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A generalized two-member open frame structure is modelled using Euler–Bernoulli beam
theory. The generalization is approached in two ways: an arbitrary angle between the
beams; and the attachment of a payload at the end of the second beam. The linearized
equations of motion are derived using Hamilton’s principle and the general frequency
equation, mode shapes and orthogonality condition are presented along with some
numerical examples.
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1. INTRODUCTION

There has been extensive research into the vibration of frame structures in many different
configurations and complexities. The majority of this work has been in the area of what
may be described as closed frames; the portal frame, which has three beam members, being
one of the simplest examples of a closed frame. Here we use closed frames as an analogy
for closed chains. Whereas chains of elastic bodies have joints, frames do not. Frames are
chains of elastic bodies that have a fixed orientation with respect to one another. The use
of closed has the same implication in both situations.

Some representative examples of vibration analysis of portal frames include the
Rayleigh–Ritz treatment of a portal frame under support conditions that range from
clamped or pinned [1, 2] to elastically supported. The latter is due to Filipich et al. [3],
in the case of symmetric vibrations, and to Laura and Valerga De Greco [4], in the case
of antisymmetric vibrations. These cases have also been treated using a more general
analytical approach by Filipich and Laura [5]. Portal frames with cross-bracing and
including axial deformation in the members have been treated by Chang et al. [6], and
Mottershead et al. [7] have reported on the experimental identification of portal frame
dynamics. More recently, Lee and Ng [8] have used the Rayleigh–Ritz method to treat
portal frames, H-frames and T-frames.

Clough and Penzien [9] include a two-member closed frame as an example. It consists
of two beams joined at right angles, with the end of one of them clamped and the end
of the other simply supported. This example has been extended by Alexandropoulos et al.
[10], who analyzed the free vibration of a closed two-bar frame carrying a concentrated
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mass with rotational inertia at its joint and including longitudinal motion as well as
transverse motion of the bars.

It is relatively easy to find examples of structures that may be considered to be open
frames; i.e., chains of beams that have one end fixed and the other end free. We will restrict
our attention to the case of a two-member open frame which is comprised of a cantilever
beam with a second beam attached to its free end. We will refer to these two-part structures
with the qualifying adjective ‘‘inclined’’, the angle of inclination being measured from the
undeformed axis of the beam which has the fixed end (the first beam) to the undeformed
axis of the beam with the free end (i.e., the second or distal beam) (Figure 1). In general,
the second beam may be inclined at some arbitrary angle from the axis of the first beam.
One set of examples of such configurations is two-link mechanisms, such as some robots
or earth moving equipment, with the joints locked [11] or, in an approximate sense, with
the joints slowly moving.

When the two beams are oriented at right angles to one another, the configuration is
referred to as an L-shaped structure. As an example of this kind of configuration, we note
the Spacecraft Control Laboratory Experiment (SCOLE) which was modelled using the
L-shaped (i.e., 90° inclination) arrangement [12].

An analytical derivation of the eigenvalues of an L-shaped structure has been presented
by Bang [13], who also presents a discourse on the advantages and disadvantages of
analytical solutions versus finite-dimensional approximations. It suffices to mention that
the analytical approach is often more difficult to obtain and use than the finite-dimensional
approximations, but it exhibits higher accuracy for simple structures. While many analysts
will argue that a structure as simple as the one we are concerned with here can be more
easily and just as accurately modelled using the finite element method (FEM), we hold the
view that there can be circumstances in which the FEM hammer is an inappropriate tool.
We will present some FEM results below that required solving a linear algebraic eigenvalue
problem with 60 degrees of freedom to obtain accurate values for the first five natural
frequencies. If this model were to be used as an element in a control system, it would be
quickly found that having to deal with a 120 entry state vector would severely hamper the
controller, and would necessitate the use of some form of model order reduction algorithm
that would inevitably result in the loss of some modelling fidelity. This may or may not
be acceptable, depending on the application, but with the exact eigenfunctions and natural
frequencies available it would be possible to use a basis that spanned a true solution
subspace without approximation; thus allowing the use of lower order models with

Figure 1. (a) Undeformed and (b) deformed schematics of the system.
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comparable fidelity and which capture the dynamic couplings (or lack thereof) precisely.
At the very least, the analytical solution offers a means of confirming the FEM model and
code.

The L-shaped geometry is restrictive because design and/or operational considerations
may suggest an optimal inclination which is different from 90°.

The focus of this paper is on more general planar two-beam open frame structures with
an arbitrary angle of inclination between the beams and with a payload at the free tip.
The aim is to present analytical expressions for the frequency equation, mode shapes and
orthogonality condition for this class of frames. In our presentation, we assume that the
beams are adequately modelled using a linear elastic small deformation small strain
Euler–Bernoulli theory; and we derive a linearized set of governing equations of motion
via Hamilton’s principle, and also present the boundary conditions and the frequency
equation.

2. DESCRIPTION OF THE SYSTEM

The system is composed of two flexible beam members and a payload, which are
arranged as shown in Figure 1. The first beam is vertical, while the second beam is attached
to the tip of the first beam such that it is inclined from the vertical by angle u. The payload
is attached at the end of the second beam and the motion of the system is assumed to be
planar.

3. EQUATIONS OF MOTION

A global reference frame is attached at the base of the structure and a non-inertial frame
is attached at the joint, as depicted in Figure 1. The unit vectors along the x1 -, y1 - and
z1 -axes of the fixed inertial frame Fa are, respectively, defined as a1, a2 and a3. Similarly,
the unit vectors of the body fixed frame Fb are b1, b2 and b3, and they correspond to the
x2-, y2- and z2- axes of the non-inertial frame Fb which has its origin at the junction of
the two beam segments.

The position vectors r1 and r2, measured from the base of the structure, of elemental
masses of the first and second beams, respectively, are given as

r1 (x1, t)= x1 a1 + v1 (x1, t)a2 (1)

and

r2 (x2, t)= r1 (L1, t)+ x2 b1 + v2 (x2, t)b2, (2)

where vi is the transverse deflection of the ith beam.
The rotational transformation from the inertial frame to the body fixed frame is given

by

Cba =$ cos (u+ a)
−sin (u+ a)

sin (u+ a)
cos (u+ a)%

and thus equation (2) can be rewritten as

r2 (x2, t)= [a1 a2]$ L1

v1 (L1, t)
cos (u+ a)
sin (u+ a)

−sin (u+ a)
cos (u+ a) %8 1x2

v2 9, (3)
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where

a(t)=
1v1

1x1 bx1 =L1

(4)

is the slope of the first beam evaluated at its end; it is assumed to be small. The velocities
of these vectors are correspondingly written as

ṙ1 = v̇1 a2 (5)

and

ṙ2 =−(x2 ȧ sin (u)+ v̇2 sin (u))a1 + (v̇1 (L1, t)+ x2 ȧ cos (u)+ v̇2 cos (u))a2. (6)

Note that non-linear or second order terms (i.e., aȧ and v2 ȧ) have been ignored in writing
equation (6).

The system kinetic energy T is composed of three components, the contributions from
the beams and the contribution of the tip mass, so that

T=T1 +T2 +Tt , (7)

where

Tk = 1
2 g

Lk

0

rk Ak ṙk · ṙk dxk for k=1, 2 (8)

and

Tt = 1
2 mt ṙ2 (L2, t) · ṙ2 (L2, t). (9)

The system potential energy U is composed of a contribution from each beam segment
and is given by

U= 1
2 g

L1

0

E1 I1 (12v1 /1x2
1)2 dx1 + 1

2 g
L2

0

E2 I2 (12v2 /1x2
2)2 dx2. (10)

T 1

Material properties and non-dimensional parameters

Parameter Value

L1 4·249 m
L2 2·215 m
L 0·5213

r1A1 4·5×10−3 kg m−1

r2A2 6·0×10−3 kg m−1

r 1·333
E1I1 2·67×10−2 N m2

E2I2 1·47×10−2 N m2

l1 54·93v2

l2 9·825v2
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Using T and U in Hamilton’s principle and taking variations over the displacements v1

and v2, the following equations of motion are obtained:

r1 A1 v̈1 +E1 I1 (14v1 /1x4
1)=0 (11)

and

r2 A2 (v̈2 + x2 ä+ v̈1 (L1, t) cos (u))+E2 I2 (14v2 /1x4
2)=0. (12)

The corresponding boundary conditions are

v1 (x1, t) =x1 =0 =0, v'1 (x1, t) =x1 =0 =0, v2 (x2, t) =x2 =0 =0, (13–15)

v'2 (x2, t) =x2 =0 =0, v02 (x2, t) =x2 =L2 =0, (16, 17)

mt (v̈2 (L2, t)+L2 ä+ v̈1 (L1, t) cos (u))=E2 I2 v12 (L2, t), (18)

T 2

Analytical natural frequencies, vi (s−1)

u= p/2 u= p/2
Mt Mode u=0 u= p/6 u= p/3 (present) (Bang [13]) u=2p/3 u=5p/6 u= p

0·0 v1 0·1807 0·1852 0·1994 0·2247 2·2419 0·2608 0·2968 0·3117
v2 1·1489 1·0639 0·9068 0·7940 14·3003 0·7636 0·8370 0·9248
v3 2·9705 2·8758 2·7442 2·6814 19·7509 2·6847 2·7655 2·8582
v4 6·0755 5·9631 5·8052 5·7715 24·3269 5·9304 6·5497 7·4101
v5 9·8732 9·1043 8·3684 8·0768 37·0270 7·9638 7·9427 8·0954

0·1 v1 0·1642 0·1686 0·1827 0·2088 0·2484 0·2903 0·3076
v2 1·0442 0·9504 0·7863 0·6701 0·6265 0·6718 0·7412
v3 2·7557 2·6964 2·6182 2·5905 2·6199 2·7345 2·8568
v4 5·7112 5·4868 5·1936 5·0852 5·1643 5·6129 6·3125
v5 9·2382 8·5727 8·0184 7·8243 7·7688 7·8320 8·0936

0·2 v1 0·1514 0·1557 0·1695 0·1957 0·2374 0·2841 0·3031
v2 0·9839 0·8814 0·7114 0·5943 0·5447 0·5770 0·6411
v3 2·6600 2·6115 2·5522 2·5379 2·5777 2·7103 2·8561
v4 5·5701 5·2877 4·9497 4·8241 4·8751 5·2597 5·9394
v5 9·0424 8·3911 7·9029 7·7444 7·7077 7·7928 8·0934

0·3 v1 0·1412 0·1453 0·1587 0·1847 0·2277 0·2783 0·2982
v2 0·9449 0·8339 0·6587 0·5415 0·4891 0·5138 0·5774
v3 2·6069 2·5620 2·5111 2·5030 2·5468 2·6896 2·8557
v4 5·4972 5·1746 4·8184 4·6896 4·7265 5·0718 5·7529
v5 8·9501 8·2896 7·8384 7·7002 7·6728 7·7657 8·0934

0·4 v1 0·1327 0·1367 0·1497 0·1753 0·2190 0·2727 0·2929
v2 0·9178 0·7985 0·6187 0·5022 0·4481 0·4680 0·5333
v3 2·5732 2·5293 2·4827 2·4777 2·5227 2·6714 2·8554
v4 5·4529 5·0985 4·7348 4·6078 4·6362 4·9528 5·6412
v5 8·8967 8·2195 7·7944 7·6703 7·6485 7·7439 8·0933

0·5 v1 0·1256 0·1295 0·1421 0·1671 0·2112 0·2674 0·2872
v2 0·8979 0·7704 0·5866 0·4712 0·4164 0·4328 0·5012
v3 2·5501 2·5059 2·4617 2·4583 2·5033 2·6550 2·8552
v4 5·4232 5·0417 4·6761 4·5528 4·5756 4·8693 5·5668
v5 8·8620 8·1657 7·7614 7·6480 7·6299 7·7255 8·0933
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g
L2

0

r2 A2 x2 (v̈2 + x2 ä+ v̈1 (L1, t) cos (u)) dx2

+mt L2 (L2 ä+ v̈2 (L2, t)+ v̈1 (L1, t) cos (u))=−E1 I1 v01 (L1, t), (19)

g
L2

0

r2 A2 (v̈1 (L1, t)+ (v̈2 + x2 ä) cos (u)) dx2 +mt (v̈1 (L1, t)

+ (v̈2 (L2, t)+L2 ä) cos (u))=E1 I1 v11 (L1, t). (20)

4. FREQUENCY EQUATION

To reduce the number of defining parameters we introduce the non-dimensional
variables:

ji = xi /Li , r= r2 A2 /r1 A1, l4
i = ri Ai L4

i v
2/Ei Ii ,

Mt =mt /r1 A1 L1, L=L2 /L1. (21)

T 3

Finite element analysis natural frequencies, vi (s−1)

Mt Mode u=0 u= p/6 u= p/3 u= p/2 u=2p/3 u=5p/6 u= p

0·0 v1 0·1807 0·1852 0·1994 0·2247 0·2608 0·2968 0·3117
v2 1·1489 1·0639 0·9068 0·7940 0·7636 0·8370 0·9248
v3 2·9705 2·8758 2·7442 2·6814 2·6847 2·7655 2·8582
v4 6·0756 5·9632 5·8053 5·7716 5·9305 6·5498 7·4104
v5 9·8736 9·1045 8·3685 8·0770 7·9638 7·9428 8·0855

0·1 v1 0·1642 0·1686 0·1827 0·2088 0·2484 0·2903 0·3076
v2 1·0442 0·9504 0·7863 0·6701 0·6265 0·6718 0·7412
v3 2·7557 2·6964 2·6182 2·5905 2·6199 2·7345 2·8568
v4 5·7112 5·4869 5·1936 5·0852 5·1643 5·6130 6·3126
v5 9·2385 8·5728 8·0185 7·8244 7·7690 7·8321 8·0938

0·2 v1 0·1514 0·1557 0·1695 0·1957 0·2374 0·2841 0·3031
v2 0·9839 0·8814 0·7114 0·5943 0·5447 0·5770 0·6411
v3 2·6600 2·6115 2·5522 2·5379 2·5777 2·7103 2·8561
v4 5·5702 5·2877 4·9498 4·8241 4·8752 5·2597 5·9395
v5 9·0427 8·3912 7·9030 7·7445 7·7079 7·7929 8·0936

0·3 v1 0·1412 0·1453 0·1587 0·1847 0·2277 0·2783 0·2982
v2 0·9449 0·8339 0·6587 0·5416 0·4891 0·5138 0·5774
v3 2·6069 2·5620 2·5111 2·5030 2·5468 2·6896 2·8557
v4 5·4972 5·1747 4·8184 4·6896 4·7265 5·0718 5·7530
v5 8·9504 8·2897 7·8385 7·7003 7·6729 7·7658 8·0935

0·4 v1 0·1327 0·1367 0·1497 0·1753 0·2190 0·2727 0·2929
v2 0·9178 0·7985 0·6186 0·5022 0·4481 0·4680 0·5333
v3 2·5732 2·5293 2·4827 2·4777 2·5227 2·6714 2·8554
v4 5·4529 5·0985 4·7348 4·6079 4·6362 4·9528 5·6413
v5 8·8970 8·2197 7·7945 7·6704 7·6486 7·7440 8·0935

0·5 v1 0·1256 0·1295 0·1421 0·1671 0·2112 0·2674 0·2872
v2 0·8979 0·7703 0·5866 0·4711 0·4163 0·4328 0·5012
v3 2·5501 2·5058 2·4616 2·4583 2·5033 2·6550 2·8552
v4 5·4232 5·0416 4·6761 4·5528 4·5756 4·8693 5·5668
v5 8·8623 8·1658 7·7614 7·6481 7·6300 7·7256 8·0935
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By assuming a separable solution in the form

vi (xi , t)=Li Vi (ji ) ejvt for i=1, 2, (22)

the equations of motion can be written as

V21 − l4
1 V1 =0 (23)

and

V22 − l4
20V2 − j2 V'1 (1)+

1
L

V1 (1) cos (u)1=0. (24)

With non-dimensionalization and separation of variables, the boundary conditions can be
expressed as

V1 (0)=0, V'1 (0)=0, V2 (0)=0, V'2 (0)=0, V02 (1)=0, (25–29)

l4
2Mt 0V2 (1)+V'1 (1)+

1
L

V1 (1) cos (u)1=−rLV12 (1), (30)

Figure 2. Mode shapes of the structure for u=0. ---, Undeformed; —, deformed. (a) first mode; (b) second
mode; (c) third mode; (d) fourth mode; (e) fifth mode.
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Figure 3. Mode shapes of the structure for u= p/6. ---, Undeformed; —, deformed. (a) first mode; (b) second
mode; (c) third mode; (d) fourth mode; (e) fifth mode.

l4
1rL3 g

1

0

j2 0V2 + j2 V'1 (1)+
1
L

V1 (1) cos (u)1 dj2 + l4
1Mt L20V'1 (1)+V2 (1)

+
1
L

V1 (1) cos (u)1=V01 (1), (31)

l4
1rL2 g

1

0 01
L

V1 (1)+ (V2 + j2 V'1 (1)) cos (u)1 dj2 + l4
1Mt L01

L
V1 (1)+ (V2 (1)

+V'1 (1)) cos (u)1=−V11 (1). (32)

The general solution to the equation of motion (23) is

V1 (j1)=B1 sin (l1 j1)+B2 cos (l1 j1)+B3 sinh (l1 j1)+B4 cosh (l1 j1) (33)
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and the general solution to equation (24) is

V2 (j2)=C1 sin (l2 j2)+C2 cos (l2 j2)+C3 sinh (l2 j2)+C4 cosh (l2 j2)

−0j2 V'1 (1)+
1
L

V1 (1) cos (u)1. (34)

From equations (25) and (26) we have that

B2 =−B4 and B1 =−B3, (35)

respectively, and hence equation (33) can be rewritten as

V1 (j1)=B1 (sin (l1 j1)− sinh (l1 j1))+B2 (cos (l1 j1)− cosh (l1 j1)). (36)

We now substitute equations (34) and (36) into the remaining boundary conditions (i.e.,
equations (27)–(32)) and after some algebra obtain six homogeneous equations which are
linear in the unknown coefficients of integration. These equations can be expressed in
matrix format as

[A]6×6 {q}6×1 = {0}6×1, (37)

Figure 4. Mode shapes of the structure for u= p/3. ---, Undeformed; —, deformed. (a) first mode; (b) second
mode; (c) third mode; (d) fourth mode; (e) fifth mode.
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where the elements of the matrix A are listed in Appendix B, and {q}=
[B1, B2, C1, C2, C3, C4]T.

A non-trivial solution is found by setting the determinant of the matrix to zero, to yield
the frequency equation:

rLl2 (l3
2Fcf1 Fcf2 − rL3l3

1Fcr1 Fcs2)
− r2L2l1 l2 (l3

2Fcs1 Fcf2 − rL3l3
1Fcc1 Fcs2) sin2 (u)

− r2L2l1 (l3
2Fcs1 Fcr2 − rL3l3

1Fcc1 Fcc2) cos2 (u)

−2r2L3l2
1l

2
2Fss1 Fss2 cos (u)

+ l1 l2
2(l3

2Fcs1 Fcs2 +2rL3l3
1Fcc1 Fss2)M2

t sin2 (u)

−2rL2l2
1l

3
2Fss1 Fcr2 Mt cos (u)

+ rLl1 l2
2(l3

2Fcs1 Fcs2 +2rL3l3
1Fcc1 Fss2)Mt sin2 (u)

+ rLl1 l4
2Fcs1 Fcc2 Mt cos2 (u)

− l2 (l4
2Fcf1 Fcs2 + rLl1 (l3

2Fcs1 Fcf2

−L2l2
1(rLl1 Fcc1 Fcs2 −2l2 Fcr1 Fss2)))Mt =0, (38)

Figure 5. Mode shapes of the structure for u= p/2. ---, Undeformed; —, deformed. (a) first mode; (b) second
mode; (c) third mode; (d) fourth mode; (e) fifth mode.
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where

Fcci =1−cos (li ) cosh (li ), Fcsi =sin (li ) cosh (li )− cos (li ) sinh (li ),

Fssi =sin (li ) sinh (li ), Fcri =sin (li ) cosh (li )+ cos (li ) sinh (li ),

Fsri =cos (li ) cosh (li ), Fcfi =1+cos (li ) cosh (li ). (39)

In the last six relations, a subscript c denotes a clamped end, an f represents a free end,
a r represents a roller end, and an s donates a supported end. The subscripts 1 and 2
indicate whether the reference is to the first or the second beam. Each F· · · corresponds to
the frequency equation for a single beam with the boundary conditions indicated by the
subscripts. (i.e., Fcf1 =0 is the frequency equation for a clamped–free (cantilever) beam
with properties of the first beam). It may be observed that equation (38) is symmetric about
u=0, (i.e., it will be the same for both positive and negative values of u).

For an L-shaped arrangement with no tip mass (i.e., Mt =0 and u= p/2), the frequency
equation (38) becomes

l3
2Fcf2 (Fcf1 − rLl1 Fcs1)− rL3l3

1Fcs2 (Fcr1 − rLl1 Fcc1)=0. (40)

This equation is different from equation (14) in Bang [13], presumably because of possible
errors in that work. These are detailed in section 7.

Figure 6. Mode shapes of the structure for u=2p/3. ---, Undeformed; —, deformed. (a) first mode; (b) second
mode; (c) third mode; (d) fourth mode; (e) fifth mode.
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5. MODE SHAPES

The mode shapes are derived by using the shear and moment conditions at the end of
the second beam, equations (29) and (30), the slope and displacement conditions at the
base of the second beam, equations (27) and (28), and the moment condition of the end
of the first beam, equation (31). With reference to equations (33)–(35) the coefficients of
the mode shapes are

B1 =C4 [2Ll3
2(cos (l1)+ cosh (l1)) (rLFcf2 − l2 Mt Fcs2)

−2rL4l3
1(sin (l1)+ sinh (l1)) (rLFcs2 +2l2 Mt Fss2)

+2rL3l2
1l2 (cos (l1)− cosh (l1)) (rLFss2 + l2 Mt Fcr2) cos (u)]/D, (41)

B2 =C4 [−2Ll3
2(sin (l1)+ sinh (l1)) (rLFcf2 − l2 Mt Fcs2)

−2rL4l3
1(cos (l1)− cosh (l1)) (rLFcs2 +2l2 Mt Fss2)

−2rL3l2
1l2 (sin (l1)− sinh (l1)) (rLFss2 + l2 Mt Fcr2) cos (u)]/D, (42)

Figure 7. Mode shapes of the structure for u=5p/6. ---, Undeformed; —, deformed. (a) first mode; (b) second
mode; (c) third mode; (d) fourth mode; (e) fifth mode.
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C1 =C4 [2rL2l1 l2
2Fss1 (Fcf2 +Fss2)+4Ll1 l3

2 cos (l2) sinh (l2)Fss1 Mt

+2rL(l3
2Fcs1 Fcr2 + rL3l3

1Fcc1 (Fss2 −Fcc2)) cos (u)

+4l2 (l3
2Fcs1 Fsr2 + rL3l3

1 cos (l2) sinh (l2)Fcc1)Mt cos (u)]/D, (43)

C2 =C4 [−2rL2l1 l2
2Fss1 Fcs2 −4Ll1 l3

2Fss1 Fss2 Mt

+2rL(l3
2Fcs1 (Fcf2 −Fss2)− rL3l3

1Fcc1 Fcs2) cos (u)

−4l2 (l3
2 sin (l2) cosh (l2)Fcs1 + rL3l3

1Fcc1 Fss2)Mt cos (u)/D, (44)

C3 =C4 [2rL2l1 l2
2Fss1 (Fcf2 −Fss2)−4Ll4

2Fcs1 Fsr2 Mt

−2rL(l3
2Fcs1 Fcr2 − rL3l3

1Fcc1 (Fcc2 +Fss2)) cos (u)

−4l2 (l3
2Fcs1 Fsr2 − rL3l3

1 sin (l2) cosh (l2)Fcc1)Mt cos (u)]/D, (45)

where

D=2rL2l1 l2
2Fss1 Fcs2 +4Ll1 l3

2Fss1 Fss2 Mt

+2rL(l3
2Fcs1 (Fss2 +Fcf2)− rL3l3

1Fcc1 Fcs2) cos (u)

+4l2 (l3
2 cos (l2) sinh (l2)Fcs1 − rL3l3

1Fcc1 Fss2)Mt cos (u). (46)

Examples of the first five mode shapes are presented in section 7.

Figure 8. Mode shapes of the structure for u= p/2 and Mt =0·2. ---, Undeformed; —, deformed. (a) first
mode; (b) second mode; (c) third mode; (d) fourth mode; (e) fifth mode.
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6. ORTHOGONALITY CONDITION

The orthogonality condition is derived using the non-dimensional equations of motion,
equations (23) and (24), and the corresponding non-dimensional boundary conditions,
equations (25)–(32). The resulting orthogonality condition may be expressed as

g
1

0

V1i V1j dj1 + rLV1i (1)V1j (1)+
rL3

3
V'1i (1)V'1j (1)

+ rL3 g
1

0

(V2i V2j + j2 (V2i V'1j (1)+V2j V'1i (1))) dj2

+ rL201
2 (V1i (1)V'1j (1)+V1j (1)V'1i (1))+g

1

0

(V1j (1)V2i +V1i (1)V2j ) dj2 1 cos (u)

+ (V1i (1)V1j (1)+L2(V'1j (1)V'1i (1)+V2i (1)V2j (1)+V2i (1)V'1j +V2j (1)V'1i ))Mt

+L(V1i (1)V'1j (1)+V1j (1)V'1i +V1i (1)V2j (1)+V1j (1)V2i (1))Mt cos (u)=0, i$ j.

(47)

This equation has been written so that the contributions of the tip mass and the effect of
the angle of displacement from the vertical are readily observed.

Figure 9. The fifth effect of the tip mass on the natural frequencies for u= p/6 —, p/3 --- and p/2 . . . ..
r, first mode; w, second mode; q, third mode; t, fourth mode; e fifth mode.
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7. NUMERICAL EXAMPLES

The material properties tabulated in Table 1 have been taken from Bang [13] in order
to permit comparison of results. The system is simulated with and without a payload, and
the displacement of the second beam from the vertical is varied from 0 to 180°. The natural
frequencies, as determined by numerically solving for the roots of the frequency equation
(38) are displayed in Table 2 and a corresponding set of natural frequencies as obtained
from a 20-element (ten elements in each beam) finite element model are given in Table 3.
Comparison of the data in these two tables shows that the natural frequency values are
identical to within five significant digits for the first four natural frequencies and to within
four significant digits for the fifth natural frequency; an agreement that gives confidence
in the results. We did not experience any numerical difficulties in obtaining the roots of
the frequency equation in spite of its complexity and the presence of hyperbolic functions.
Accurately finding a large number of frequencies can be done with greater computational
economy by solving equation (38) than by solving the necessarily large eigenvalue problem
associated with a finite element model. Indeed, one of the attributes of equation (38) is
that it can be used to help verify the finite element code and model.

Using the material properties given in Table 1, the first five modes of the structure with
no payload at the tip of the beam and the orientation angle u=0°, 30°, 60°, 90°, 120° and
150° are depicted in Figures 2–7, respectively. The mode shapes for a 90° configuration
with a tip mass (Mt =0·2) are presented in Figure 8. We cannot make any general
conclusions on the basis of these figures, as the mode shapes will vary according to the
relative length L, relative linear mass density r and relative li values for the structure.
However, there are some features in these figures which are of note. The most striking
feature is the very small participation of the second beam in the first mode, regardless of

Figure 10. The effect of the tip mass on the natural frequencies for u=2p/3 —, 5p/6 --- and p . . . .. r, first
mode; w, second mode; q, third mode; t, fourth mode; e fifth mode.
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the value of u. For this set of materials and geometry parameters, the first mode is
dominated by a simple cantilever mode in the first beam.

A comparison of the mode shapes presented in Figures 5 and 8 gives some indication
of the effect that the presence of a tip mass can have. The first three mode shapes are not
markedly different between the two cases, but the fourth and fifth mode shapes are quite
different. For the case investigated here, the presence of the tip mass has resulted in the
first beam having a diminished contribution in the fourth and fifth modes, which are now
dominated by the second beam.

For a given angle of inclination, each of the first five modes displays declining frequency
values with increasing tip mass, as may be observed in Table 2 and Figures 9 and 10. This
is an intuitively appealing result that parallels the well known results for straight uniform
beams with tip masses [14].

Another perspective on the results presented in Figures 9 and 10 is available in Figure 11,
which shows the effect of the angle of inclination on the natural frequencies (with and
without a tip mass).

For any fixed tip mass value, the first natural frequency (see Table 2 and Figure 11) rises
from its value at u=0 to a larger value at u= p. We can see in Figures 2–8 that the distal
(second) beam does not participate in the first mode and, consequently, we might
reasonably expect to see the frequency behave as a single cantilever beam with a constant
stiffness (EI) but with a monotonically declining (with u) system inertia. This would result
in the behavior exhibited by v1 (u). In contrast, the higher modal frequencies display a
concave upward behavior as u is varied from u= p/6 to u= p for a constant value of the
tip mass (see Figure 11). The minimum value in each row of Table 2 is underlined, and
we can see in that data that the location of the minimum for the second mode is in the
vicinity of u=2p/3. For the third and fourth modes the minimum frequency occurs in
the vicinity of u= p/2, while the minimum frequency for the fifth mode is, like the second
mode, near u=2p/3 for larger values of the tip mass but is near u=5p/6 for the case
in which there is no tip mass. It is evident from Figures 2–8 that the distal beam does have
a significant contribution to the higher mode shapes, and an explanation based on intuitive

Fig. 11. The effect of inclination on the natural frequencies. —— Mt =0; – – – –, Mt =0.5. r, first mode; w,
second mode; q, third mode; t, fourth mode; e, fifth mode.
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arguments about the stiffness and inertia is not going to provide a satisfactory explanation
of this behavior.

Finally, we would like to explain the wide discrepancies between our results and those
reported by Bang [13] for the L-shaped arrangement. As stated in an earlier section, the
differences are probably attributable to possible errors in the elements of the matrix which
are coefficients of the unknown variables. In particular, the matrix entries A53, A54 and A55

should be, in our opinion,

A53 = {}r2 v2[(1/g2
2) sin g2 l2 − (l2 /g2) cos g2 l2],

A54 = {}r2 v2[(1/g2
2) cos g2 l2 + (l2 /g2) sin g2 l2 (−2/g2

2)

− (l2 /g2) sinh g2 l2 + (1/g2
2) cosh g2 l2]

and

A55 = {}r2 v2[(l2 /g2) cosh g2 l2 − (1/g2
2) sinh g2 l2],

respectively. The −2/g2
2 term is missing in reference [13] and {} contained minus signs.

8. SUMMARY

Hamilton’s principle has been used to obtain the equations of motion of a generalized
two-beam open frame structure. The generalization was achieved through the attachment
of a payload at the tip of one flexible beam, and the arbitrary planar orientation of the
distal beam relative to the base beam. The reported frequency equation, mode shapes and
orthogonal condition are indicative of the coupling and complexity that is inherent in the
system. The mode shapes corresponding to the lowest natural frequency have very little
participation from the distal beam and the first mode is dominated by the cantilever like
motion of the base beam.

The numerical examples indicate that the dependence of the frequencies on the angle
of inclination is much more complicated than their dependence on the value of the tip mass.
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APPENDIX A: NOMENCLATURE

Ai cross-sectional area of the ith beam
Ei Young’s modulus of the ith beam
Ii second moment of the area of the ith beam
L ratio of the length of the second beam to the first beam
Li length of the ith beam
mt mass of the tip mass
Mt non-dimensional mass of the tip mass
ri position vector of an elemental mass of the ith beam
t time
T system kinetic energy
U system potential energy
vi (xi , t) transverse displacement of the ith beam
Vi (ui ) eigenfunctions of the ith beam
xi co-ordinate of the ith beam
a slope at the end of the first beam
u orientation of the second beam relative to the first
li non-dimensional frequency of the ith beam
ji non-dimensional co-ordinate of the ith beam
r ratio of the length density of the first beam to the length density of the second beam
ri volume mass density of the ith beam
v natural frequency
( � ) time derivative
()' spatial derivative

APPENDIX B: ELEMENTS OF MATRIX A

Using the notation that

Su =sin (u), Cu =cos (u), s1 = sin (l1), c1 = cos (l1),

sh1 = sinh (l1), ch1 = cosh (l1), s2 = sin (l2), c2 = cos (l2),

sh2 = sinh (l2), ch2 = cosh (l2),

the elements of the matrix, Aii , are given as

A11 =
1
L

Cu (sh1 − s1), A12 =
1
L

Cu (ch1 − c1), A13 =0, A14 =1,

A15 =0, A16 =1, A21 = l1 (ch1 − c1), A22 = l1 (s1 + sh1),

A23 = l2, A24 =0, A25 = l2, A26 =0,

A31 =0, A32 =0, A33 =−l2
2s2, A34 =−l2

2c2,

A35 = l2
2sh2, A36 = l2

2ch2, A41 =0, A42 =0,

A43 = l3
2(l2 Mt s2 − rLc2), A44 = l3

2(l2 Mt c2 + rLs2),
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A45 = l3
2(l2 Mt sh2 + rLch2), A46 = l3

2(l2 Mt ch2 + rLsh2),

A51 = l2
1(s1 + sh1), A52 = l2

1(c1 + ch1),

A53 = l4
1L20rL0s2

l2
2
−

c2

l2 1+Mt s2 1, A54 = l4
1L20rL0c2

l2
2
+

s2

l2
−

1
l2

21+Mt c2 1,

A55 = l4
1L20rL0ch2

l2
−

sh2

l2
2 1+Mt sh2 1, A56 = l4

1L20rL0sh2

l2
−

ch2

l2
2

+
1
l2

21+Mt ch2 1,

A61 =−l3
1(c1 + ch1)+ l4

1(rL+Mt ) (s1 − sh1)S2
u ,

A62 = l3
1(s1 − sh1)+ l4

1(rL+Mt ) (c1 − ch1)S2
u ,

A63 = l4
1L0rL01

l2
−

c2

l21+Mt s2 1Cu , A64 = l4
1L0rL

s2

l2
+Mt c2 1Cu ,

A65 = l4
1L0rL0ch2

l2
−

1
l2 1+Mt sh2 1Cu , A66 = l4

1L0rL
sh2

l2
+Mt ch2 1Cu .


