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The low frequency branch of the torsion free axisymmetric modes of thin cylindrical shell
with hemispherical caps vibrating in vacuo is investigated using membrane approximation.
The joint conditions needed at the seams are derived by taking the effect of bending into
account in narrow bending layers, using the method of matched asymptotic expansions.
A closed form equation is obtained for the normal frequencies. The mode structure exhibits
finite jumps in the normal displacement across the seams, which are smoothed over in the
bending layers. The normal frequencies are obtained numerically for general shapes and
approximately for elongated shapes. Comparisons with the finite element method shows
good agreement.
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1. INTRODUCTION

Analytic solutions of vibration problems are useful because the results are immediate,
suitable for parametric studies, and can serve as benchmarks for numerical work. They
also augment the latter by providing results in extreme parameter regimes which are
computationally demanding. Unfortunately, they are available only for simple shapes such
as spheres or cylinders. They are almost non-existent for hermetic shells. The present work
is concerned with a simple kind of hermetic shell consisting of a thin cylindrical shell
with hemispherical endcaps, which can model aircraft, rockets, liquid and gas containers,
steam boilers, etc. While numerical solutions for vibrations of this kind of shell exist [1],
analytical work does not seem to exist in the literature. In this paper, the low frequency,
non-torsional, axisymmetric modes for such shells vibrating in vacuo are considered in the
membrane approximation.

The membrane approximation for curved shells dates back to the work of Love over
a hundred years ago [2]. With the neglect of bending, the resulting equations of motion
in terms of the displacement components form a set of second order differential equations
which, for cylinders and spheres, can be solved analytically with the help of trigonometric
or Legendre functions. Such solutions can be found in textbooks [3]. It is expected to be
a good approximation whenever the wavelength of the vibration is much larger than the
shell thickness. However, near boundaries, or locations of discontinuous physical or
geometrical properties, such as the seams joining the hemispherical caps to the cylindrical
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shell in the case being considered, rapid variations of the displacement will occur, causing
the membrane approximation to break down. In a standard reference on shell theory [4],
this has been noted for the problem of static loading of boilers of the shape being discussed.
A remedy is proposed in the same reference which takes bending into account
approximately.

For the vibration problem, the inadequacy of the membrane theory appears as an
inability to satisfy the physically reasonable boundary conditions and continuity relations.
The failure to satisfy all boundary conditions or continuity requirements simultaneously
in the zeroth order approximation is a characteristic feature of singular perturbation theory
[5, 6]. One systematic approach to obtaining higher order approximations is the method
of matched asymptotic expansion. This method is used in [5] to solve the problem of a
hemispherical dome supported under its own weight. Starting from the equations of
three-dimensional elasticity, the thickness-over-radius is used as a small parameter for
asymptotic expansions, leading in succession to the shell equations, the membrane
approximation, and the bending correction at the base. For the vibrations of pre-stressed,
clamped cylindrical shells, a similar method known as the method of composite expansions
was applied in [7]. Matched asymptotic expansions were employed in [8] for the
axisymmetric vibrations of the clamped cylindrical shells, and in [9] for more general
vibrations. The references [7–9] all emphasize the importance of deriving appropriate
boundary conditions for the membrane equations.

The present work uses the method of matched asymptotic expansions to study the
axisymmetric vibrations of a thin cylindrical shell with hemispherical endcaps. By pursuing
the simple membrane equations for the cylindrical shell and the spherical shell, it is found
that the continuity of axial stress resultants conflicts with the continuity of the normal
component of displacement at the seam. The essential result of this work is to point out
the correct joint conditions to be applied at the seam, and to provide a derivation using
matched asymptotic expansions on the shell equations. The condition is applicable to
vibrational modes with frequencies below the ring frequency of the cylinder. Closed form
equations are obtained for the natural frequencies. These equations are solved by a simple
root-finding method, yielding results which compare favorably with numerical results using
the finite element method. The mode shapes also show agreement.

The organization of this paper is as follows. In section 2, the problem of small vibrations
is formulated using the membrane approximation, with the joint conditions made plausible
but not derived. Closed form equations are obtained for the low frequency, non-torsional
axisymmetric modes. In section 3, these equations are solved analytically in the limits of
very long and very short cylindrical sections, and numerically for general aspect ratios. The
results are compared with the finite element method. The method of matched asymptotic
expansions is applied in section 4 to the bending theory of shells, supplying a derivation
of the joint conditions. Concluding remarks follow in section 5.

2. MEMBRANE APPROXIMATION: FORMULATION

Consider a thin circular cylindrical shell of length l and radius a, with hemispherical
endcaps of the same thickness h. Let r be the density, E be the Young’s modulus, and
n be the Poisson’s ratio of the material. It is desired to find the frequencies and mode
structures of the axisymmetric normal modes of the object in vacuo. Only non-torsional
modes, which have no azimuthal displacements, are considered. A co-ordinate system as
illustrated in Figure 1 is chosen, in which points on the cylindrical shell are described
by the co-ordinates (8, z), with 0E8E 2p and −l/2E zE l/2, while points on the
hemispherical caps are described by (u, 8), where 0E uE p/2 for the upper cap and
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Figure 1. Co-ordinate systems and displacement components.

p/2E uE p for the lower cap. The variable h=cos u is also used interchangeably with
u as a co-ordinate on the hemispheres. The normal component of the displacements,
denoted by w, is chosen to be directed outward, and the meridional component u is chosen
to be directed downward as shown.

It is expected that when the thickness is small, the shell behaves as a membrane in which
only tangential stresses need be considered. The precise conditions under which this
approximation is justified are given in section 4. For axisymmetric normal modes with the
harmonic time dependence e−ivt where v is the frequency, the displacement components
u and w are functions of either z or h, according to whether points on the cylindrical shell
or the hemispherical caps are considered. In the membrane approximation, they satisfy the
equation of motion

−v2rhu=
Eh

1− n2 0d2u
dz2 −

n

a
dw
dz1, −v2rhw=

Eh
1− n2 0na du

dz
−

w
a21, (1, 2)

on the cylindrical shell and

−v2rhu=
Eh

1− n2

1
a2 $ d

dh
(1− h2)

du
dh

−
u

1− h2 + (1− n)u−(1+ n)z1− h2 dw
dh%, (3)

−v2rhw=
Eh

1− n2

1
a2 $(1+ n)

d
dh

z1− h2u−2(1+ n)w%, (4)

on the hemispherical caps. These equations, or their equivalents with different choice of
sign conventions and co-ordinates, can be found in many standard textbooks of shell
theory. For instance, they can be found from [4] by neglecting the bending terms.

It follows from equations (2) and (4) that the normal displacement can be expressed in
terms of the meridional displacement through

w= {na/[1− (1− n2)V2]} du/dz, (5)

for the cylindrical shell and

w=[(1+ n)/(2(1+ n)− (1− n2)V2)] (d/dh)z1− h2u, (6)
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for the caps, where

V=vazr/E, (7)

is a dimensionless frequency. Substituting equations (5) and (6) into equations (1) and (3)
respectively, produces the equation

d2u/dz2 + (pm/l)2u=0, (8)

for the cylindrical shell and

(d/dh) (1− h2) (du/dh)− [u/(1− h2)]+ l(l+1)u=0, (9)

for the hemispherical caps, where

m=V/pd[(1− (1− n2)V2)/(1−V2)]1/2, (10)

with d= a/l denoting the inverse-aspect-ratio, and

l=−1
2 + {1

4 + [1+ (1+ n)V2] [2− (1− n)V2]/(1−V2)}1/2. (11)

The reduction of the equations of motion to the second order equations (8) and (9) for
the meridional displacement alone represents a great simplification of the membrane
approximation.

To complete the description, it is necessary to supply boundary conditions and joint
conditions at the seam. Regularity of the solution requires the boundary conditions

u=0 at h=21. (12)

However, the conditions to be applied at the seams are not at all obvious. In fact, these
conditions cannot be obtained without considering the effect of bending. Postponing the
justification to section 4, the following heuristic approach is taken here. It is first assumed
that

u =z=2l/2 = u =h=20, (13)

i.e., the meridional displacement u is continuous across the seam. It is further assumed that
the normal displacement w can suffer at most a finite jump discontinuity. It then follows,
on integrating equations (1) and (3) over a narrow gap across the seam and letting the
gap width approach zero, that

0du
dz

−
n

a
w1bz=2l/2

=01a du
dh

−
1+ n

a
w1bh=20

. (14)

As shown in section 4, this equation, which follows from consideration of bending, states
that the axial stress resultant is continuous.

Eliminating du/dz and du/dh from equation (14) by using equations (5) and (6), it
follows that

w/n =z=2l/2 =w/(1+ n) =h=20. (15)

Thus, the normal displacement is discontinuous at the seam. This non-physical result is
resolved in section 4 where it is shown that a bending layer exists at the seam, in which
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this discontinuity is smoothed over. On the other hand, eliminating w from equation (14)
by using equations (5) and (6), and employing the assumed continuity of u, the following
joint condition in terms of logarithmic derivatives is obtained:

1
1− (1− n2)V2

1
u

du
dz bz=2l/2

=
1

2(1+ n)− (1− n2)V2

1
au

du
dh b h=20

. (16)

It is straightforward to solve equations (8) and (9) under the conditions (12), (13), and (16).
First, notice that the system of equations are unchanged under the mirror reflection
z:−z, h:−h, u:−u, w:w. As a result, modes can be classified into those having even
or odd parities. Even parity modes have their normal displacement unchanged and
meridional displacement reversed by reflection and can be referred to as symmetric modes.
The opposite is true for odd parity modes, which can be considered antisymmetric. It is
only necessary to consider one half of the object, say the upper half. The solution for the
other half can be obtained by appropriate reflection. The only regular solution, aside from
a multiplicative constant, of equation (9) in the region 0E hE 1 is the Legendre function
P1

l (h). Solutions of equation (8) having even or odd parity are sin (pmz/l) and cos (pmz/l)
respectively. Making use of the relation

[P1
l (0)]'

P1
l (0)

=−
l(l+1)

2 $G([l+1]/2)
G(l/2+1) %

2

cot 0pl

2 1,

which can be obtained from [10], it is possible to transform equation (16) for the case
z= l/2 and h=+0 into the relation

C(2)(V)=H(V), (17)

where

C(2)(V)=V$ 1−V2

1− (1− n2)V2%
1/2

6 cot (pm/2)
−tan (pm/2)7, (18)

with the upper or lower factors chosen for C(+) and C(−) respectively, and

H(V)=−
1+(1+ n)V2

2(1+ n) $G([l+1]/2)
G(l/2+1) %

2

cot 0pl

2 1. (19)

The plus or minus sign corresponds to the symmetric or antisymmetric modes. The normal
displacement of these modes are evaluated from equations (5) and (6). The resulting mode
structures, normalized to unit meridional displacement at the seam, are given by

u=6P1
l (h)/P1

l (0),
sin (p/mz/l)/sin (pm/2),

w=6[(1+ n)/(1−V2)]H(V)Pl (h)/Pl (0),
(n/(1−V2)C(+) cos (pmz/l)/cos (pm/2),

upper cap,
cylindrical shell,

(20a)
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for the symmetric modes and

u=6P1
l (h)/P1

l (0),
cos (p/mz/l)/cos (pm/2),

w=6[(1+ n)/(1−V2)]H(V)Pl (h)/Pl (0),
(n/(1−V2)C(−) sin (pmz/l)/sin (pm/2),

upper cap,
cylindrical shell,

(20b)

for the antisymmetric modes. For the lower cap, the replacements h:−h, u:−u, w:w
should be made for the symmetric modes, and the replacements h:−h, u:u, w:−w
should be made for the antisymmetric modes.

3. MEMBRANE APPROXIMATION: RESULTS

The dimensionless normal frequencies as given by the roots of equation (17) depend only
on the inverse aspect ratio d and the Poisson’s ratio n. It would appear from the derivation
that there is no a priori restriction on the range of the roots. The quantities l or m could
conceivably be complex. However, as discussed in the next section, justification for the
membrane approximation can be provided only when VQ 1. Hence, results are given only
for this low frequency case in this section.

Consider first the limit of small inverse aspect ratio d. In this limit there exist low
frequency modes such that V0 d. Assuming this ordering, it follows from equations (10)
and (11) that m3V/pd and l3 1. Equation (17) becomes

V cot V/2d=0 or V tan V/2d=0, (21)

for the symmetric or antisymmetric modes respectively. The solutions for both equations
can be represented as V= npd where n=1, 3, 5, . . . give the symmetric modes and
n=2, 4, 6, . . . give the antisymmetric ones. Since m3 n for these modes, the meridional
displacement u is proportional either to sin (pnz/l) for odd n or to cos (pnz/l) for even n,
and the corresponding normal displacement w is proportional to nd cos (pnz/l) or
nd sin (pnz/l). Therefore, the derivative du/dz and the displacement component w both
vanish at the ends of the cylindrical shell, showing that these are the low frequency modes
of a long and thin cylindrical shell with freely supported ends.

In order to obtain a correction to the frequency of these modes due to the hemispherical
caps, it is necessary to keep the first non-zero term of the Taylor series of the function
H(V) in V in equation (17). Because of the low frequency ordering V0 d, the Taylor series
is equivalent to an expansion in d. This is accomplished by substituting the expansion

l3 1+ (1+ n)V2, (22)

of equation (11) into the argument of the cotangent in H(V), and gives rise to the
approximation H3V2. The improved approximation to equation (17) is now

cot V/2d=V or −tan V/2d=V, (23)

for the symmetric and antisymmetric modes respectively. These equations can be solved
perturbatively to give the following formula for V valid to first order in d:

V= npd(1−2d) (24)

where, as before, n is odd for the symmetric modes and even for the antisymmetric modes.
Because l3 1, the meridional displacement u on the upper cap can be approximated by
sin u according to equation (20a), and transformed to the variable u from h. It is
inconvenient to attempt to find the normal displacement w from equation (20a), as it entails
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Figure 2. Branch structures of the functions (2a) C(+), H and (2b) C(−), H versus V. C2) are given by the
monotonically decreasing branches while H is given by the monotonically increasing branches. The curves are
drawn for d=0·05 and n=0·3.

finding the value of Pl (0) when l deviates slightly from unity. Instead, equation (6) can
be used to show that w3−cos u. These forms of the meridional and normal
displacements imply that the hemispherical caps vibrate as rigid shells along the axial
direction. The vibrations of the two caps are 180° out of phase for the symmetric modes
and in phase for the antisymmetric modes.

In the limit of large inverse aspect ratio d, the effect of the cylindrical shell should
become negligible. This follows from taking the limit d:a in equation (17) while keeping
V fixed. In this limit, m:0, and the left side of equation (17) is either zero or infinity
according to whether the mode is antisymmetric or symmetric, so that the equation can
be satisfied only if l is an integer. The integer is even for symmetric modes and odd for
antisymmetric modes. Writing n+1 for the integer for a reason which becomes apparent
later, the equation l= n+1 can be solved for V, giving

V=[1+3n+(n+1) (n+2)]/2(1− n2) (25)

{[1+3n+(n+1) (n+2)]2 −4(1− n2) [(n+1) (n+2)−2]}1/2/2(1− n2), (26)

for the branch which satisfies the condition VQ 1. These are the frequencies of the low
frequency branch of the non-torsional axisymmetric modes of a spherical membrane. The
mode structures are given by uAP1

n+1 (cos u) and wAPn+1 (cos u). Numerical calculations
to follow show that as d increases from zero to infinity, the modes described by equation
(24) go over to the modes described by equation (25) with the same integer n.

Numerical solution of the equations (17) is facilitated by recognizing the branch
structure of both sides of the equation. As V increases from zero to unity, l increases from
one to infinity and m increases from zero to infinity. The branch of the function H(V) are
separated by the values V(H)

i which satisfy l(V(H)
i )=2i for i=1, 2, . . . As illustrated by the

solid curves in Figure (2a) and (2b), H(V) increases in each branch from negative to
positive infinity, except for the first branch, which starts at the value zero. Figure (2a)
shows that the branches of C(+)(V), which are separated by V(C+)

i satisfying m(V(C+)
i )=2i

with i=1, 2, . . . , all decrease from positive to negative infinity except for the first branch
which starts at the value pd. Thus, if the sequences V(H)

i and V(C+)
i are merged and

rearranged as an increasing sequence, one and only one root of equation (17) will occur
between any two successive members of the new sequence. The root can be found by the
method of bisection to the desired accuracy. Similarly, as shown in Figure (2b), the
function C(−) (V) for the antisymmetric modes have branches separated by V(C−)

i satisfying
m(V(C−)

i )=2i−1 with i=1, 2, . . . , decreasing from positive to negative infinity, with the
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first branch starting at zero. Again the same method can be applied to find the root of
the corresponding equation (17).

For the purpose of enumeration, a mode number n is introduced, which denotes the
number of zeros of the meridional displacement u other than the two poles. It turns out
that n is equal to 1, 3, 5, . . . for the symmetric modes and 2, 4, 6, . . . for the antisymmetric
modes, and has the same significance in equations (24) and (25), for a general value of
d.

To obtain the mode structures given by equation (20), the Legendre functions are
numerically computed using the integral representation [10]

Pl (cos u)=2p g
u

0

cos (l+ 1
2)8 d8/z2(cos 8−cos u),

and the relation

P1
l (h)=−z1− h2 dPl /dh

As an illustration, the frequencies for the first four modes for the choice n=0·3 are
plotted in Figure 3 against the quantity d'=2d/(1+ d), which is the ratio of the cap
portion of the length to the total length of the object. The computed frequencies smoothly
connect the results in the small and large aspect ratio limits as given by equations (24) and
(25).

The predictions of equation (17) have been compared with the results from the finite
element code ABAQUS [11]. The case chosen for the study consist of a cylindrical shell
of length 1 m joined to spherical caps of radii 0·2 m, 1 m, and 5 m respectively. The density
is 7800 kg/m3, Young’s modulus is 207 GPa, and Poisson’s ratio is 0·3. For the finite
element analysis, the thickness of the shell is chosen to be 0·01 m. The three-node
axisymmetric shell element SAX2 available in ABAQUS is used. For the three cases, the
shell is meshed into 46, 42, and 68 elements respectively. Convergence has been secured
as none of the finite element predictions changes more than 0·032% when the numbers
of elements are halved. The four modes with the lowest frequencies are obtained in each

Figure 3. The normalized frequency of the four lowest frequency modes.
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Comparison between membrane theory and FEM. In all cases the length of the cylinder
is 1 m, thickness is 0·01 m, density is 7800 kg/m3, Young’s modulus is 207 GPa, Poisson’s

ratio is 0·3

Cap Mode Membrane FEM Fractional
radius number frequency frequency difference
(m) n (Hz) (Hz) (%)

0·2 1 1759·0 1764·7 0·32
0·2 2 2880·7 2915·5 1·19
0·2 3 3336·6 3368·1 0·94
0·2 4 3687·7 3757·1 1·82
1·0 1 563·99 567·26 0·58
1·0 2 679·81 680·91 0·16
1·0 3 751·00 753·76 0·37
1·0 4 766·51 769·34 0·37
5·0 1 119·11 119·40 0·24
5·0 2 141·23 141·24 0·01
5·0 3 151·16 151·31 0·10
5·0 4 155·06 155·09 0·02

case. They correspond to the mode numbers (n) 1–4 according to the adopted convention.
The results of the comparison as shown in Table 1 demonstrate good agreements.

The mode shapes from the present theory and the finite element method are shown in
Figure 4 for the four modes corresponding to the case with radius 1 m. The sharp changes
at the seam from the present theory arise from the discontinuity in the normal
displacement. They are seen to be smoothed out in the finite element approach.
Nevertheless, the overall agreement is good.

4. BENDING LAYER

The membrane theory does not provide a satisfactory derivation of the joint conditions
at the seam between the cylindrical shell and the hemispherical caps. The predicted
discontinuity of the normal displacement is obviously non-physical. It is well-known, at
least for static loading, that the effect of bending is important at the seam, where stresses

Figure 4. Four modes of vibration shown for a half shell: –·–, undistorted shell; ——, membrane theory; – – – –,
FEM.
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Figure 5. Stress resultants and displacements of a cylindrical shell. The inset illustrates the deflection of the
normal.

and displacements can vary rapidly. In this section, the bending theory of shells is used
to resolve both difficulties. In the process, the range of validity of the membrane
approximation is also obtained. The method of matched asymptotic expansions is used
in the analysis, which has previously been applied to the problem of static loading of thin
spherical shells [5].

The appropriate equations of motion for non-torsional axisymmetric motion of
cylindrical and spherical shells taking bending into account can be obtained from standard
textbooks on shell theory such as reference [4]. The sign convention and notations used
in this reference are adhered to as much as possible. For a cylindrical shell described in
a cylindrical co-ordinate system (a, 8, z), the displacement components u, w and the
non-zero stress resultants Nz , N8 , Mz and Qz are indicated in Figure 5. For harmonic
oscillations, axial and normal force balance applied to a shell element lead to

rhv2u=dNz /dz, rhv2w=N8 /a+dQz /dz, (26, 27)

while moment equilibrium yields

Qz =dMz /dz. (28)

The membrane stress resultants are given in terms of the displacements by

Nz =D(−du/dz+ n[w/a]), N8 =D(−n du/dz+w/a) (29, 30)

where D=Eh/(1− n2). The corresponding relation for the bending moment is

Mz = b2Da2 d2w/dz2 (31)

where b2 = h2/(12a2). In addition, it is necessary to introduce the angle of deflection of the
normal illustrated in the inset of Figure 5, which is given by

a=dw/dz. (32)

For a spherical shell in a spherical co-ordinate system (a, u, 8), the displacements u, w
and the non-zero stress resultants Nu , N8 , Mu , M8 and Qu are depicted in Figure 6. In terms
of the variable h=cos u instead of u, the equation corresponding to equations (26)–(32)
can be obtained from [4] by performing the appropriate transformation of variables. The
results are

rhv2u=(1/a) [d/dh(z1− h2Nu )+ (h/z1− h2)N8 +Qu]; (33)
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rhv2w=(1/a) [Nu +N8 −(d/dh) (z1− h2Qu )]; (34)

Qu =−(1/a) [(d/dh) (z1− h2Mu )+ (h/z1− h2)M8 ]; (35)

Nu =(D/a) [−z1− h2 du/dh+(nh/z1− h2)u+(1+ n)w]; (36)

N8 =(D/a) [−nz1− h2 du/dh+(h/z1− h2)u+(1+ n)w]; (37)

Mu = b2D(z1− h2 d/dh−(nh/z1− h2)) (u+z1− h2 dw/dh); (38)

M8 = b2D(nz1− h2 d/dh−(h/z1− h2)) (u+z1− h2 dw/dh); (39)

a=(1/a) (u+z1− h2 dw/dh). (40)

The joint conditions at the seams can be formulated from geometrical considerations and
Newton’s third law. These conditions for the upper seams, where z= l/2 and h=0+, are

−u(+) = u(−), w(+) =w(−), a(+) = a(−), Nu =Nz , Qu =−Qz , Mu =Mz , (41)

where the plus sign refers to the hemisphere side and the minus sign refers to the cylinder
side. Similar conditions hold at the lower seam. Together with the regularity of the solution
at the poles, equations (26)–(41) complete the mathematical description of the capped
cylindrical shell.

By eliminating the stress resultants, equations of motion in terms of the displacement
components alone are obtained. The membrane equations (1)–(4) of section 2 are recovered
if only the membrane stresses are kept. The additional terms arising from bending all
contain the factor b2, which is small for a thin shell. Comparison with the membrane terms
would indicate that these terms are negligible provided the spatial scale of variation of the
vibration is of the order of a or larger. However, among these terms are those of the highest
order, which contain the fourth derivatives of the normal displacement. Their neglect can
cause failure to satisfy the boundary conditions, or joint conditions, as happens in the
present case. Thus, a thin layer is expected to exist at the seam, where the bending terms
are important. In the terminology of the method of matched asymptotic expansions, this
layer is referred to as the inner region, while the outside is referred to as the outer region.
Separate approximate solutions are sought for the two regions, which are then matched
in an intermediate region.

Following [5], an inner variable z
*

is introduced for the upper bending layer through
the definition

z
*

=6(z− l/2)/zb,
ah/zb,

zQ l/2,
hq 0.

(42)

Figure 6. Stress resultants and displacements of a spherical shell. The inset illustrates the deflection of the
normal.
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Thus, z
*

q 0 corresponds to the cap and z
*

Q 0 corresponds to the cylinder. The equations
of motion are first written in terms of this variable, and the solution is then sought as series
of the form

u= f (+)
0 (z

*
)+zbf (2)

1 (z
*
)+ · · ·,

w= g(+)
0 (z

*
)+zbg(2)

1 (z
*
)+ · · ·, (43)

where the signs refer to positive and negative values of z
*

respectively. Through two orders
in the expansion parameter zb, equation (26) for the cylinder gives

−d2f (−)
0 /dz2

*
=0, (44)

d
dz

*
(−df (−)

1 /dz
*

+ (n/a)g(−)
0 )=0, (45)

while equation (27) gives

df (−)
0 /dz

*
=0, (46)

a4 d4g(−)
0 /dz4

*
+ [1− (1− n2)V2]g(−)

0 = na
df (−)

1

dz
*

, (47)

with the fourth order term due to bending. Similar expansions of equation (33) and (34)
for the hemisphere give

d2f (+)
0 /dz2

*
=0, (48)

d/dz
*
[−df (+)

1 /dz
*

+ (1+ n)g(+)
0 /a]=0, (49)

df (+)
0 /dz

*
=0, (50)

a4 d4g(+)
0 /dz4

*
+ [2(1+ n)− (1− n2)V2]g(+)

0 = (1+ n)a df (+)
1 /dz

*
. (51)

The joint conditions (41), which are applied at z
*

=0, are expanded likewise in zb. The
first of the set of equations (41) implies the continuity of f0. It then follows from equation
(46) and (50) that

f (+)
0 = f (−)

0 =A0, (52)

where A0 is a constant. The equations (45) and (49) can be integrated to give

−df (+)
1 /dz

*
+ (1+ n)g(+)

0 /a=−df (−)
1 /dz

*
+ ng(−)

0 /a=B/a, (53)

where the fact that B is the same constant for both sides of the layer follows from the
equality of Nu and Nz at the seam as stated in equation (41). Elimination of f (+)

1 and f (−)
1

from equations (47) and (51) respectively using equation (53) lead to the pair

a4 d4g(+)
0 /dz4

*
+4m4g(+)

0 =−(1+ n)B z
*

q 0, (54a)

a4 d4g(−)
0 /dz4

*
+4m4g(−)

0 =−nB z
*

Q 0, (54b)

where

4m4 = (1− n2) (1−V2). (55)

In anticipation of matching to the solutions in the outer region, only those solutions
of equation (54) which remain bounded while moving away from the seam should be kept
for VQ 1, which is the case under consideration. These solutions are

g(+)
0 =−([1+ n]/4m4)B+e−mz*/a[C+ cos (mz

*
/a)+D+ sin (mz

*
/a)], (56a)
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g(−)
0 =−(n/4m4)B+e+mz*/a[C− cos (mz

*
/a)+D− sin (mz

*
/a)], (56b)

where m is the positive real root of equation (55) and C2, D2 are arbitrary constants. These
constants are determined using the joint conditions (41). Keeping leading order terms when
expanding the joint conditions in zb, it follows that g0 itself and the first, second, and
third derivatives (in z

*
) of g0 are continuous. The equations (56a) and (56b) simplify into

g(+)
0 =−(B/4m4) [1+ n− 1

2 e−mz*/a cos (mz
*

/a), (57a)

g(−)
0 =−(B/4m4) [n+ 1

2 emz*/a cos (mz
*

/a), (57b)

Returning to equation (53), integration and the use of continuity at the seam gives

f (+)
1 =−(B/a) [1+ (1+ n)2/4m4]z

*
+(aB(1+ n)/16m5) [1−emz*/a cos (mz

*
/a)+ e−mz*/a sin (mz

*
/a)]+A1 (58a)

f (−)
1 =−(B/a)$1+

n2

4m4%z*
+(aBn/16m5) [1−emz*/a cos (mz

*
/a)− e−mz*/a sin (mz

*
/a)]+A1 (58b)

where A1 is a constant of integration whose value will not be needed.
The constants A0, B which are thus far undetermined can be obtained by matching with

the outer solution. In the outer region, the original variable z and h are used, and the
membrane equations of section 2 apply in the leading order of zb. The limits of the
solution of these equations as the seam is approached from either side should be matched,
order-by-order in zb, with the asymptotic limits as z

*
: 2a of the inner solutions

tranformed back to the outer variables. Since the asymptotic limits for f0 and f1 can be
written

f (+)
0 +zbf (+)

1 + · · ·3A0 −B[1+ (1+ n)2/4m4]h+· · ·, (59a)

f (−)
0 +zbf (−)

1 + · · ·3A0 − (B/a) [1+ (1+ n)2/4m4] (z− l/2)+ · · ·, (59b)

while the limits of the corresponding outer solution are given by

u3 u =h=0+ +du/dh =h=0+ h+· · · , (60a)

u3 u =z= l/2 +du/dh =z= l/2 (z− l/2)+ · · · . (60b)

Matching requires

u =h=0+ = u =z= l/2 =A0 (61)

and

1
n2 +4m4

du
dh bz= l/2

=
1

(1+ n)2 +4m4

1
a

du
dh bh=0+

=−
B

4m4a
. (62)

These are precisely the joint conditions assumed in the membrane theory in section 2. Thus,
the bending theory provides a justification for them. In particular, equation (62) is
traceable to equation (53), which, from equations (29) and (36), amounts to the statement
of the continuity of axial stress resultant. In view of equation (62), the matching of g(2)

0

to w simply reproduces the limits of equations (5) and (6), and gives no new information.
The inner solution (57) provides the smooth connection between the discontinuous values
of the normal displacement in the membrane approximation. An estimate of the thickness
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of the bending layer is zba/m. Setting the latter quantity to a gives an estimate of how
close V can approach unity before the membrane approximation loses its validity. This
estimate is 1−V0 /zb.

Finally, for Vq 1, it is no longer possible to find two independent solutions of equation
(54) which decay to zero moving away from the seam. The matching procedure cannot
be applied. For this reason, the present approach is restricted to low frequencies where
VQ 1. The physical reason for this restriction is unclear. Calculations using the
finite-element method do not suffer from any difficulty in spanning the full range of
frequencies. There is no qualitative change in the mode shape as the critical frequency is
traversed. Further investigation would be required to find out if the restriction to low
frequencies can be removed.

5. CONCLUSIONS

The low frequency, axisymmetric, non-torsional modes of a thin cylindrical shell with
hemispherical endcaps vibrating in vacuo have been investigated with the help of membrane
approximation. The modes are classified into symmetric and antisymmetric modes
depending on their properties under mirror reflection about the mid-plane, and are
numbered according to the number of nodes in the meridional displacement. The
frequency, which increases with the mode number, satisfies a closed form relation, which
has been solved numerically as well as analytically for very long and very short cylindrical
sections. For very long cylindrical sections, the frequencies for the simple modes approach
those for a cylindrical shell with simply-supported edges. The two hemispherical caps
oscillate as rigid wholes, being in phase for the antisymmetric modes and out-of-phase for
the symmetric modes. For vanishingly small cylindrical sections, the low frequency modes
of the spherical membrane are reproduced, starting with modes of order two in an
expansion in spherical harmonics. In the membrane approximation, the mode structure
exhibit finite jumps in the normal displacement across the seams joining the hemispherical
caps to the cylindrical shell. The membrane results are expected to hold as long as the mode
number n is not so high that the difference 1−vn a/c becomes of order zb, where vn is
the frequency, a is the radius of the shell, c is the longitudinal sound speed in the shell
material, b= h/a, with h describing the shell thickness. The membrane results have been
checked against finite element calculations with excellent agreement.

The joint condition at the seam for the membrane approximation are derived by taking
the effect of bending into account in a bending layer of width (ha)1/2 at the seams. The
finite jumps of the normal displacement are also smoothed over in the layer. The method
of matched asymptotic expansions has been used. It should be possible to apply this
method to more general vibrations as well as other thin shells with boundaries or with
discontinuous physical or geometrical properties.
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