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Parametric resonances are studied which occur when an elastic system is rotated around
an annular disc with friction having a negative slope with velocity. The elastic system
consists of two spring–dashpots, in the transverse and in-plane (circumferential) directions,
and a common point mass. The complete arrangement is driven around the disc through
the in-plane stiffness and damper. It is demonstrated that the effect of the in-plane system
(including the negative friction–velocity relationship) is (i) to introduce additional
parametric resonances which are destabilised by the transverse damper, and (ii) to reduce
the regions of instability of the other resonances.
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1. INTRODUCTION

The instabilities that occur above the critical speed when either (i) a transverse
mass–spring–damper system is rotated around a stationary flexible disc, or (ii) a disc is
rotated past a stationary m-k-c system have been studied in considerable detail by Mote
[1, 2], Iwan and Stahl [3], Iwan and Moeller [4], Hutton et al. [5], Shen and Mote [6, 7]
and Shen [8]. Ono et al. [9], Chen and Bogy [10] and Mottershead and Chan [11]
investigated the speed-independent instabilities that were induced by a frictional follower
force. Chan et al. [12] and Mottershead et al. [13] calculated the instability regions for
subcritical-speed parametric resonances in discs with transverse loads and a constant
dynamic coefficient of friction. The review article by Mottershead [14] gives a thorough
account of research in the field.

The models of friction that have variously been derived from the mathematical physics
or from empirical relationships have been studied with the particular purposes of
numerical analysis (Oden and Martins [15]), automatic control (Armstrong-Helouvry [16])
and non-linear dynamics (Ibrahim, [17, 18]). One well-known aspect of friction in dynamic
systems is the instability that accompanies a friction force that falls as the relative velocity
increases. The previous investigations into combinational instabilities in discs [1–13]
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offered no opportunity to study the friction–velocity effect because the transverse m-k-c
system was rotated at constant speed relative to the disc. In reference [13] the authors
determined the instability regions in an elastic disc with a rotating system of mass, stiffness,
damping and friction distributed over an annular sector; like the brake pad in a vehicle
disc brake. Another feature of disc brakes is in-plane flexibility of the pad due in part to
the shear-stiffness of the pad material and also to flexibilities in the calliper and its
mounting arrangement. At very low speeds the in-plane flexibility leads to stick–slip
behaviour which couples with the transverse motion through the friction force (Ouyang
et al. [19]) and can give rise to instabilities known in the industry as ‘brake groan’. In the
present article speeds are considered that are high enough to prevent sticking but which
are entirely in the range of the negative friction–velocity relationship for the materials
concerned. It is shown that the parametric resonances previously determined for a system
with a constant coefficient of friction [12] remain, and tend to be stabilized by the in-plane
system with a negative-sloping friction. In addition, new parametric resonances appear
which can be destabilised by damping in the transverse part of the rotating m-k-c system.
This latter (counter-intuitive) result is new and in agreement with experience reported in
the brakes industry which until now has lacked a scientific explanation.

The analysis is conservative in that it presents the most serious case of friction with a
negative slope. At higher speeds in a physical system it is possible that the direction of
the slope may have changed to become positive, in which case the in-plane oscillations will
be damped out and the analysis presented in this article should be reduced to that of Chan
et al. [12]. The very high speed effects are almost of no practical interest in vehicle brakes,
which was the principal motivation for this study.

2. FRICTION MODEL

When a mass is driven through a spring at low speeds across a dry surface the resulting
motion of the mass will be that of consecutive sliding and sticking—usually known as
stick–slip. At a sufficiently high speed the spring force always exceeds the frictional
capacity and the mass will then be in a condition of permanent sliding. In what follows
it is assumed there to be no stick phase in the motion, which means that the discontinuous
(stick–slip) non-linearity disappears from the equations, rendering them tractable by
perturbation analysis. The friction force developed in driving a mass through a spring
around a circular path is assumed to take the form

Fu =F	 u [1− a(8̇+V	 )], (1)

where V	 is the constant angular speed at the driven end of the spring, 8̇ is the velocity
of the mass relative to the driving speed, F	 u is the product of the normal force and the
static coefficient of friction, and a is a positive constant which defines the negative slope
of Fu against the angular speed of the mass (8̇+V	 ).

3. THE LOADED DISC ARRANGEMENT

A mass, spring, damper arrangement is driven with friction around an annular disc. The
arrangement consists of two spring–dashpot systems, in the transverse and in-plane
(circumferential) directions, and a common point mass. The mass remains in contact with
the disc and traces a circle of radius r0 on the disc’s surface. The arrangement of the mass,
springs and dampers is illustrated in Figure 1, where it is shown that a constant angular
speed, V	 , is applied at one end of the in-plane system (kp , cp ) while the mass and the
transverse system, (k, c), being attached at the other end, may have a velocity (8̇ +V).
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Figure 1. Transverse and in-plane load arrangement.

Thus it is the in-plane spring–dashpot which permits the friction force to vary according
to equation (1), and the complete in-plane system can be regarded as consisting of kp , cp

and the negative friction–velocity relationship. Now consider Fu to act as a follower force,
as shown in Figure 2, which has the effect of coupling the transverse and in-plane motions.

Figure 2. Frictional follower force.
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The differential equations governing motion in the two directions can be written as follows:
(a) in-plane motion,

r0 (m8̈ + cp 8̇ + kp 8)=−Fu =−F	 u [1− a(8̇+V	 )], (2)

and (b) transverse motion,

rh 12w/1t2 +D*941w/1t+D94w=−(1/r) d(r− r0) d(u−8−V	 t)

× {m[8̈ 1w/1u+(8̇+V	 )2 12w/1u2 +2(8̇ +V	 ) 12w/1u 1t+ 12w/1t2]

+ c[(8̇+V	 ) 1w/1u+ 1w/1t]+ kw−F	 u [1− a(8̇ +V	 )] 1w/r1u}, (3)

where r, h, D and D* represent the density, thickness, flexural rigidity and flexural
damping of the disc respectively. The displacement, w, of the disc is identically the
transverse displacement of the mass at the point indicated by the two Dirac delta functions.
The overdots denote differentiation with respect to time, and 94 is the biharmonic operator
in polar co-ordinates. One can observe from equations (2) and (3) that there is a ‘one-way’
coupling between the in-plane and transverse vibrations of the mass. Specifically, 8 can
be solved for from equation (2) independently of w, but w can be determined from equation
(3) only when 8 is known.

4. IN-PLANE MOTION

Equation (2) can be re-written in the form,

8̈+(1/m) (cp −F	 u a/r0)8̇+v2
p 8=−F	 u (1− aV	 )/mr0, (4)

where vp =z(kp /m) is the undamped natural frequency of the in-plane system. One can
distinguish three cases for transient response to the in-plane system which depend on
different values of the ‘damping’ term (cp −F	 u a/r0): (a) when cp QF	 u a/r0 the damping
would be negative and the oscillations would grow to cause the onset of stick-slip motion
(which is not covered in this article); (b) when cp qF	 u a/r0 the in-plane vibrations would
be damped out so that the disc mass rotates steadily around the disc at the driving speed
V	 (which reduces to the condition already studied by Chan et al. [12]); and (c) when F	 u a/r
is smaller than, yet close to cp , a condition of persistent harmonic oscillations can be set
up in the system. The latter of the three cases above is chosen to be studied, and in doing
so a small parameter o is defined such that 2ozp vp =(1/m) (cp −F	 u a/r0), where zp is the
equivalent damping ratio of the in-plane system. Then with the initial conditions,
8 =t=0 =80 =−F	 u /kp r0 and 8̇ =t=0 =0, it is found that

8(t)=80 {(aV	 /2) [exp (ivp t)+ exp (−ivp t)]+1− aV	 }+O(o), (5)

and (upon differentiating) that (8̇+V	 )q 0 when a80 vp Q 1. The physical significance of
this condition is that the friction force never reverses its direction and the mass continues
to slide in one direction around the disc without sticking. This condition is assumed to
hold throughout the analysis in the present article.

5. TRANSVERSE MOTION

The solution of equation (4) is supposed to take the form (Chan et al. [12]),

w(r, u, t)= s
a

r=0

s
a

s=−a

crs (r, u)qrs (t), crs (r, u)= (1/zrhb2)Rrs (r) exp (isu), (6, 7)
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where r and s denote the number of nodal circles and diameters respectively, qrs is a modal
co-ordinate and crs is a complex eigenfunction. Rrs (r) is a combination of Bessel functions
satisfying the boundary conditions (on the inner and outer circumferences) and the
orthonormality conditions [12]. Combining equations (5–7) with equation (3) (but omitting
the O(o) term in equation (5)) leads to

d2qkl

dt2 +
D*vcr b

2
kl

D
dqkl

dt
+ b2

kl qkl =− s
a

r=0

s
a

s=−a

Rrs (r0)Rkl (r0) exp[i(s− l)Vt]

×6 m
rhb2 6d2qrs

dt2 + sV[2i+ a80 vp (exp(−ibp t)− exp(ibp t))]
dqrs

dt
− s2V2

×$ia80 vp

2
(exp(ibp t)− exp(ibp t))+1%

2

qrs −
isa80 v2

p V

2vcr

×(exp(−ibp t)+ exp(ibp t))qrs 7+
c

rhb2vcr 6dqrs

dt
+isV

×$ia80 vp

2
(exp(ibp t)− exp(ibp t))+1%qrs7+

k
rhb2v2

cr
qrs

−
isF	 u

rhb2r0 v2
cr 61− aV	 $ia80 vp

2
(exp(ibp t)− exp(−ibp t))+1%qrs 77, (8)

where 8 is assumed to be small, so (8+V	 t)1V	 t, and the following non-dimensional
variables have been introduced:

t=vcr t, bkl =vkl /vcr, bp =vp /vcr , V=V	 /vcr . (9–12)

The klth natural frequency is denoted by vkl , and vcr is the first critical speed of the disc.
A multiple-scales analysis including terms to O(o) is carried out in the following section.

6. MULTIPLE SCALES ANALYSIS

The small parameter o is used to re-define the terms of the disc and the load system:

og=m/rhb2, ok= k/rhb2v2
cr , oz= c/rhb2vcr , (13–15)

oj=D*/Dvcr , of=F	 /rhb2r0 v2
cr . (16, 17)

By following the usual procedures (Nayfeh and Mook [20], Shen [8], Chan et al. [12]) one
obtains the zeroth and first order contributions to the modal co-ordinates from

q(0)
kl =Akl (T1)exp(ibkl T0)+Bkl (T1)exp(−ibkl T0), (18)

and

D2
0 q(1)

kl + b2
kl q(1)

kl =−D0 (2D1 + jb2
kl ) [Akl exp(ibkl T0)

+Bkl exp(−ibkl T0)]+Y1 (g, k, z, f(1− aV	 ))+Y2 (g, z, f, kp ), (19)
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T 1

Natural frequencies of the disc

r, s 0, 0 0, 1 0, 2 0, 3 0, 4

vrs (rad/s) 28598 29396 32437 39434 52482
vrs 2·1796 2·2404 2·4722 3·0055 4

where

Y1 (g, k, z, f )=− s
a

r=0

s
a

s=−a

Rkl (r0)Rrs (r0)exp[i(s− l)VT0]

× [D+
rs Ars exp(ibrs T0)+D−

rs Brs exp(−ibrs T0)], (20)

D+
rs =−g[(C+

rs )2 + (sVa80 vp )2/2]+ i(zC+
rs − sf )+ k, C+

rs = brs + sV, (21, 22)

D−
rs =−g[(C−

rs )2 + (sVa80 vp )2/2]− i(zC−
rs + sf )+ k, C−

rs = brs − sV, (23, 24)

are the terms reported by Chan et al. [12], except that the second term in the square
brackets of equations (21) and (23) is introduced by the negative sloping friction, and

Y2 (g, z, f, kp )=− s
a

r=0

s
a

s=−a

sVa80 vp Rkl (r0)Rrs(r0)exp[i(s− l)VT0]

× {{igsV+[(z+ favcr )/2]} [exp(−ibp T0)− exp(ibp T0)]

− (igbp /2) [exp(ibp T0)+ exp(−ibp T0)]+ (gsVa80 vp /4) [exp(i2bp T0)

+ exp(−i2bp T0)]}[Ars exp (ibrs T0)+Brs exp(−ibrs T0)]

+ igbrs [exp(−ibp T0)− exp(ibp T0)] [Ars exp(ibrs T0)

−Brs exp(−ibrs T0)]} (25)

are the terms that appear only when the in-plane spring–dashpot and the negative
friction velocity relationship are present. They have not been reported previously and
produce unstable combination resonances involving bp . The resonances that occur as
combinations with the form (s+ l)V12brs − bkl are modified by the in-plane
spring–dashpot and the negative friction velocity relationship, whereas those having
the forms (s2 l)V12brs 2 bkl 2 bp (including 2lV1 bp and 2lV1 2bkl − bp ) or
(s2 l)V12brs 2 bkl 2 2bp (including 2lV1 2bp and 2lV1 2bkl −2bp ) are initiated by the
in-plane system.

The regions of instability for the modified combination parametric resonances are
determined by a straightforward extension of the analysis by Chan et al. [12]. The stability
analysis for three of the combination parametric resonances initiated by the in-plane
system is presented in the Appendix.

7. SIMULATED EXAMPLES

A disc is considered with a clamped inner- and a free outer-radius a=0·067 m and
b=0·12 m respectively. The rotating elastic system is located at a radius r0 =0·1 m. The
disc has Young’s modulus E=1·2×105 MPa, Poisson’s ratio n=0·25, density
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Figure 3. Instability regions for the system having no in-plane spring damper: dependence on friction.
og=0·24, ok=0·7, oz=5×10−5, oj=0.

r=7000 kgm−3 and thickness h=0·02 m. The values taken for the parameters are
og=0·24, oz=5×10−5, oj=5×10−13, ok=0·7, of=10−5, a=3×10−5 and
kp =5×106, which are reasonably representative of a production disc-brake. The value
chosen for kp is about one fifth of the value of the transverse stiffness k. The natural
frequencies of the disc are given in Table 1.

Figure 4. As Figure 3 but dependence on mass. ok=0·7, oz=5×10−5, oj=0, of=10−5.
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Figure 5. Modified instability regions: dependence on friction. og=0·24, ok=0·7, oz=5×10−5, oj=0,
a=3×10−5, kp =5×106.

7.1.  

One can observe from equations (19–24) that the modification is principally concerned
with the mass and friction parameters g and f. Figures 3 and 4 show the dependence of
the instability regions (shaded) on mass and friction with the in-plane spring–dashpot

Figure 6. Modified instability regions: dependence on mass. ok=0·7, oz=10−5, oj=0, of=10−5,
a=3×10−5, kp =5×106.
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Figure 7. Instability regions initiated by the in-plane system: dependence on friction of. og=0·24, ok=0·7,
oz=5×10−5, oj=5×10−13, a=3×10−5, kp =5×106.

removed. When the in-plane system is present then the instabilities are modified as shown
in Figures 5 and 6. It can be seen that the modified resonances have smaller instability
regions, which shows that the in-plane spring–dashpot and the negative friction velocity
relationship have a stabilizing effect. Figures 3 and 5 are each drawn in two parts because
the resonances (b04 − b02)/6, (b04 − b03)/7, and (b03 − b02)/5 are dominant and would
obscure the instability regions of the other resonances if they were not drawn separately.
The stabilizing effect of the in-plane system is seen most clearly in the three dominant
instabilities. The in-plane stiffness kp was found to have a neutral effect on the modified
instability regions, which means that the differences between Figures 3 and 5 are mainly
attributable to the negative friction–velocity relationship.

7.2.     - 

The instability regions and their dependence on the parameters of, oz, og and kp are
shown in Figures 7–10. Friction is clearly destabilizing. From equation (25) (or from
equations (A5) and (A6) or equation (A9)) it is seen that the qualitative effect of the
transverse damper must be the same as the friction, which explains the counter-intuitive
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result shown in Figure 8. It has been known for some time, from experience in the vehicle
brakes industry, that an increase in damping can be destabilizing, but it seems that the
present analysis is the first to offer a scientific explanation of the phenomena.

The instability regions shown in Figures 9 and 10 are curved because bp (which
participates in the combination) is a function of og and kp . When kp increases in value the
width of the unstable regions tend to decrease as shown in Figure 9. However, the same
instability regions often curve downward with increasing kp , which means that the
resonance will be destabilized at a lower speed. Similar behaviour can be observed from
the instability regions that curve with mass in Figure 10.

It should be emphasized that the preceding analysis was based on an assumption that
throughout its motion the mass has an in-plane velocity (8̇ +V	 ) which remains within the
range of the negatively sloping friction. It is well-known (from physical studies) that at
higher velocities (8̇ +V	 ) the slope of the friction–velocity curve will change its direction
to become positive so that the resonances initiated by the in-plane system would cease to
exist. This is most likely to occur with those resonances at higher rotational speeds V	 (i.e.,
the instability regions at the top of Figures 7–10). In any case the analysis given in this
paper is conservative because it relates to the most serious case of practically important
conditions where the slope remains negative.

Figure 8. As Figure 7 but dependence on transverse viscous damping oj. og=0·24, ok=0·7, oj=5×10−13,
a=3×10−5, kp =5×106, ef=5×10−5.
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Figure 9. As Figure 7 but dependence on mass og. ok=0·7, oz=5×10−5, oj=5×10−13, of=5×10−5,
a=3×10−5, kp =5×106.

Figure 10. As Figure 7 but dependence on the in-plane stiffness kp . og=0·24, ok=0·7, oz=5×10−5,
oj=5×10−13, of=5×10−5, a=3×10−5.
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Although they are mathematically possible, the combinations involving 2bp were not
studied in this investigation. Very small values for the disc damping, oj, and the slope,
a, of the friction–velocity curve were used, which might be considered to counteract each
other to some extent.

10. CONCLUSIONS

1. The introduction of an in-plane spring–dashpot and a negative friction–velocity
relationship can result in, (i) a modification to the resonances that occur when the friction
is constant, and (ii) the initiation of additional resonances.

2. The transverse damper tends to destabilize all the additional resonances.
3. The effect of introducing an in-plane spring–dashpot and a negative friction–velocity

relationship is to reduce the regions of instability of the existing resonances.
4. The instabilities of the existing resonances are insensitive to the in-plane spring over

a wide range of values.
5. The resonances initiated by the in-plane spring–dashpot and negative friction–vel-

ocity relationship are characterized by curved instability regions in the V versus og and
V versus kp planes. In many cases the resonances will occur at lower speeds when either
(or both) og and kp are increased.

6. The disk damping is stabilizing in all circumstances.
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APPENDIX: STABILITY OF RESONANCES INITIATED BY THE IN-PLANE SYSTEM

There are many possible forms of possible parametric combination resonances involving
bp . If the disc is considered to be more rigid than kp one may assume bp to be smaller than
bkl Q brs (kE r, lQ s). This assumption reduces the number of resonances, which may
appear in any of the following combinations:

(s− l)V1 bkl − brs + bp; (s− l)V1 bkl + brs − bp; (s− l)V1 brs − bkl − bp;

(s− l)V1 brs − bkl + bp; (s+ l)V1 bkl − brs + bp; (s+ l)V1 bkl + brs − bp;

(s+ l)V1 brs − bkl − bp; (s+ l)V1 brs − bkl + bp; 2lV1 bp ; 2lV1 2bkl − bp;

(s− l)V1 bkl − brs +2bp; (s− l)V1 bkl + brs −2bp; (s− l)V1 brs − bkl −2bp;

(s− l)V1 brs − bkl +2bp; (s+ l)V1 bkl − brs +2bp; (s+ l)V1 bkl + brs −2bp;

(s+ l)V1 brs − bkl −2bp; (s+ l)V1 brs − bkl +2bp;

2lV1 2bp; 2lV1 2(bkl − bp ).

Formulas for s for three of them are as follows

Case 1: When (s− l)V is close to brs − bkl + bp . Suppose that
(s− l)V= brs − bkl + bp + os so that

[(s− l)V− brs − bp ]T0 =−bkl T0 + oT1, [(s− l)V+ bkl − bp ]T0 = brs T0 + oT1,

(A1, A2)

The secular terms are eliminated from equation (19) when

− ibkl (2D1 + jb2
kl ) [Akl exp(ibkl T0)−Bkl exp(−ibkl T0)]+ sVa80 vp

×Rkl (r0)Rrs (r0) [ig(bp /2+C−
rs )− (z+ favcr )/2]Brs exp[i(sT1 − bkl T0)]=0 (A3)
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and

− ibrs (2D1 + jb2
rs ) [Ars exp (ibrs T0)−Brs exp (−ibrs T0)]+ lVa80 vp

×Rkl (r0)Rrs (r0) [ig(bp /2−C−
kl )+ (z+ favcr )/2]Bkl exp [− i(brs T0 + sT1)]=0

(A4)

which leads to

ibkl (2il+ jb2
kl )bkl + sVa80 vp Rkl (r0)Rrs (r0) [ig(bp /2+C−

rs )− (z+ favcr )/2]brs =0 (A5)

and

lVa80 vp Rkl (r0)Rrs (r0) [ig(bp /2−C−
kl )+ (z+ favcr )/2]bkl +ibrs [2i(l− s)+ jb2

rs )brs =0

(A6)

when

Bkl = bkl exp(ilT), Brs = brs exp(i(l− s)T1). (A7, A8)

The condition for the existence of a non-trivial solution is that the determinant of the
coefficient matrix (formed from equations (A5) and (A6)) should vanish, which leads to
a quadratic equation in l, and s is determined by setting the imaginary part of l to zero
thereby defining the transition from stable to unstable vibrations.

Case 2: When (s+ l)V is close to brs − bkl + bp . The equation which determines the
instability regions is found to be

b
b
ibkl (2il+ jb2

kl )

lVa80 vp Rkl (r0)Rrs (r0)6ig0bp

2
−C+

kl1−
z+ favcr

2 7
sVa80 vp Rkl (r0)Rrs (r0)6ig0bp

2
+C−

rs1+
z+ favcr

2 7
−ibrs [2i(l+ s)+ jb2

rs )

b
b =0. (A9)

Case 3: When (s− l)V is close to bkl − brs +2bp . The equation which determines the
instability regions is found to be

b
b
ibkl (2il+ jb2

kl )

g(lVa80 vp )2

4
Rkl (r0)Rrs (r0)

g(sVa80 vp )2

4
Rkl (r0)Rrs (r0)

ibrs [2i(l− s)+ jb2
rs ]

b
b =0. (A10)


