f. system, p0 1 1
2pc , h=0·002 m, R=0·2 m, L=0·4 m,

E=2·1×108 kN/m2, and n=0·3.
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In concluding this section we would like to make an additional comment about the
approach used. By the use of the Galerkin method one obtains completely the same
systems of equations for the problem investigated. At first glance such an approach leads
to the necessary equations in a straight manner and with less computational effort.
However we should emphasize that our approach is essentially a physical one and it gives
an additional insight into the system behaviour through the potential energy function.
Concerning the computational issue, the difference is not relevant when using programs
for symbolic computations.

6. NUMERICAL CONTINUATION OF SOLUTIONS

In order to analyze dynamical solutions of finite dimensional models in a systematic way,
one must apply bifurcation theory. An analytical approach to bifurcations is connected
with significant difficulties. Only a few system models have been analyzed completely
without the help of numerical methods. Fortunately, there exist numerical continuation
techniques (path and bifurcation following methods). With the aid of these methods the
analysis is performed within a great precision up to round-off errors. One detects periodic
solutions and studies their stability and bifurcations in the parameter space. We will briefly
describe the relevant steps involved in the analysis, for more details, see reference [22].

The first step in the numerical continuation of solutions is to determine starting periodic
solutions and their stability. The Lagrange equations represent a system of second order
ordinary differential equations like equations (25) and (26), which for the numerics is
transformed into a system of first order ODEs

ż= f(z, t, l). (27)

Here the vector z contains displacements and velocities while l contains the system
parameters, e.g. the amplitude and/or frequency of excitation. In order that path following
methods can be applied and bifurcation diagrams determined, system (27) is transformed
into a map. In our case an algebraic system is obtained by calculating Poincaré
stroboscopic maps [23, 24].

System (27) is integrated over time intervals which are multiples of the period of
excitation. In this way the periodic solutions correspond to the fixed points of the algebraic
equations

F(z, l)=Pk(z, l)− z=0. (28)

In equation (28) z denotes a k-periodic solution (with period k-times the period of the
external excitation), and Pk(z, l) is a Poincaré map obtained by numerical integration. The
Jacobian matrix of map F

DzF(z, l)=DzPk(z, l)− I (29)

is also necessary for our routines. In equation (29) I is the identity matrix. The
DzPk(z, l)-matrix is governed by the first variational equation of the original system for
the monodromy matrix c,

c� =Dz f(z, t, l)c, (30)

with initial conditions

c(0)= I, (31)

and is obtained again by integrating over time intervals which are multiples of the period
of excitation.
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Stability of solutions is examined by using equation (29). If all eigenvalues of DzPk(z, l)
lie in the unit circle the motion is stable, otherwise unstable. Period doubling bifurcations
are indicated by an eigenvalue that crosses the unit circle at −1. Pitchfork, transcritical
bifurcations and saddle-node folds are indicated by an eigenvalue that crosses the unit
circle at +1 [24].

When one is interested only in the dependence of the solutions on one parameter (l$R)
the problem has the following formulation [22]; find a one-parameter family of solutions
of the under-determined system

F(y)=0 with F: Rn+1� Rn, (32)

where y=(z, l).
The complete continuation procedure keeps track of the whole path of periodic solutions

and looks for bifurcation points, where branches of different periodic solutions intersect.
In order to compute subsequent points on a branch we use the tangent of the path given
by the Jacobian matrix of the Poincaré map with respect to the control parameter. The
continuation of solutions is performed with the help of predictor-corrector steps. Predictor:

y*1 = y0 + sDy with tangent vector Dy=null (DF(y0)), (33)

where s is a suitably chosen continuation step. Corrector with successive (Newton)
iterations:

yk+1
1 = yk

1 −DF(yk
1)+F(yk

1), k=1, 2, . . . where y0
1 = y*1 , (34)

and DF+ is the Moore–Penrose pseudo-inverse matrix. The efficiency of the continuation
strongly depends on the proper choice of the step size s [22].

A special procedure is needed for singular points: i.e., when rank(DF(y))Q n. By
examining carefully those points we know exactly what types of bifurcations occur in the
original vibration problem.

The most expensive part of the numerical continuation of solutions is the numerical
integration of the system of ODEs, which is performed by appropriate numerical schemes.
We use specifically DOP853 of reference [25] which is an explicit Runge–Kutta integrator.

7. ANALYSIS OF THE RESULTS

By using continuation techniques a bifurcation analysis is performed for system
equations similar to equations (25) and (26), and obtained by the Langrange method.

In order to deal with physically relevant parameters, let us take h=0·002 m, R=0·2 m,
L=0·4 m for the shell geometry: i.e., R/h=100 and L/R=2. The material properties
correspond to steel with E=2·1×108 kN/m2, n=0·3 and m=15·7 kg/m2. Air damping
with coefficient b1 =1·59 kNs/m is adopted which is 1·6% of the critical damping in the
linear case at the lowest mode that we will consider. The material damping is b2 = hD,
where h=0·0001 is appropriate for steel. For these values of the key parameters,
bifurcation diagrams are calculated for varying amplitude p1 and frequency of excitation
v. It is more convenient to use the non-dimensional parameter m= p1/2(pc − p0) instead
of p1 as an excitation parameter, where pc is the critical load according to the linear
buckling theory. For example when m=0·5 then the loading reaches the critical load pc

only instantly, while e.g., for m=0·75 it spends a significant amount of time with values
greater than the critical one; see Figure 4.
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Figure 4. Dynamical load for two different values of m.

We will discuss bifurcation diagrams for models which involve only two of the lowest
modes of vibrations

f1(t)h cos (px/L) cos (5y/R), mode 1,

f2(t)h cos (px/L) cos (6y/R), mode 2,

in conjunction with

f3(t)h cos (2px/L), mode 3.

It is worth pointing out that in our preliminary unpublished studies we included
‘‘rosette’’ modes like

q3(t)h cos (2ny/R), waves only in the circumferential direction,

in the analysis, but our results suggested that they are without relevance. In other words,
they do not cause any qualitative changes at the bifurcation diagrams discussed.

By taking different values for the frequency of excitation v, different modes can be
excited. This is an important point to remember when comparing results for statically and
dynamically loaded shells. The number of important modes is much more limited when
studying elastic stability. In our case we take such values for the frequency of excitation
v that the above mentioned modes are of importance; i.e., they are excited by the loading.

Figure 5. Frequency versus number of waves in the circumferential direction.
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Figure 6. Ince–Strutt diagram for the linear system.

7.1.   p0 =0
Let us assume for now that the constant part of the loading p0 is equal to zero. By linear

analysis the circular frequency of mode 1 is v1 =503·7 Hz, of mode 2 v2 =547 Hz, while
that of mode 3 is v3 =4117 Hz. The ratio between the first two frequencies, v2/v1 =1·086,
indicates a condition close to an internal resonance. One can see the dependence of the
frequency on the number of waves in the circumferential direction in Figure 5.

We study bifurcations of the trivial solution, namely the transition from purely
extensional to bending oscillations. We are looking for significant changes in the
bifurcation diagrams caused by the inclusion of different modes.

A good starting point for the analysis is probably to recall some well-known facts from
dynamical stability theory [8]. The ordinary differential equation which describes the
motion at mode 1 is of the form (25). After linearizing, neglecting the damping and
re-scaling it is possible to bring the equation into the form of a classic Mathieu equation

d2f1

dt2 +$1−2m cos 0v

v1
t1% f1 =0, (35)

where t is a new non-dimensional time variable. This equation can be solved in terms of
Mathieu functions [26]. The stability of the trivial (zero) solution is completely determined
by making use of the so-called Ince–Strutt diagram, Figure 6, which is obtained here with
exact Mathieu functions from reference [26]. The linear analysis says that in the zones of
instabilities the amplitudes of the solutions grow exponentially, which is not the case when
non-linearities come into play. The zone which starts at v/v1 =2·0 is usually known as
the principal parametric resonance, while that one at v/v1 =1·0 is the fundamental
parametric resonance, respectively.

We begin the non-linear analysis with mode 1 only. Our methods make it possible to
understand completely how the trivial solution loses its stability. As suggested by the linear
analysis, the interesting phenomena occur in the zones of the parametric and fundamental
resonances. There are several possible ways for the loss of stability of the trivial solution.
The transition in the area of the principal parametric resonance is through an eigenvalue
equal to −1 (see Figure 7), while in the area of the fundamental resonance it is through
an eigenvalue equal to +1. In the first case we have period doubling bifurcations, while
in the second one the transition is to other solutions with period equal to the period of
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excitation. A more detailed analysis reveals in the first case possible super- (line S1
p) and

sub-critical (line S1
b) flip bifurcations while in the second case pitchfork bifurcations (lines

S2
p and S2

b) occur (see Figures 8–12). In all figures which follow the numerical value at the
upper right corner stands for v/v1. A dotted line means unstable solutions, and the
displacement is for a value at a Poincaré section of the periodic solution investigated. The
periodicity of the solutions is also shown by values which are multiples of the period of
the external excitation T=2p/v. The parameter range in Figures 8–12 is indicated by lines
F8–F12 in Figure 7. Lines B1 and B2 denote saddle-node folds. A more complicated picture
is shown in Figure 10 where our cross-section ‘‘hits’’ three bifurcation lines. Not all
possible bifurcations are shown in Figure 7 for reasons of clarity, for a more detailed
picture of a simpler problem see references [27, 28].

The shell behaviour obtained by the first mode corresponds to a hardening type of
oscillation: i.e., the amplitude of vibration increases with the increase of the frequency of
parametric excitation. This type of behaviour is observed qualitatively by analyzing other
single ‘‘linear’’ modes, and in particular mode 2. The behaviour changes completely by the
inclusion of mode 3 into the analysis. Now the system shows a softening type of behaviour;
see Figure 13, and Figures 14–18. One can easily see that the system behaviour reverses
its type; e.g., compare Figure 7 with Figure 13.

This last type of behaviour is in a better agreement with the experimental results [6].
We shall note that this result presents a genuine mode interaction. The change of behaviour
is due only to the coupling between modes 1 and 3. On the other hand there are no changes
at the exact value of the occurrence of the first bifurcation in the trivial solution, which
is not surprising as these values can be obtained even by means of linear stability analysis
(see Figure 6). The other important feature of the motion is that in the zone of the principal
resonance the change is manifested by jumps to solutions with much higher amplitudes.

The next interesting set of results corresponds to v/v1 =2·4, and v/v2 =2·21, thus,
closer to the principal resonance in mode 2. Taken on their own both modes show the
typical behaviour for this parameter range; see Figures 19–20, and compare them with
Figure 8. Though taken together both ‘‘linear’’ modes interact with each other; and the
loss of stability occurs firstly at mode 2. The displacements and velocities at mode 1 are
zero for all bifurcation branches shown in Figure 21, although by comparison with Figure
20 one sees the change of stability due to the presence of mode 1. The inclusion of mode 3
changes the behaviour completely, as one can see in Figure 22 very short stable branches.

Figure 7. Stability change types: mode 1.
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Figure 8. Subcritical flip bifurcation, p0 =0: mode 1.

Figure 9. Supercritical flip bifurcation, p0 =0: mode 1.

Figure 10. A more complicated behaviour, p0 =0: mode 1.
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Figure 11. Subcritical pitchfork bifurcation, p0 =0: mode 1.

Figure 12. Supercritical pitchfork bifurcation, p0 =0: mode 1.

The next bifurcation of the trivial solution occurs at mode 1 (Figure 23), and it is without
physical relevance despite the fact that the solution stabilizes at a greater excitation level.
The parameter value of the bifurcation in mode 2 is also indicated in Figure 23.

7.2.   p0 1 1
2 pc

Let us assume that the constant part of the loading p0 =1275 kN/m, which is almost
half the critical load according to the linear buckling theory. Now by linear analysis the
frequency of mode 1 is v1 =356·2 Hz, of mode 2 v2 =415·2 Hz, while that of mode 3 is
v3 =4056 Hz. The ratio between the first two frequencies is v2/v1 =1·166.

We performed essentially an analysis analogous to that for the case p0 =0 and obtained
qualitatively the same results. The differences are mainly in the values of the occurrence
of the bifurcations. The other peculiarity is that we study stability not only of the trivial
solution but of those solutions which correspond to the deformed states (Figure 3), not
available in the previous case with p0 =0.

In Figures 24 and 25, we show the transition from hardening to softening type of
behaviour with the inclusion of mode 3. These figures may be compared with Figures 8
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Figure 13. Stability change types: modes 1+3.

Figure 14. Supercritical flip bifurcation, p0 =0: modes 1+3.

Figure 15. Subcritical flip bifurcation, p0 =0: modes 1+3.
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Figure 16. A more complicated behaviour, p0 =0: modes 1+3.

Figure 17. Supercritical pitchfork bifurcation, p0 =0: modes 1+3.

Figure 18. Subcritical pitchfork bifurcation, p0 =0: modes 1+3.
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Figure 19. Subcritical flip bifurcation, p0 =0: mode 1.

Figure 20. Subcritical flip bifurcation, p0 =0: mode 2.

and 14. We do not include other figures because we obtained qualitatively the same results
as those shown in Figures 7–18 with differences only in the exact values.

The interaction between modes 1, 2 and 3 is illustrated in Figures 26 and 27 (see Figures
22 and 23, respectively). Besides the different displacement and velocity values, there is a
change at the first bifurcation of the trivial solution, which now occurs at mode 1 first.

A more complete bifurcation analysis in this case reveals other solution branches (see
Figures 28 and 29). The solution in Figure 28 corresponds to parametric oscillations in
the vicinity of a ‘‘deformed’’ shell equilibrium, after buckling snap-through. The notation
PD stands for period doubling bifurcations, while SN for a saddle-node bifurcation. The
important point is that at m=0·0, the stable and unstable part of this solution branch start
at values for the displacement equal to f1 =7·47320 and f1 =4·00416, respectively, which
correspond precisely to one of the ‘‘deformed’’ equilibrium and a saddle point in the
potential energy function. When the amplitude of excitation reaches the upper critical load
pc both solutions disappear in a saddle-node bifurcation: point SN in Figure 28. There is
one other solution branch which corresponds to the other potential well in Figure 3, with
the same but negative values of the displacements.
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Figure 21. Mode interaction, p0 =0: modes 1+2.

Figure 22. Mode interaction, p0 =0: modes 1+2+3.

Figure 23. Mode interaction, p0 =0: modes 1+2+3.
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Figure 24. Subcritical flip bifurcation, p0 1 1
2pc : mode 1.

Figure 25. Supercritical flip bifurcation, p0 1 1
2pc : modes 1+3.

Figure 26. Mode interaction, p0 1 1
2pc : modes 1+2+3.
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Figure 27. Mode interaction, p0 1 1
2 pc : modes 1+2+3.

Figure 28. Bifurcation of the buckled state solution, p0 1 1
2 pc : modes 1+3.

Figure 29. Another solution, p0 1 1
2 pc : modes 1+3.
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Finally, we would like to point out that there are other solutions with amplitudes greater
than those discussed above, which are more global in nature like those shown in Figure
29, where TB means transcritical bifurcation.

8. CONCLUDING REMARKS

In our opinion, with the introduction and the wide use of finite element packages the
interesting fundamental problems of shell behaviour have been widely ignored. The main
area of scientific research seems to focus on numerical methods, their implementations,
and composite structures. Despite the fact that such approaches are very useful for
practical structural design, we are in doubt about their utility towards the understanding
of shell dynamics. A finite element model of a typical engineering system usually has
around 100 elements. Thus, the infinite dimensional continuum is approximated by a phase
space of order 102 to 103. This is still far too great to facilitate standard dynamical systems
techniques such as continuation methods.

In this paper we have demonstrated how a suitable combination of analytical and
numerical computer methods can be used for the analysis of modal interactions in shell
structures. Our approach makes it possible to reveal fine details in the bifurcation diagrams
and to calculate with great precision all bifurcation points. On the other hand we are able
to show that with appropriate approximation functions, results in good agreement with
experiments can be obtained. With the inclusion of suitable modes of vibration, the
cylindrical shell shows a softening type of behaviour, characteristic of real experiments [6].
We obtained qualitatively the same sort of results for two different values of the constant
part of the loading p0 which contradicted our preliminary expectations.
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