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TRAVELLING WAVE PACKETS IN AN INFINITE
THIN CYLINDRICAL SHELL UNDER INTERNAL

PRESSURE
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The Flügge type basic equations for an infinitely long thin cylindrical shell, including the
effect of initial tensions due to non-uniform internal pressure, are employed, and by using
the complex WKB method the solution of the basic equations is constructed in the form
of superposition of the packets of short bending, longitudinal and torsional waves. The
dependence of frequencies, group velocities, amplitudes and other dynamic characteristics
upon variable pressure is examined.
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1. INTRODUCTION

Thin long circular cylindrical shells are used in many engineering structures, such as trunk
pipelines or drill pipes. Vibrations of long or infinitely long cylindrical shells under initial
pressure are of great practical interest [1–4]. In particular, the effect of initial uniform
circumferential stress on the dynamic response of an infinitely long circular cylindrical shell
has been studied in reference [1], where motion has been supposed to be independent of
the axial co-ordinate. Vibration analysis of a long rotating cylindrical shell which includes
both the effect of uniform external loading and the influence of uniform initial stresses
caused by rotation has been presented in references [2, 4]. In these and other papers
solutions of basic equations with constant coefficients have been found in the form of
harmonic waves.

The general goal of the present paper is to study running short waves in a thin infinitely
long cylindrical shell subjected to internal non-uniform pressure. A shell is supposed to
have in its surface local perturbations which are treated as the initial conditions. This
problem does not admit solutions in the form of harmonic waves. The specific goal defined
herein is to state the modified complex WKB method [5] for constructing solutions of the
governing equations with variable coefficients in the form of superposition of the localized
families (packets) of bending, longitudinal and torsional waves travelling in the axial
direction. Earlier, this method has been used to study the running packets of bending waves
in a non-circular cylindrical shell with slanting edges [6], and in an infinite shell of
revolution [7]. The present investigation examines also the dependence of frequencies,
group velocities, amplitudes and other dynamic characteristics of the travelling wave
packets upon variable pressure.
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2. THE GOVERNING EQUATIONS

The co-ordinate system is considered as shown in Figure 1. The circular cylindrical shell
is assumed to be elastic, isotropic, infinite and sufficiently thin for applicability of the
assumptions of classic shell theory. For analysis of wave propagation in the shell the
Flügge type basic equations [8], including the effect of the initial stresses, are used:
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12ũ1

182 − rh
12ũ1
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Here N	 x , N	 8 , N	 8x , M	 x , M	 8 , M	 x8 are the stress and moment resultants, ũ1, ũ2, ũ3 are the
components of displacement (see Figure 1), R, r, h are the radius density and thickness
of the shell, respectively, and N*x , N*8 are the initial tensions due to load. The case when
the shell experiences the normal and internal non-uniform pressure

P	 (x̃)=−[Eh/R(1− n2)]P(Rx)E 0 (2)

is considered here, where n is Poisson’s ratio, E is Young’s modulus, x= x̃/
R, P(Rx)= f(x, t) is an infinitely differentiable non-negative function.

It should be noted that equations (1) represent the state of a shell perturbed from its
membrane state. It is assumed here that f(x) is a slowly varying function so that the axial
and hoop stresses due to pressure (2) may be found from the equations of the membrane
shell theory [9], as follows:

N*x =0, N*8 =[Eh/(1− n2)] f(x). (3)

By substituting equations (3) and also the relationships [8] between the stress and
moment resultants and the displacements into the foregoing equations and rewriting these
equations in dimensionless form, the equations for the description of wave propagation
are obtained as follows

(L− 12/1t2)UT =0, (4)

Figure 1. The neutral surface of the infinite thin cylindrical shell and the co-ordinate system.
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where U=(u1, u2, u3) is the 3-vector, the superscript T denotes a transposition, uj = ũj /R
( j=1, 2, 3), t=zE/[(1− n2)rR2]t̃ is non-dimensional time, and L is the 3×3 matrix of
which the elements are the differential operators:
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Here o=zh/R is a natural smaller parameter.

3. THE INITIAL CONDITIONS

The wave forms of motion caused by the initial displacements and velocities

uj =t=0 = l°j (z, o) exp{i[m8+ o−1S°(x)]}, j=1, 2, 3,

u̇j =t=0 = ioj h°j (z, o) exp{i[m8+ o−1S°(x)]}, (6)

where

l°j = s
a

k=0

ok/2l°jk (z), h°j = s
a

k=0

ok/2h°jk (z), S°(x)= a°x+ 1
2 b°x2, Im b°q 0, (7)

i=z−1, z= o−1/2x, o1 = o2 = o−1, o3 =1,

a°, m0 1, l°j (z, o), h°j (z, o)0 1 for any z, (8)

will be studied below. In equations (7), a°q 0, b°, m are constants, and l°jk , h°jk are
polnomials of degrees Mjk and Kjk , respectively, with complex coefficients. The symbol 0
means that two quantities are of the same order at o:0 (see the definition, e.g., in reference
[10]).

The real and imaginary parts of the functions (6), with account taken of the last
inequality in equations (7), define the two initial packets localized near the line x=0. They
approximate perturbations which may be generated in the shell by some transient forces
applied along the line x=0. The polynomials l°jk , h°jk are introduced in equation (6) to
define the possible oscillations in amplitude of wave packets [11]. The wavelengths in these
packets are proportional to 1 and o in the circumferential and axial directions, respectively.
Thus, among all possible wave forms of motion, short waves with lengths (along the shell
axis) being quantities of the order zh/R will be examined in this paper.
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4. CLASSIFICATION OF SOLUTIONS

The presence of a small parameter in the governing equations (4) permits the
classification of its solutions to be carried out. A general method to classify the solutions
of partial differential equations for thin shells has been developed by A. L. Gol’denveizer
[9, 12]. A simple example illustrating this method may be found in reference [13]. The basic
idea of this method is as follows. It is necessary to pick out the unknowns which determine
the type of solution. But it is desirable that the number of variables selected be as small
as possible. In the present problem they are u1, u2, u3. The orders of each of these variables
are compared with the main small parameter o.

u1 0 oa1, u2 0 oa2, u3 0 oa3, (9)

where aj are indices of the intensity of the functions uj .
As mentioned above the lengths of waves being analyzed are proportional to 1 and o

in the circumferential and axial directions, respectively. Therefore, in equation (4) it is
assumed

1/1x0 o−1, 1/180 1. (10)

In addition, suppose

1/1t0 ob, f(x)0 1, (11)

where b is an index of variation of the functions uj in time. The necessity of inputting this
index is explained by the various speeds and frequencies of bending, longitudinal and
torsional waves [12, 14].

The problem is to find non-contradictory values for the indices aj , b. The
non-contradiction criterion is the equality of the orders of not less than two main terms
in each of the equations of system (4). Depending upon which terms are the main ones,
different systems and correspondingly one or another character of the solution will be
obtained. Among all possible types of solutions three types will be considered,
corresponding to bending, longitudinal and torsional waves.

4.1.  

In this case the main terms in equation (4) are

(1st equation) 12u1 /1x2, n 1u3 /1x,
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and their orders are, respectively, equal to

a1 −2, a3 −1,

a1 −1, a2 −2, a3,

a1 −1, 4+ a3 −4, a3, a3, a3 −2b. (13)

Because the indices of intensity of the initial displacements are equal to zero (see equations
(8)), for bending vibrations it should be assumed that a3 =0, a1 e 0, a2 e 0. Equating the
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orders in (13) one obtains a1 =1, a2 =2, b=0. Then, taking into account expressions (9),
one has

u1 = ouz , u2 = o2vz , u3 =wz , (14)

where uz , vz , wz 0 1. As a result, system (4) may be replaced by the system

(L− o212/1t2
1 ) (Ezo UT

z )=0, (15)

where,

Uz =(uz , vz , wz ), Ezo = 2o00 0
o2

0

0
0
13,

where t1 = ot is ‘‘slow’’ time which is introduced to emphasize different variability of
bending and tangential waves in time. The functions (14) will be the solution of the
governing equations if uz , vz , wz satisfy equation (15). The distinctive property of this
solution is in the function u3 being main in the asymptotic sense. The tangential
components u1, u2 of the point displacement are here ‘‘generated’’ by u3. Therefore, solution
(14) will define mainly bending waves.

4.2.  

To examine the longitudinal waves the main terms in equation (4) are held to be
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Here it is supposed that a1 =0. Equating the orders of the main terms (16) gives
a2 =1, a3 =1, b=−1. Then

u1 = ux , u2 = ovx , u3 = owx, (17)

where ux , vx , wx 0 1, will be the solution of system (4) if the functions ux , vx , wx satisfy the
system of equations

(L− 12/1t2) (Exo UT
x )=0, (18)

where,

Ux =(ux , vx , wx ), Exo = 2100 0
o

0

0
0
o3.

In this case the component u1 is main, and solution (17) will represent mainly longitudinal
waves.

4.3.  

Here a2 =0, a1 =1, a3 =2, b=−1. Then the functions

u1 = ouy , u2 = vy , u3 = o2wy (19)
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will correspond to torsional waves, where Uy =(uy , vy , wy ) is the solution of the equations

(L− 12/1t2) (Eyo UT
y )=0, (20)

where

Eyo = 2o00 0
1
0

0
0
o23.

It should be noted that other possible types of solutions are not considered here because
they do not satisfy conditions (8), (10).

Taking into account the linearity of the governing equations as well as the classification
of its solutions, one seeks the solution of equations (4) in the form of a superposition of
longitudinal, torsional and bending waves:

U=Exo UT
x +Eyo UT

y +Ezo UT
z . (21)

Equations (15), (18), (20) contain variable coefficients and do not permit exact analytical
solutions to be found. Hence, in this investigation use will be made of the asymptotic
method based on expansions in powers of a small parameter o and occupying a central
place in the theory of thin shells.

5. BASIC IDEAS OF THE WKB METHOD

This section is concerned with the history and underlying concepts of the WKB method
being used and developed below. As an illustrative example, consider the partial differential
equation

u0tt = v2(x)u0xx , (22)

describing longitudinal vibrations of a non-homogeneous bar. The substitution of

u= y(x) exp(ivt), (23)

where v:a, leads to an equation with a small parameter m=v−1 in the derivative term:

m2y0+ a(x)y=0, a(x)= v−2(x). (24)

This is the model example for many more complicated equations and systems. Numerous
studies have been devoted to this or similar equations (see, e.g., references [10, 15–17]). In
these and other papers, the formal asymptotic solution of equation (24) is assumed to be
of the form

y3 s
a

k=0

mkak (x) exp{im−1S(x)}. (25)

The symbol 3 here means that the series is an asymptotic expansion of the function y
in the Poincaré sense (see the definitions in reference [10]). Substituting equation (25) into
equation (24) and equating the coefficients of mk (k=0, 1, . . . ) yields a sequence of
equations to define the functions S, ak . The asymptotic solutions of type (25) are called
the WKB approximations, and the method of construction of such solutions is said to be
the WKB method. This name comes from the first letters of the authors’ names: Wentzel,
Kramers and Brillouin, who first applied this method to problems of quantum mechanics.
The approximate solution (23), (25) describes high-frequency vibrations, with the
wavelengths being proportional to a small parameter m=v−1. Therefore, the solutions of



      549

type (23), (25) are often called short-wave asymptotics. Afterwards, this method has been
generalized to partial differential equations. In particular, the short wave asymptotic
theory of the wave equations was used in reference [18] to study diffraction problems. In
the shell theory, the WKB method was applied for an approximate investigation of the
stress–strain states of thin shells [9], for studying free vibrations [12] and buckling [19] of
thin elastic shells. The distinguishing feature in the majority of investigations mentioned
above was that the problem under consideration were either stationary ones or reduced
to them.

The significant contribution to the further development of this method for
non-stationary problems has been made by V. P. Maslov [11, 20] who has constructed the
solutions of the quantum mechanics equations in the form of functions localized near fixed
or moving points and lines. The new method has become known as the complex WKB
method or the Maslov–WKB method.

Reverting to equations (22), according to the ideas of this approach, one can find the
asymptotic solution of equation (22) in the form

u3 u*(x, t, m) exp{im−1S(x, t)}, (26)

where 1u*/1x, 1u*/1t0 1 as m:0, and S(x, t) is a complex function satisfying the
inequality

Im S(x, t)q 0 for any te 0. (27)

Here m is some small parameter which is introduced artificially to examine short waves
with length being proportional to m. Function (26), with expression (27) in mind, defines,
in a bar, short waves localized near some moving point: i.e., a wave packet. Substituting
equation (26) into equation (22) yields the Hamilton–Jacobi equations

S't =2v(x)S'x (28)

and the transfer equation with respect to u* (written out here). One of the problems is
to find the complex solution S(x, t) satisfying equation (27). It is necessary to note that
applying the complex WKB method to differential equations having a higher order than
that of equation (22) generates non-linear Hamilton–Jacobi equations. The approximate
method for solving similar equations has been proposed in reference [11]. This approach
has been successfully adapted in shell theory to study free vibrations localized near the
‘‘weakest’’ lines and points on the shell surface [21, 22], and also to examine the running
packets of short bending waves in thin non-circular medium length cylindrical shells [23];
its application [23] has allowed detection of the possible effects of reflecting some packets
from sufficiently curved regions of a shell.

An attempt to modify the complex WKB method has been undertaken in references
[5–7]. The basic concepts of this modification lie in introducing the center of the wave
packet and a local co-ordinate system connected with this center. This approach permits
one to seek the phase function S(x, t) in equation (26) in explicit form and, on the other
hand, to avoid integrating very complicated (in the shell theory) equations analogous to
equation (28). It is this approach that will be used below to construct the asymptotic
solutions of equations (15), (18) and (20).

6. TRAVELLING PACKETS OF BENDING WAVES

As the initial conditions represent wave packets with center x=0, it is natural to seek
solutions of system (15) in the form of travelling packets [11]. Let x= qz (t1) be the packet
center of the bending waves, where qz (t1) is a twice differentiable function. In view of the
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local character of the solutions, it is convenient to introduce a local co-ordinate system
connected with the center qz (t1):

x= qz (t1)+ o1/2jz . (29)

Then equations (15) can be rewritten as

$Lj − o20 12

1t2
1
−2o−1/2q̇z

12

1jx 1t1
+ o−1q̇2

z
12

1j2
z
− o−1/2q̈z

1

1jz1%(Ezo UT
z )=0. (30)

The 3×3 matrix Lj is defined from the matrix L by replacing 1k/1xk in equations (5) by
the operators o−k/2 1k/1jk

z . The dots (·) denote differentiation with respect to t1.
The function f(x) is expanded into the series

f(x)= f[qz (t1)]+ o1/2f '[qz (t1)]jz + 1
2 of 0[qz (t1)]j2

z +· · · (31)

in a neighbourhood of the center qz (t1).
Upon taking into account equations (6)–(8), the solution of system (30) is assumed to

be of the form

Uz 3 s
a

k=1

ok/2Uz,k exp{i(m8+ o−1Sz )}, (32)

Sz =g
t1

0

vz (t) dt+ o1/2pz (t1)jz + 1
2 obz (t1)j2

z , (33)

Uz,k =(uz,k , vz,k , wz,k ), Im bz (t1)q 0 for any t1 e 0,

where uz,k (jz , t1), vz,k (jz , t1), wz,k (jz , t1) are polynomials in jz , vz (t1) is the momentary
frequency of vibrations of the shell in a vicinity of the line x= qz (t1), the constant m and
pz (t1) are the wave numbers, and the function bz (t1) characterizes the width of the wave
packet. All unknown functions in equations (32) and (33) are supposed to be twice
differentiable with respect to t1. The last inequality guarantees attenuation of wave
amplitudes within the packet.

One can note that the explicit form (33) of the phase function S, with equation (29) in
mind, may be treated as the first three terms in the expansions of S into Taylor series in
a neighbourhood of the center x= qz (t1). It should also be emphasized that solutions in
the forms (32), (33), when qz =0, and vz , pz , bz are constants, have been constructed earlier
in the problem on the local buckling [13, 19, 21, 24] and vibration [22, 25] of thin medium
length cylindrical shells near the ‘‘weakest’’ generator.

The substitution of equations (31–33) into equation (30) produces the sequence of
equations

s
k

j=0

Lz, j UT
z,k− j =0, k=0, 1, 2, . . . , (34)

for which Uz,k , qz , pz , vz , bz can be determined. Here Lz,0 is the 3×3 matrix with the
elements

lz,11 =−p2
z , lz,12 =0, lz,13 = inpz , lz,21 = [(1+ n)/2]mpz ,



      551

lz,22 = [(1− n)/2]p2
z , lz,23 = im[1+2f(qz )], lz,31 =−inpz , lz,32 =0,

lz,33 =−1− p4
z −(1+m2) f(qz )+ (vz − q̇z pz )2, (35)

and the matrix operators Lz, j for je 1 are expresed by the matris Lz,0. For example,

Lz,1 =0bz
1Lz,0

1pz
+

1Lz,0

1qz
+ ṗz

1Lz,0

1vz 1jz −i
Lz,0

1pz

1

1jz
,

Lz,2 = 1
2 0b2

z
12Lz,0

1p2
z

+2bz
12Lz,0

1pz 1qz
+

12Lz,0

1q2
z

+ ṗ2
z
12Lz,0

1v2
z

+2ṗz bz
12Lz,0

1vz 1pz
+ b� z

1Lz,0

1vz 1j2
z − 1

2

12Lz,0

1p2
z

12

1j2
z

−i0bz
12Lz,0

1p2
z

+
12Lz,0

1pz 1qz
+ ṗz

12Lz,0

1vz 1pz1jz
1

1jz
−i

1Lz,0

1vz

1

1t1

−i01
2 bz

12Lz,0

1p2
z

+ 1
2 v̇z

12Lz,0

1v2
z

+ ṗz
12Lz,0

1vz 1pz
+Gz 1, (36)

where Gz is a 3×3 matrix having only one non-zero element gz,33 =−ipz q̈z . Consider
equations (34) for k=0, 1, 2, . . . .

6.1.     

In the zeroth order approximation (k=0), one has the homogeneous system of algebraic
equations

Lz,0 UT
z,0 = 0. (37)

For a non-trivial solution of these equations, the determinant of their coefficients is set
equal to zero yielding the relation

vz (t1)= q̇z (t1)pz (t1) −H2
z [pz (t1), qz (t1)], (38)

where

H2
z =2z1− n2 + p4

z +(1+m2) f(qz ) (39)

are Hamiltonian functions. Then the solution of equation (37) may be represented in the
form

Uz,0 =Pz,0 (jz , t1)Z, (40)

where Pz,0 is an unknown polynomial in jz , and Z=(z1, z2, z3) is any non-zero solution
of equations (37). One can put

z3 =1, z1 =−lz,13 /lz,11, z2 = (lz,22 lz,13 − lz,11 lz,23) (lz,11 lz,22)−1.

It is assumed here that zj 0 1 as o:0.
The signs (2) in equation (38) indicate the availability of two branches (positive and

negative) of the solutions corresponding to the functions H2
z . These signs are omitted in

what follows.
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For the first order approximation (k=1), one has the non-homogeneous system of
algebraic equations

Lz,0 UT
z,1 =−Lz,1 UT

z,0. (41)

The condition for solution of equation (41) gives the differential equation

Z�c Lz,1 UT
z,0 = 0 (42)

with respect to Pz,0, where Zc is any non-trivial solution of the system L�T
z,0 ZT

c =0. For
equation (42) to have polynomial solutions it is necessary for the functions pz , qz to satisfy
Hamiltonian system

q̇z = 1Hz /1pz , ṗz =−1Hz /1qz. (43)

Then the solution of equation (41) has the form

Uz,1 =Pz,1 Z+ jz Pz,00bz
1Z
1pz

+
1Z
1qz1−i

1Pz,0

1jz

1Z
1pz

, (44)

where Pz,1 is again an unknown polynomial in jz .
Comparison of equations (6), (7) and (32) gives the initial conditions

pz (0)= a°, qz (0)=0 (45)

for the canonical system (43). It is evident that the initial problem (43), (45) has the unique
solutions p+

z (t1), q+
z (t1) and p−

z (t1), q−
z (t1) corresponding to the Hamiltonians H+

z and H−
z ,

respectively, if the function f(x) is infinitely differentiable.

6.2.     

In the second order (k=2) approximation, one has the non-homogeneous system

Lz,0 UT
z,2 =−Lz,1 UT

z,1 −Lz,2 UT
z,0. (46)

The compatibility condition for this system yields the relation

Z�c (Lz,1 UT
z,1 +Lz,2 UT

z,0)=0, (47)

which, by means of equations (42) and (44), again consists of differential equations with
respect to Pz,0. This equation has a solution of polynomial form if the function bz satisfies
the Riccati equation

b� z +
12Hz

1p2
z

b2
z +2

12Hz

1pz 1qz
bz +

12Hz

1q2
z

=0. (48)

It is apparent that

bz (0)= b°. (49)

One can prove that problem (48), (49) has the unique solutions b2
z (t1) corresponding to

H2
z so that [5] Im b2(t1)q 0 for any t1 e 0, if Im b°q 0.
Upon taking into account equation (47), equation (46) is reduced to

Dz,jt Pz,0 = 0, (50)
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where

Dz,jt =Az,2
12

1j2
z
+Az,1 jz

1

1jz
+0Az,0 + i

1

1t11,

Az,0 = i0Z�c
1Lz,0

1vz
ZT1

−1

×Z�c$01
2 bz

12Hz

1p2
z

1Lz,0

1vz
+1

2 v̇z
12Lz,0

1v2
z

+ ṗz
12Lz,0

1vz 1pz
+Gz 1ZT +

1Lz,0

1pz

1ZT

1qz %,

Az,1 = i0bz
12Hz

1p2
z

+
12Hz

1pz 1qz1, Az,2 = 1
2

12Hz

1p2
z

. (51)

The solution of equation (50) is the polynomial

Pz,0 (jz , t1 ; c00, c01, . . . , c0m0)= s
m0

k=0

Cz,k (t1 ; c00, c01, . . . , c0m0)j
k
z (52)

of degree m0 with coefficients

Cz,m0 (t1 ; c00)= c00J0 (t1), Cz,m0 −1 (t1 ; c01)= c01J1 (t1),

Cz,m0 − r (t1 ; c0r , c0r−2, c0r−4, . . . )=Jr (t1)$c0r +i(m0 − r+2)

× (m0 − r+1) g Az,2 (t1)Cz,m0 − r+2 (t1 ; c0r−2, c0r−4, . . . )J−1
r (t1) dt1 %,

Jj (t1)= exp6i g [m0 − j)Az,1 (t1)+Az,0 (t1)] dt1 7,

where r=2, 3, . . . , m0, j=0, 1, . . . , m0, and c0j are arbitrary complex numbers. All the
coefficients in equation (50) are calculated at Hz =H2

z , pz = p2
z , qz = q2

z , bz = b2
z ,

vz =v2
z , with the signs 2 being omitted here.

The kth approximations yield the non-homogeneous differential equations

Dz,jt Pz,k−2 =Nz, k−2, k=3, 4, (53)

with respect to Pz,k−2, where Nz,k−2 are some polynomials in jz . For example, Nz,1 is a
polynomial of the (m0 +3)th degree, and then a solution Pz,1 =Pz,1 (jz , t1 ; c10, . . . , c1m1) is
also some polynomial containing arbitrary complex constants c10, . . . , c1m1.

So, system (15) has the two asymptotic solutions

U2
z 3 [P2

z,0 (j2
z , t1 ; c2

00, c2
01, . . . , c2

0m0
)Z2 +O(o1/2)]

× exp6i$m8+ o−1 g
t1

0

v2
z (t) dt+ o−1/2p2

z (t1)j2
z + 1

2 b2
z (t1) (j2

z )2%7, (54)
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where U2
z =(u2

z , v2
z , w2

z ), j2
z = o−1/2[x− q2

z (t1)], t1 = ot. The signs (+) and (−) indicate
that all functions in equation (54) are calculated at Hz =H2

z and Hz =H−
z , respectively.

The symbol O(o1/2) represents the quantities, having the order o1/2, which have not been
written out here (compare with equation (32)). To take them into account it is necessary
to consider the higher approximations for ke 3.

It should be noted that the error of solution (54) depends on the parameters Im b2
z and

p2
z ; it grows when Im b2

z :0 and (or) p2
z :0.

7. TANGENTIAL WAVES

Solutions of equations (18) and (20) can also be constructed in the form of wave packets
(32) with the centres x= qx (t) and x= qy (t), respectively. All the formulas and equations
obtained in the previous section are valid for tangential waves. To go over to tangential
waves the index z should be changed to x (for longitudinal vibrations) or to y (for torsional
vibrations), while the ‘‘slow’’ time t1 is replaced by t. In these cases the elements of the
matrices Lx,0 and Ly,0 are

lx,11 =−p2
x +(vx − q̇x px )2, lx,12 = lx,13 =0,

lx,21 = − [(1+ n)/2]mpx , lx,22 = − [(1− n)/2]p2
x +(vx − q̇x px )2,

lx,23 =0, lx,31 =−inpx , lx,32 =0, lx,33 = (vx − q̇x px )2,

ly,11 =−p2
y +(vy − q̇y py )2, ly,12 = − [(1+ n)/2]mpy , ly,13 =0,

ly,21 = ly,23 =0, ly,22 =−[(1− n)/2]p2
y +(vy − q̇y py )2,

ly,31 =−inpy , ly,32 =−im[1+2f(qy )], ly,33 = (vy − q̇y py )2, (55)

The Hamiltonian functions have the forms

H2
x =2px , H2

y =2z(1− n)/2py, (56)

and Gx =−ipx q̈x E, Gy =−ipy q̈y E, where E is the identity matrix.
In the case of tangential vibrations, problems (43), (45) and (48), (49), and also equation

(50) have solutions in closed form. For longitudinal waves

px = p2
x = a°, qx = q2

x =2t, bx = b2
x = b°,

Px,0 =P2
x,0 (j2

x ; d2
00, d2

01, . . . , d2
0n0

)= s
n0

j=0

d2
0j (j2

z )j, (57)

and for torsional ones

py = p2
y = a°, qy = q2

y =2z(1− n)/2t, by = b2
y = b°,

Py,0 =P2
y,0 (j2

y ; r2
00, r2

01, . . . ,r2
0k0

)= s
k0

j=0

r2
0j (j2

x )j, (58)

where j2
x = o−1/2(x3 t), j2

y = o−1/2(x3z(1− n)/2t), and d2
0j , n0, r2

0j , k0 are arbitrary
constants. Then vx =0, vy =0 and

Ux,0 =Px,0 X, Uy,0 =Py,0 Y, (59)
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where

X=(x1, x2, x3), Y=(y1, y2, y3),

x1 =1, x2 =−lx,21 /lx,22, x3 =−lx,31 /lx,33,

y2 =1, y1 =−ly,12 /ly,11, y3 = (ly,11 ly,32 − ly,12 ly.31)/(ly,11 ly,33).

Here xj , yj 0 1, as o:0. The components xj and yj are calculated in accordance with
equations (55) for the positive and negative branches of functions evaluated in equations
(57) and (58).

Thus, systems (18) and (20) have the asymptotic solutions

U2
x 3 [P2

x,0 (j2
x ; d2

00, d2
01, . . . , d2

0n0
)X2 +O(o1/2)]

×exp{i[m8+ o−1/2a°j2
x + 1

2 b°(j2
x )2]} (60)

and

U2
y 3 [P2

y,0 (j2
y ; r2

00, r2
01, . . . , r2

0k0
)Y2 +O(o1/2)] exp{i[m8+ o−1/2a°j2

y + 1
2 b°(j2

y )2]}, (61)

respectively, where U2
x =(u2

x , v2
x , w2

x ), U2
y =(u2

y
, v2

y , w2
y ).

8. APPROXIMATE SOLUTION OF THE INITIAL PROBLEM

To satisfy the initial conditions, consider the linear combinations of the positive and
negative branches of the solutions constructed above. It is evident that the vector functions
U+

z +U−
z , U+

x +U−
x and U+

y +U−
y satisfy systems (15), (18) and (20), respectively. Then

from equation (21), the vector function

U3Exo (U+
x +U−

x )T +Eyo (U+
y +U−

y )T +Ezo (U+
z +U−

z )T (62)

is the formal asymptotic solution of the governing equations (4). Indeed, the introduction
of vector (62) into equations (4), in accordance with the asymptotic constructions carried
out above, produces the sequence of identities for ok/2 (k=0, 1, . . . ).

Solution (62) contains arbitrary constants c2
00, . . . , c2

0m0
, d2

00, . . . , d2
0n0

, r2
00, . . . , r2

0k0
,

m0, n0, k0 which may be determined from the initial conditions. The substitution of
equation (62) into equations (6), with regard to the equalities
j2

x =t=0 = j2
y =t=0 = j2

z =t1 =0 = j, yields the equations

(P+
x,0 +P−

x,0) =t=0 = l°10 (z), (P+
x,0 −P−

x,0) =t=0 =−h°10 (z)/a°,

(P+
y,0 +P−

y,0) =t=0 = l°20 (z), (P+
y,0 −P−

y,0) =t=0 =−z2/(1− n)h°20 (z)/a°,

(P+
z,0 +P−

z,0) =t1 =0 = l°30 (z), (P+
z,0 −P−

z,0) =t1 =0 = [inh°10 (z)− a°h°30 (z)]/a°H°z , (63)

where H°z =z1− n2 + (a°)4 + (1+m2)f(0). The equality conditions of the coefficients in
equations (63) for the same degree of z give n0 =max{M10, K10}, k0 =max{M20, K20},
m0 =max{M30, K30, K10} and produce a non-homogeneous system of (n0 + k0 +m0)
algebraic equations with respect to the constants c2

0j , d2
0j , r2

0j .

9. ANALYSIS AND EXAMPLES

To analyze the solution (62) it is convenient to present it component-wise (see
Exo , Eyo , Ezo ):

u1 3 (u+
x + u−

x )+ o(u+
y + u−

y )+ o(u+
z + u−

z ), (64)
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Figure 2. Dimensionless frequencies =vz = of travelling bending vibrations versus parameter F=(1+m2)f, for
n=0·3 and various a°. 1, a°=0·5; 2, a°=1·2; 3, a°=1·5.

u2 3 (v+
y + v−

y )+ o(v+
x + v−

x )+ o2(v+
z + v−

z ), (65)

u3 3 (w+
z +w−

z )+ o(w+
x +w−

x )+ o2(w+
y +w−

y ). (66)

Here all the summands are evaluated by equations (54), (60), (61). In equation (64), the
terms u+

x , u−
x define the positive and negative packets of longitudinal waves with the centres

x= q+
x (t)= t and x= q−

x (t)=−t, respectively. They run in opposite directions with the
constant group velocities V2

gx =2E1/2/[(1− n2)r]1/2. In equation (65), the summands v2
y

represent packets of torsional waves with the centres x= q2
y (t)=2[(1− n)/2]1/2t, which

travel with the group velocities V2
gy =2E1/2/[2(1+ n)r]1/2. Finally, in equation (66) the

terms w2
z correspond to packets of bending waves with the centres x= q2

z (ot), the group
velocities being

V2
gz =2zE/(1− n2)r2[p2

z (ot)]3/H°z . (67)

In the packets of tangential waves, the wave numbers p2
x = p2

y = a° and the parameters
b2

x = b2
y = b°, which characterize the packet width, are constants; as regards bending

waves, the quantities p2
z (ot), b2

z (ot) are functions of ‘‘slow’’ time.
The other terms, being proportional to o and o2, represent the packets ‘‘generated’’ by

the main ones which have been enumerated above. Since, the wave amplitudes in the
‘‘generated’’ packets are small, they are not taken into consideration on calculations.

Formulas (55–59) indicate the independence of tangential waves of the pressure f(x) in
the zeroth order approximation. Conversely, the behaviour of the bending wave packets
is more complicated; it depends on the pressure f(x).

Let f be a constant at first. Then

pz = p2
z = a°, qz = q2

z (ot)=2(2(a°)3/H°z )ot,

bz = b2
z (ot)= (H°z )3b°/[(H°z )3 +2(a°)2b°[3(H°z )2 −2(a°)4]ot],

vz =v2
z =[(a°)4 − (1− n2)− (1+m2) f ]/H°z . (68)

Analysis of the functions b2
z (ot) shows that the higher the internal pressure is, the slower

the travelling packets of bending waves become dissolved. The dependence of the
dimensionless frequencies =vz = of the travelling bending vibrations on the parameter
F=(1+m2)f for various a° is shown in Figure 2. In the numerical computation, Poisson’s
ratio was taken as n=0·3, and a°=0·5, 1·2, 1·5. It may be seen that, for
F=(a°)4 −1+ n2, this frequency equals zero. When Fq (a°)4 −1+ n2, the frequency
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increases with initial internal pressure. This effect agrees with results obtained in references
[1, 2].

It is of interest to study the behaviour of bending waves in the shell subjected to variable
internal pressure. It is assumed f(x)q 0, f '(x)Q 0 for any x, f(x):f2a, as x:2a, where
0E f2a Q (a°)4/(1+m2)+ f(0) are some constants. The analysis of the Hamiltonian
system (43) gives

p+
z q 0, ṗ+

z q 0, V+
gz q 0, V� +

gz q 0,

p−
z q 0, ṗ−

z Q 0, V−
gz Q 0, =V� −

gz =Q 0, (69)

for any t1 q 0. These inequalities show that the wave parameter p+
z and the group velocity

V+
gz in the positive packet, travelling in the direction of pressure diminution, increase; and

the parameters p−
z , V−

gz in the negative packet, moving in the opposite direction, decrease.
Moreover, p2

z :p2a, V2
gz:V2a, as t1:+a, where

p2a = {(a°)4 + (1+m2) [ f(0)− f2a]}1/4, (70)

and V2a are determined from equation (67).
As an example, consider the shell subjected to constant internal and variable external

pressures, so that

P	 (Rx)=−[Eh/R(1− n)] [ fin + fex (x)]Q 0, (71)

where fin q 0, fex Q 0. Similar combined action may be experienced, e.g., by an underwater
trunk pipeline lying at various depths and transporting gas or liquid under high pressure.
Numerical computations for fin =2, fex (x)=−(1+ tanh x), n=0·3, h/R=0·004,
a°=1·1, b°= i, l°3 =1, h°3 =0, m=0 were performed. Figure 3 shows the manner in
which the frequencies =v2

z = of travelling positive and negative packets of bending waves
vary with the course of time. Here v+

z :0·63 and v−
z :1·4, as t1:+a. In Figure 4, the

parameter Im b2
z and the maximum amplitude w2

max of bending waves in positive and
negative packets are plotted as functions of t1. It may be concluded, that the positive packet
of bending waves travelling in the direction of pressure diminution becomes dissolved
faster than the negative packets. Moreover, one can see the possible effect of slight focusing
of the negative packet, which moves in the direction of internal pressure growth.

Figure 3. Dimensionless frequencies =v2
z = of travelling bending vibrations versus dimensionless time t1 in the

case of the non-uniform internal pressure f(x)=1−tanh x, for n=0·3, h/R=0·004, m=0, a°=1·1. ——,
Negative packet; - - -, positive packet.
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Figure 4. (a) Parameters Im b2
z and (b) maximum amplitudes w2

max of travelling packets of bending waves versus
dimensionless time t1 in the case of the non-uniform pressure f(x)=1−tanh x, for n=0·3, h/R=0·004, m=0,
a°=1·1, b°= i, l°3 =1, h°3 =0. Key as Figure 3.
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