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A fundamental solution is derived for time harmonic elastic waves originating from a
point source and propagating in a restricted class of three-dimensional, unbounded
heterogeneous media which have a Poisson ratio of 0·25 and elastic moduli that vary
quadratically with respect to the depth co-ordinate. The first step in the solution procedure
is to transform the displacement vector in the equations of dynamic equilibrium through
scaling by the square root of the position-dependent shear modulus. The constraints
generated through this procedure are satisfied by quadratic (in the depth co-ordinate)
profiles of the elastic moduli. During the next step, a double Fourier transform with respect
to the horizontal co-ordinates is applied to the dynamic equilibrium equations, which
assume a form amenable to solution by a first order matrix differential equation system.
This latter system is solved using a series expansion due to the presence of non-constant
matrix coefficients. The last step in recovering the fundamental solution is inversion of the
double Fourier transform. This is accomplished numerically through use of the FFT,
because complexity of the first order system approach precludes analytic inversion. Finally,
some numerical examples serve to illustrate the present methodology.
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1. INTRODUCTION

Wave propagation through naturally occurring and man-made materials is of interest in
view of widespread applications in acoustic and electromagnetic signal transmissions,
seismically induced motions, non-destructive testing evaluation, noise control, subsurface
exploration, etc. [1–4]. Due to the complex structure of such media, wave propagation is
invariably accompanied by reflection, refraction, diffraction and scattering phenomena
that are difficult to quantify. Elastic waves in discretely layered media and in variable
velocity layers are discussed in Ewing et al. [1] and in Ben-Menachem and Singh [2], where
the basic problem of inseparability of waves into dilatational and rotational components
(unless the variation of the material parameters is small compared to the wavelength) is
brought forth. Brekhovskikh and Beyer [3] and Chew [4] examine primarily acoustic and
electromagnetic waves, with the former reference focusing on wave reflection and
refraction in discrete as well as in continuously layered media and the latter on specialized
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methods (e.g., Green functions, integral equations, the T-matrix approach, etc.), which can
be used for numerical solution of problems involving waves in planarly, cylindrically and
spherically layered media. In general, most of the work on waves in inhomogeneous
continua focuses on acoustic and electromagnetic waves in discretely layered media and
under time harmonic conditions. Of major importance is the scalar wave equation with
a depth-dependent wavenumber, because it corresponds to (i) sound waves in which the
acoustic medium density variation over the wavelength is important, (ii) electromagnetic
waves in which the electric field is polarized and (iii) horizontally (SH) and vertically (SV)
polarized elastic shear waves. In the case of SV waves, it is necessary to resort to a potential
representation of the displacement vector in order to recover two scalar wave equations,
so certain restrictions on the degree of medium inhomogeneity need to be imposed.

Various methodologies are available for solving scalar waves in inhomogeneous media
[3–8]. One class of specialized analysis techniques is based on geometrical optics
approximation for high frequencies and large wavenumbers. The applicability of
geometrical optics hinges on the fact that, at high frequencies, we have small values of the
corresponding wavelength and the effect of inhomogeneities on the propagating wave is
considerably diminished. For problems involving wave propagation in discretely layered
media, a layer is subdivided into several sublayers, so as to obtain a good description of
the displacement field, and the accuracy of the representation is conditional upon the
frequency of excitation. For media in which the dependence of their material parameters
on position is arbitrary, a different class of techniques based on successive approximations
is available. Although the wave field in arbitrary inhomogeneous media can be represented
in terms of position-dependent amplitude and phase angle, it is not possible uniquely to
divide it into the sum of incident plus reflected waves due to continuous scattering of
the signal by the inhomogeneities. Also, the need to account for the presence of a source
in the continuum generates some new problems. In the case of discretely layered
inhomogeneous media, the method of images is often used as a way of reproducing the
correct boundary conditions at the interface directly below or above the source. In the case
of continuously inhomogeneous media, the ray theory of waveguide propagation is used
as a high frequency approximation and for distances between source and receiver that are
not large.

There are relatively few closed form solutions available in the literature for waves in
layered media due to point sources (Green functions). One of the earliest derivations was
by Pekeris [9] for a half-space in which the refractive index variation is inversely
proportional to the depth co-ordinate. As far as the heterogeneous Helmholtz equation
governing propagation of time harmonic acoustic or horizontally polarized elastic shear
waves is concerned, we have the work of Li et al. [10], who presented an exact analytic
solution for a point source in a three-dimensional medium with a refractive index in the
form of the square root of a simple polynomial in the depth co-ordinate. Approximate
solutions can also be generated, e.g., by decomposing the inhomogeneous medium into a
stack of laterally varying layers and representing the solution within a layer as a sum of
decoupled plane waves [11]. A very general numerical technique for investigating seismic
wave propagation in anisotropic, porous or viscoelastic materials is presented in the review
paper by Mikhailenko [12]. In particular, different families of algorithms are suggested
based on a combination of finite integral transforms with finite difference techniques
for the computation of complete seismograms in complex, three-dimensional subsurface
geometries. Of interest here are (a) the inhomogeneous isotropic 3-D medium in which the
elastic parameters and the density are functions of depth [12] and (b) SH wave propagation
in a heterogeneous medium in which the wavespeed is a function of two spatial variables
[13]. In the former case, the equations of motion are described in cylindrical co-ordinates
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and the method of approach is a double Hankel integral transformation with respect to the
two spatial variables, followed by a finite difference solution and inverse transformations.
The latter case combines a finite Fourier integral transformation in one spatial co-ordinate
with a finite difference scheme in the other co-ordinate. All spatial derivatives encountered
in the finite difference method are approximated by Fourier series [14] for better accuracy.

As previously mentioned, an effective method for investigating wave propagation in a
continuously layered medium is to employ a Fourier–Bessel transformation so as to obtain
an integral representation of the wavefield. Evaluation of these integral expressions
requires integration over the complex plane and the contributions coming from the poles
are known as normal modes. Each normal mode satisfies the wave equation and
propagates with its own velocity. Applications of this method include scalar wave
propagation in a layer with a wavenumber that depends linearly on depth and in an Epstein
layer. A complete list of known solutions for reflection of scalar waves in inhomogeneous
layers appears in Brekhovskikh and Beyer [3], and includes wavenumbers that vary with
depth as the power of a linear function, as the inverse of a linear function, as general
polynomials that start from the second power onwards and as the exponential function.
For wave fields that exhibit cylindrical symmetry, three potentials corresponding to P, SV
and SH can then be defined. The SH wave case is completely equivalent to an acoustic
problem, while the P and SV cases remain coupled. Another method for determining the
wavefield due to a point source in an inhomogeneous medium satisfying certain conditions
(such as constant density or a Poisson ratio of 0·25 or a linear wavespeed gradient) which
allow for independent P and S equations of motion is developed in Acharya [15]. By
assuming cylindrical symmetry and representing the pulse from the point source as a
superposition of harmonic waves, the total field is obtained by summing over all plane
waves and then integrating the sum over all values of the direction cosines. Thus, integral
expressions are obtained for the compressional and shear potentials that are convergent.
In the case in which the material parameters of the medium are functions of more than
one co-ordinate, then the properties of the waveguide change along its direction of
propagation. This case is known as the inhomogeneous waveguide and a few approximate
techniques have been devised for these problems, such as finding the high frequency
asymptote and the method of transverse cross-sections for low frequency solutions.
Applications include plane problems with the wave speed being a function of two
co-ordinates [3] and ray formulation for the wavespeed being a function of three
co-ordinates [16].

Other early analytical work addressing wave motions in non-homogeneous media is by
Hook [17], on the method of separation of variables in order to recast the vector wave
equation with position-dependent material parameters into a system of three linearly
independent solutions for the corresponding number of scalar potentials, which in turn
satisfy second order wave equations. This can always be achieved for SH waves, while
formulations for SV and P wave are possible only for certain functional forms of the
mechanical properties, such as power laws for the shear modulus and density and a fixed
value of Poisson ratio. Furthermore, the wave equations for the latter two potentials are
coupled, implying that P and SV waves are no longer purely dilatational and rotational.
It therefore becomes necessary to impose further constraints on the material parameters
in order to achieve two uncoupled P and SV wave equations. This approach was
generalized in a later publication [18] though introduction of a linear transformation for
the displacement vector in order to produce a diagonal system matrix for the vector wave
equation, which was reformulated by using matrix notation. The method of separation of
variables for non-homogeneous media was implemented for the axisymmetric case (with
plane strain being a special case) and the resulting constraints which dictate mathematically
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acceptable material parameter variations with respect to a single spatial co-ordinate appear
in the form non-linear ordinary differential equations. Other work along the lines of
separation of the displacement vector in a non-homogeneous medium into P and S wave
potentials is by Gupta [19], who obtained reflection coefficients for a layer (in which the
elastic parameters are quadratic functions of the depth co-ordinate and the Poisson ratio
is equal to 0·25) sandwiched between two elastic, homogeneous halfspaces. Furthermore,
Payton [20] solved the uni-dimensional wave equation for a pulse travelling in a composite
rod exhibiting a constant wavespeed on one part and a quadratically varying one on the
other part by using the Laplace transform technique. Finally, a general technique for
solving the vector wave equation in an arbitrary non-homogeneous medium is by Karal
and Keller [21], who introduced an expansion of the solution in terms of asymptotic series.
This technique does not require separability in the sense previously discussed, but the
calculations required in order to obtain successive terms of the series are extremely tedious.

Also of interest is the generation of synthetic signals in layered media due to various
point sources. For instance, a computationally stable solution for determining surface
displacements due to buried dislocation sources in a multi-layered elastic medium was
developed by Wang and Herrmann [22] based on the work of Haskell [23], who employed
the Fourier transformation and evaluated signal time histories for the elastic medium by
performing contour integration of Bessel functions in the complex wavenumber plane. In
general, solution procedures for seismic wave motions due to buried sources follow along
two lines; namely, Laplace transform or Cagniard–de Hoop technique [24] and Fourier
transform [25]. The former technique is also known as generalized ray method because the
solution is constructed by tracking the individual seismic signal arrivals ray by ray from
source to receiver. It is valid at high frequencies, but not well suited for cases with many
layers and large source to receiver distances. In the latter technique, the complete wave
solution is expressed in terms of double integral transformations over wavenumber and
frequency. The method can handle a large number of plane layers, but requires
considerable computational effort at high frequencies. It is also possible to introduce
numerical techniques for carrying out the contour integrations [26]. A comprehensive
work on the three-dimensional response of a viscoelastic layered half-space to a buried
source is that of Apsel and Luco [27], who performed careful comparisons between their
technique, which is based on numerical evaluation of a Hankel-type integral using the
contour integration method, with analytical solutions, finite elements, the discrete
wavenumber formulation and with the generalized ray method. Furthermore, an often
used concept is that of transfer matrices, which was pioneered in the field of seismology
by Thomson [28]. Transfer matrices relay information (forces and displacements) between
upper and lower interfaces of an individual layer and can be used to approximate
continuously heterogeneous media as well. Furthermore, they may be synthesized as finite
elements to model multi-layered structure [29] and can be extended to wave amplification
problems in two-dimensional deposits [30].

The purpose of this work is to address elastic wave propagation in a three-dimensional,
unbounded heterogeneous medium. However, due to the inherent complexity of such a
problem, heterogeneity is restricted to a depth-only dependence of the material parameters,
which correspond to a Poisson ratio of 0·25 and which combine in such a way that linear
or square root of a linear function wavespeed profiles are produced. More specifically, this
paper is structured as follows. First, the governing equations of motion in an unbounded
heterogeneous medium in which material properties vary arbitrarily with position are
presented. Next, an algebraic transformation is applied to the displacement vector through
which the equilibrium equations attain a form that no longer involves derivatives of the
material parameters. This process generates a number of constraint equations, which
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dictate a Poisson ratio of 0·25 and a quadratic variation with respect to the depth
coordinate of the elastic moduli. Subsequently, a double Fourier transform is applied to
the equilibrium equations, which are recast as a first order, matrix differential equation
system. Finally, a fundamental solution (Green functions) due to a point impulse is
obtained through a series expansion solution of the matrix equation system followed by
inversion using the double fast Fourier transform (FFT). Since the above derivation is for
time harmonic conditions, viscoelastic material behavior can be introduced through use
of complex representations of the elastic moduli. The present methodology is based, to
a certain extent, on earlier work using algebraic transformations [31] and first order
differential equation system solutions [32] for wave propagation problems. The
fundamental solution obtained herein is numerically evaluated for density profiles which
are polynomials in the depth co-ordinate and some results are given for both steady state
and transient conditions.

2. GOVERNING EQUATIONS OF MOTION FOR A HETEROGENEOUS MEDIUM

In a linear elastic, isotropic medium the dynamic equilibrium equations, the kinematic
relations and the constitutive law are [33]

sij, j + 7fi = 7üi , oij = 1
2 (ui, j + uj,i ), sij = ludij +2moij , (1)

respectively. In the above, ui , 7fi , oij and sij respectively are displacements, body force per
unit volume, strain and stress, while l and m are the Lamé elastic constants and 7 is the
density. Furthermore,

u= okk = uk,k (2)

is the dilatation. All indices range from 1 to 3, with commas indicating partial
differentiation with respect to the spatial co-ordinates xi and dots indicating partial
derivatives with respect to time t. Finally, the summation convention is implied for
repeated indices and dij is Kronecker’s delta.

In the case of a homogeneous medium, equations (1) and (2) can be combined to give
the displacement equations that govern elastic wave motion, as

(l+ m)uj, ji + mui, j j + 7fi = 7üi (3)

or, in vector form, as

(l+ m)99 · u+ m92u+ 7f= 7ü, (4)

where 9 is the gradient and 92 =9 · 9 is the Laplacian.
If the continuum is heterogeneous (see Figure 1), then the material parameters are

position dependent (e.g., l= l(x), m= m(x), 7= 7(x)) and the equations of motion are
recovered in a form different from that shown above. More specifically, equations (1)
combine to give the governing equation of motion in the form

{l(x)uk,k (x, t)},i + {m(x) (ui, j (x, t)+ uj,i (x, t))}, j + 7(x)fi (x, t)= 7(x)üi (x, t) (5)

Once the differentiations have been carried out one has, in vector form,

9{(l+2m)u}+ m92u− m9u−2u9m+29m · E� + 7f= 7ü, (6)

where E� is the strain tensor oij . The above equation appears in Ewing et al. [1], where it
is mentioned that unless the variation of the material parameters over a wavelength is
small, there is coupling between pressure and shear waves at every point of the medium.



. .   .728

Figure 1. A non-homogeneous medium with depth-dependent material properties.

Therefore, an approach based on the Helmholtz vector decomposition [33] will not work,
which is easy to verify.

2.1.      

The Green function solution of equation (3) for a point force fi of magnitude f at source
j and under time harmonic conditions is [33]

gh
ij (r, v)=

f
4pv2r

[exp(ikp r){a}−exp(iks r){b}], (7)

with

{a}=ikp 6ikp
xi xj

r2 +
dij

r
−3

xi xj

r3 7−
dij

r2 +3
xi xj

r4 ,

{b}=iks 6iks 0xi xj

r2 + dij 1+
dij

r
−3

xi xj

r3 7−
dij

r2 +
3xi xj

r4 , (8)

where the wavenumbers kp =v/cp and ks =v/cs . In the above, xi are co-ordinates of the
receiver x at which the displacement components gh

ij are registered, assuming that source
j is at the origin, and r is the radial distance between them. Furthermore, cp and cs

respectively are wavespeeds of the pressure (P) and shear (S) waves in the homogeneous
continuum, while v is the frequency of vibration.

3. ALGEBRAIC TRANSFORMATION PROCEDURE

In order to obtain a fundamental solution for the dynamic equilibrium equations (5)
governing elastic wave propagation in a heterogeneous 3-D continuum, the following
transformation [31] is established for the displacement vector u=(u1, u2, u3):

u(x, t)=T(x)U(x, t), (9)

where the precise form of T has yet to be determined. Using indical notation, the various
derivatives of ui with respect to the spatial co-ordinates are as follows:

ui, j =TUi, j +T, j Ui , ui, j j =TUi, jj +2T, j Ui, j +T, jj Ui ,

uj,ij =TUj,ij +T, j Uj,i +T,i Uj, j +T,ij Uj . (10)
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Substituting equations (9) and (10) into the equations of dynamic equilibrium and
collecting terms yields the following equations in terms of the transformed displacement
vector Ui :

{Tl+Tm}Uj,ij + {Tm}Ui, j j + {2mT, j + m, j T}Ui, j

+{lT, j + mT, j + m, j T}Uj,i + {lT,i + l,i T+ mT,i}Uj, j

+{lT, j j + m, j T, j}Ui + {lT,ij + l,i T, j + mT,ij + m, j T,i}Uj + 7fi = 7TU� i . (11)

If transformation T is chosen such that

2mT, j + m, j T=0, (12)

then

T(x)= m−1/2(x). (13)

The spatial derivatives of T are therefore

T,i =−0·5m−3/2m,i , T,ij =0·75m−5/2m,i m, j −0·5m−3/2m,ij . (14)

By substituting the above expressions for T into equation (11), one obtains the following
equilibrium equation:

{m−1/2(l+ m)}Uj,ij + {m−1/2m}Ui, j j

+{−0·5(l+ m)m−3/2m, j + m−1/2m, j}Uj,i

+{−0·5(l+ m)m−3/2m,i + m−1/2l,i}Uj, j

+{m(0·75m−5/2m, j m, j −0·5m−3/2m, j j )−0·5m−3/2m, j m, j}Ui

+{(l+ m) (0·75m−5/2m,i m, j −0·5m−3/2m,ij )−0·5m−3/2m, j (l,i + m,i )}Uj

+7fi = 7m−1/2U� i . (15)

The above can be simplified by removing m−1/2 as a common factor, to give

{l+ m}Uj,ij + mUi, j j

+6−0·5
l

m
m, j +0·5m, j 7Uj,i +6−0·5

l

m
m,i −0·5m,i + l,i 7Uj, j

+{0·25m−1m, j m, j −0·5m, j j}Ui

+60·750 l

m2 + m−11m,i m, j −0·50lm+11m,ij −
0·5
m

(l,i + m,i )m, j 7Uj + 7m1/2fi = 7U� i . (16)

In order to remove all terms multiplying the lower order derivatives, the following
constraint equations are identified:

0−0·5
l

m
+0·51m, j =0, 0−0·5

l

m
−0·51m,i + l,i =0, 00·25

1
m

m, j m, j −0·5m, j j 1=0,

0·750 l

m2 +
1
m1m,i m, j −0·50lm+11m,ij −

0·5
m

(l,i + m,i )m, j =0. (17)
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The first constraint equation requires either a constant m (i.e., the trivial solution) or

l= m (18)

which corresponds to a Poisson ratio of 0·25 (a rather common value for rock materials
[2]). The second constraint equation is automatically satisfied if l= m, while the remaining
two are, respectively,

0·25m−1m, j m, j −0·5m, j j =0 and 0·25m−1m,i m, j −0·5m,ij =0. (19)

If material parameters l and m (and consequently 7) are assumed to be functions of only
one spatial co-ordinate (depth z= x3 for convenience), both of equations (19) are
equivalent to

(1m(z)/1z)2 −2m(z)12m(z)/1z2 =0, (20)

the solution to which is

m(z)= (c0 z+ c1)2, (21)

where c0 and c1 are constants; i.e., we obtain a quadratic profile of the shear modulus with
respect to the depth co-ordinate. By taking all the above constraints into account, the final
form of the dynamic equilibrium equations is therefore

m(z)Ui, j j +2m(z)Uj,ij + 7(z)m1/2(z)fi = 7(z)U� i . (22)

Introducing the transformation of equation (9) for the body force density f, i.e.,

F(x, t)= m1/2(z)f(x, t) (23)

in the dynamic equilibrium equation yields

Ui, j j +2Uj,ij + a2(z)Fi = a2(z)U� i , (24)

where

a(z)=z7(z)/m(z) (25)

is the shear wave slowness (inverse of shear wavespeed) in sec/m. At this stage, the usual
Helmholtz decomposition of the displacement vector into dilational and rotational
components will not work in conjunction with equation (24) due to the presence of the
non-constant slowness a(z). In earlier work [31], this ratio was assumed to be constant
(which implies a quadratic depth profile for the density) and vector decomposition was
applied to obtain a Green function. This procedure, however, results in a rather severe
restriction on the variation of the pressure and shear wave speeds. Specifically,

cp =z3m(z)/7(z)=z3/a(z) and cs =zm(z)/7(z)=1/a(z) (26)

would be constant due to the proportional variation of all material parameters. Therefore,
a different solution path must be sought, as discussed in the next section.

3.1.   

At this stage, we assume time harmonic conditions for both transformed displacement
and forcing function vectors in the form

Ui (x, t)=Ui (x) exp(ivt), Fi (x, t)=Fi (x) exp(ivt), (27)
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where v is the frequency of vibration in rad/s. Therefore, the steady state form of the
governing equations of motion is

Ui, j j +2Uj,ij + a2(z)Fi +v2a2(z)Ui =0 (28)

and the transient response can be recovered through Fourier synthesis.

4. FIRST ORDER SYSTEM FORMULATION VIA DOUBLE FOURIER
TRANSFORMATION

In this section, we apply the Fourier transformation twice with respect to the spatial
variables (x1, x2)= (x, y) to the dynamic equilibrium equations (28) in order to recover
a form which contains derivatives with respect to the z co-ordinate only and, as such, are
amenable to a first order differential equation system solution. The particular variant of
the exponential Fourier transformation that will be employed here is defined as

F(h)= h�(v)=g
a

−a

h(t) exp(ivt) dt,

F−1(h�)= h(t)=
1
2p g

a

−a

h�(v) exp(−ivt) dv, (29)

where F and F−1 respectively are the direct and inverse transforms [34]. We mention the
operational property for the nth derivative of function h(t) as

F(h(n))= (−iv)nh�(v), (30)

and the transform of the Dirac delta function d(t) (point impulse at time t=0) as

F(d)=1·0. (31)

It is also noted that since the Fourier transformation is defined through both positive and
negative time (and frequency) values, no initial conditions are associated with t=0.
Finally, h(t) and its derivatives must remain bounded; i.e.,

lim
=t=:a

= h(n)(t) = =0 (n=0, 1, 2, . . . ). (32)

As previously mentioned, the (t, v) pair is the standard definition of the Fourier
transform. We will employ a double Fourier transform involving the pairs (x, k1) and
(y, k2), where k1 and k2 are wavenumbers in m−1. The notation used here is

F{Ui (x, y, z)}=U�i (k1, k2, z), F{Fi (x, y, z)}=F�i (k1, k2, z), (33)

and all operational properties can be deduced from those of the single Fourier transform.
Application of the aforementioned double Fourier transform to equation (28) written

in expanded form yields the following system of equations:

d2

dz2 U�x −2ik1
d
dz

U�z +(−3k2
1 − k2

2 +v2a2(z))U�x −2k1 k2 U�y =−a2(z)F�x ,

d2

dz2 U�y −2ik2
d
dz

U�z −2k1 k2 U�x +(−k2
1 −3k2

2 +v2a2(z))U�y =−a2(z)F�y ,

−2ik1
d
dz

U�x −2ik2
d
dz

U�y +3
d2

dz2 U�z +(−k2
1 − k2

2 +v2a2(z))U�z =−a2(z)F�z , (34)
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where indicial notation has been abandoned and x=(x1, x2, x3) is replaced by (x, y, z).
In order to reformulate equation (34) as a system consisting of three first order, ordinary

differential equations [35], we introduce the notation

W�x =
d
dz

U�x , W�y =
d
dz

U�y and W�z =
d
dz

U�z . (35)

Then, equation (34) becomes

d
dz

W�x −2ik1 W�z + q2
1 (z)U�x −2k1 k2 U�y =−a2(z)F�x ,

d
dz

W�y −2ik2 W�z −2k1 k2 U�x + q2
2 (z)U�y =−a2(z)F�y ,

−2ik1 W�x −2ik2 W�y +3
d
dz

W�z + q2
3 (z)U�z =−a2(z)F�z , (36)

where q1 through q3 are position-dependent, transformed wavenumbers (in m−1), defined
as

q2
1 (z)=−3k2

1 − k2
2 +v2a2(z), q2

2 (z)=−k2
1 −3k2

2 +v2a2(z),

q2
3 (z)=−k2

1 − k2
2 +v2a2(z). (37)

The next step is to combine equations (35) and (36) and introduce matrix notation. Thus,
we obtain the following 6×6 first order differential equation system:

U�x U�x 0F J K L F J F J
U�y [0] [I] U�y 0G G G G G G G G

G G G G G G G GU�z −q2
1 (z) 2k1 k2 0 0 0 2ik1 U�z 0

j f G G j f j f
J F G G J F J F

d
dz W�x

=
2k1 k2 −q2

2 (z) 0 0 0 2ik2 W�x
− a2(z)

F�x
,

G G G G G G G G
W�y 0 0 −q2

3 (z)/3 2
3 ik1

2
3 ik2 0 W�y F�yG G G G G G G G

f j k l f j f jW�z W�z F�z /3

(38)

where [0] and [I] are the null and unit submatrices, respectively. Using symbolic notation,
equation (38) can be written as

d
dz

{V�}=[A(z)]{V�}+ {X�} (39)

in the (k1, k2) Fourier domain. Since system matrix [A] is non-constant, the usual solution
methodology for first order differential equation systems involving the eigenproperties of
[A] is not applicable and special techniques (series expansions, Picard iterations) must be
sought [35]. Solution of equation (39) for vector V�(k1, k2, z) must, of course, be followed
by a double inverse Fourier transformation so as to return to the original spatial domain,
i.e., to V(x, y, z).
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The presence of the generalized (point) load vector {X�} greatly complicates the solutions
procedure, so that it becomes necessary to convert it to equivalent initial conditions defined
at z=0. In particular,

8Fx

Fy

Fz9=F0 d(x)81119=F0 d(x)d(y)d(z)e, (40)

so that the double Fourier transform yields

8F�x

F�y

F�y9=F0 d(z)e. (41)

From the theory of generalized functions [36], we know that solution E(z) of the nth order
ordinary differential equation

Dn{E(z)}=E(n) + a1 (z)E(n−1) + a2 (z)E(n−2) + · · ·+ an (z)E= d(z) (42)

with zero initial conditions can be written as

E(z)=H(z)E	 (z), (43)

where H(z) is the Heaviside function and E	 (z) is the solution to the homogeneous version
of equation (42) subject to the following initial conditions:

E	 (n−1)(0)=1, E	 (n−2)(0)= · · ·=E	 (1)(0)=E	 (0)=0. (44)

Thus, equation (39) can be recast as

d
dz

{V�}=[A(z)]{V�}, {V�(z=0)}= {V� }, (45)

where the equivalent initial condition vector is defined as

{V� }T =−F0 a2
0 [0, 0, 0, 1, 1, 1/3], (46)

with wave slowness a0 = a (z=0). The solution procedure for equation (45) is elaborated
in the next section.

5. FIRST ORDER MATRIX DIFFERENTIAL EQUATION SOLUTION

A closed form solution for a general first order m×m matrix differential equation
system with both forcing function {X�} and initial conditions {V� } is well known for system
matrix [A] being constant [35]; i.e.,

{V�}=exp([A]z)6{V� }+g
z

0

exp(−[A]z){X�} dz7, (47)

where exp is the exponential matrix function. A more elegant solution which avoids an
expansion of the matrix exponential is through an eigenvalue analysis; i.e.,

[A]{8}i = li {8}i (i=1, 2, . . . , m) (48)
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(no summation implied), where li are eigenvalues and {8}i are their corresponding
eigenvectors. The use of these eigenproperties allows for diagonalization of [A] and easy
computation of the matrix exponential, so that

{V�}=0s
m

i=1

exp(li z){8}i {c}T
i 1{V� } (49)

in the absence of a forcing function. In the above, {c}i are eigenvectors of [A]T, with
superscript T denoting transposition, an operation which leaves the eigenvalues
unchanged. The above solution methodology can be used for the homogeneous medium
case or within the context of transfer matrices for wave propagation through horizontally
stratified, layered media. The general case of the heterogeneous medium where dependence
of the wavenumbers on depth results in a non-constant system matrix [A] requires different
techniques such as series expansions or Picard iterations [35]. Previous work [32] has shown
the former technique to be somewhat more effective than the latter and will therefore be
used herein. In this approach, both system matrix and response in the homogeneous
version given by equation (45) (since the forcing function is expressed in terms of non-zero
initial conditions) are expanded as polynomials in z; i.e.,

{V�(z)}= {V�}0 + {V�}1 z+ {V�}2 z2 + · · · and [A(z)]= [A]0 + [A]1 z+[A]2 z2 + · · · ,

(50)

where subscripts denote the expansion order. By substituting the above in equation (45)
and matching powers of z, we obtain the following system:

[A]0{V�}0 = {V�}1, [A]0 {V�}1 + [A]1 {V�}0 =2{V�}2,

[A]0 {V�}2 + [A]1 {V�}1 + [A]2 {V�}0 =3{V�}3, (51)

etc. By identifying the zeroth order solution with initial conditions {V� }, the first and higher
order solutions are obtained, as

{V�}1 = [A]0 {V� }, {V�}2 = 1
2 ([A]1 + [A]20){V� }=[B]0 {V� },

{V�}3 = 1
3 ([A]2+[A]1 [A]0 + 1

2 [A]0 [A]1 + 1
2 [A]30){V� }=1

3 ([A]2 + [A]1 [A]0 + [A]0 [B]0)=[C]0 {V� }.
(52)

The final response can then be reconstituted through recourse to equation (50) as

{V�}=([I]+ [A]0 z+[B]0 z2 + [C]0 z3 + · · · ){V� }, (53)

where [I] is the identity matrix. This type of approach favors a polynomial (in z) structure
of the transformed wavenumbers q1–q3 which, in turn, depend on the wavespeed slowness
a(z). Recourse to equations (21), (25) and (37) indicates three typical structures, depending
on constant, linear or quadratic density profiles. Thus, wavespeed slowness has the general
form

a(z)= a0 (az+1)−n/2, (54)

where n=0, 1, 2, respectively, correspond to the quadratic, linear and constant density
profiles, while constant a=(zm1/zm0 −1)/L (in m−1) is discussed within the context of
heterogeneous media representations in the next section. The consequence of the above
equation is that the transformed wavenumbers assume the form

q2
i =−Q2

i + k2
0 a2(z)/a2

0 =−Q2
i + k2

0 (az+1)−n, i=1, 2, 3, (55)
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where k2
0 =v2a2

0 , Q2
1 =3k2

1 + k2
2 , Q2

2 = k2
1 +3k2

2 , Q2
3 = k2

1 + k2
2 and a(z) is the appropriate

wave slowness profile.
If n=0 we have a macroscopically homogeneous medium and all three transformed

wavenumbers are constants. In this case, the expansion of [A(z)] has one term, namely

[0] [I]

Q2
1 − k2

0 2k1 k2 0
[A]0 =G

G

G

K

k
2k1 k2 Q2

2 − k2
0 0 [D]

G
G

G

L

l

, (56)

0 0 1
3 (Q2

3 − k2
0 )

where

[D]= & 0
0

2
3 ik1

0
0

2
3 ik2

2ik1

2ik2

0 ', (57)

while

[A]1 = [A]2 = [0]. (58)

If n=1, we have a heterogeneous medium with a wavespeed varying as the square root
of a linear function in the depth co-ordinate. An expansion of the corresponding
wavenumbers in terms of z (keeping in mind that azQ 1·0, as discussed in the next section)
yields the following terms (where [A]0 is the same as before):

[0] [0]

ak2
0 0 0

[A]1 =G
G

G

K

k
0 ak2

0 0 [0]
G
G

G

L

l

(59)

0 0 1
3 ak2

0

and

[0] [0]

−(ak0)2 0 0
[A]2 =G

G

G

K

k
0 −(ak0)2 0 [0]

G
G

G

L

l

. (60)

0 0 −1
3 (ak0)2

Finally, if n=2 we have a heterogeneous medium with a linearly varying wavespeed,
and the expansions terms ([A]0 same as before) are

[0] [0]

2ak2
0 0 0

[A]1 =G
G

G

K

k
0 2ak2

0 0 [0]
G
G

G

L

l

(61)

0 0 2
3 ak2

0

and

[0] [0]

−3(ak0)2 0 0
[A]2 =G

G

G

K

k
0 −3(ak0)2 0 [0]

G
G

G

L

l

. (62)

0 0 −(ak0)2
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With the expansion terms of [A(z)] now available, equation (52) can be used to synthesize
matrices [B]0 and [C]0, while equation (53) gives the solution for {V�} in terms of the initial
conditions {V� }. Also, since this is essentially a series expansion technique, there is an
inevitable loss of accuracy for large values of z. The method, however, is general enough
to handle polynomial type variation in the wavenumbers q1 (z)–q3 (z). Finally, solution of
the simpler scalar wave equations using a first order, matrix differential equation system
was completed by the authors in a previous publication [32].

5.1.   

The previously developed solution methodology is defined in a doubly transformed
Fourier domain (k1, k2), where k1 and k2 are wavenumbers (in m−1). Thus, the final step
in this solution procedure is a numerical inverse transformation of solution vector {V�}
given by equation (53) back to the spatial (x, y) domain, so as to recover the displacement
components Ux , Uy and Uz corresponding to a forcing function which is a point impulse
in space and time harmonic. One last scaling is required, as dictated by the algebraic
transformation procedure and given by equation (9). Thus, we obtain a solution vector
u(x, v)= [ux , uy , uz ]T for each of the three point impulses, which is actually a Green
function gij (x, v), i, j=1, 2, 3, for the time harmonic vector wave equation defined in a
heterogeneous medium with a Poisson ratio of 0·25, a quadratic shear modulus profile in
depth and a choice of constant, linear or quadratic density profiles.

The direct/inverse multiple Fourier transformation software package given in reference
[37] was employed herein for the inversion part. It was extensively tested regarding correct
implementation of its storage structure for both direct and inverse, single and double
Fourier transformations. One of the example functions used is

f(x, y)=
sin kx

x
sin ky

y
, (63)

the double Fourier transform of which is

f�(k1, k2)=6p2

0
if =k1 =, =k2 =E k (real),
otherwise.

(64)

The FFT inversion of equation (64) employed a square mesh of size N2 =642 =4096,
which was chosen as representing a compromise between an N2 =322 =1024 point mesh,
which is too crude, and an N2 =1282 =16 384 point mesh, which becomes cumbersome
to use.

In order to reproduce the same conditions as those for the numerical examples in section
7, the horizontal square grid (x, y) had dimension l ranging from ls to 8ls , ls being the
shear wavelength for limestone material at v=10 Hz; i.e., ls =308·6 m. Constant k was
identified with the shear wavenumber at the same frequency; i.e., k= ks =0·0204 m−1.
Results obtained for four mesh dimensions, both in terms of sampled functions f�(k1, k2)
and inverted function f(x, y) at k2 =0 for the former and at y=0 for the latter, are plotted
in Figure 2. As far as sampling in the transformed wavenumber domain is concerned, we
observe that an increase in the dimensions of the corresponding spatial mesh
(=x =E l/2, =y =E l/2) results in a decrease in the size of the transformed mesh
(=k1 =EK, =k2 =EK) which, for fixed k, yields a better representation of f�(k1, k2). In
Table 1 is shown the relation between the dimensions of both (x, y) and (k1, k2) meshes
for the cases examined in Figure 2, where Dx=Dy= l/N, Dk1 =Dk2 =2K/N and
K=2p/(2Dx)= p/Dy.
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In all cases, the variation of the recovered function f with respect to co-ordinates x and
y is well reproduced for N2 =4096 data points. It is the magnitude of f, however, which
is dependent on the size of the sampling mesh. We note that, at the center of the mesh,

lim
x,y:0

f(x, y)= (k cos x) (k cos y)= k2 (65)

represents the maximum value for f. In Table 2 it is depicted how this maximum value
improves rapidly with increasing mesh size until the l=6ls mesh is reached, past which
further improvement is rather minor. Therefore, for N2 =4096 sampling points, the square
mesh of dimension l=6ls appears as optimal and yields a solution which is in error by
4·2% for k. Any further improvement would require moving to N2 =16 384 sampling
points.

6. WAVESPEED PROFILES FOR THE HETEROGENEOUS MEDIUM

The various constraints that appeared during the solution procedure for the equations
of elastodynamics will now be examined in detail. At first, it was established in section
3 that the elastic parameter profiles are quadratic functions of depth co-ordinate z= x3,
as given by equation (21), and that n=0·25. The constants c0 and c1 can be determined
from values at two reference locations, namely z=0 and z=L, which in a Green function
solution can be identified with the depth co-ordinates of the source and the receiver.
Therefore, given that m(0)= m0 and m(L)= m1, we have that

l(z)= m(z)= {(zm1 −zm0) (z/L)+zm0}2. (66)

Next, the density profile must be established. We will consider the following three cases:

7(z)= 70, 7(z)= 70 60z71

z70

−11(z/L)+17,

7(z)= 70 60z71

z70

−11(z/L)+17
2

, (67)

corresponding to constant, linear and quadratic depth profiles. As before, subscripts 0 and
1 respectively correspond to the surface and to layer depth L. Assuming, for convenience,
that the rate of increase of the shear modulus is proportional to that of the density (i.e.,
m1 /m0 = 71 /70 for the quadratic case and zm1/zm0 = 71 /70 for the linear case), then the
corresponding shear wave profiles are

cs (z)= cs0 60zm1

zm0

−11(z/L)+17,

cs (z)= cs0X0zm1

zm0

−11(z/L)+1,

cs (z)= cs0 =zm0 /70, (68)
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T 1

Details of mesh dimensions in spatial and transformed wavenumber domains for N2 =4096
points

l (m) Dx=Dy (m) Dk1 =Dk2 (m−1) K (m−1)

308·6 4·822 0·2035×10−1 0·6515
617·2 9·644 0·1017×10−1 0·3257

1852 28·93 0·3393×10−2 0·1085
2469 38·58 0·2544×10−2 0·8143×10−1

while cp (z)=z3cs (z). The first case is depicted in Figure 3. Finally, the wave slowness
a(z) is the inverse of the shear wave speed and can be written in the following general form:

a2(z)= (70 /m0)60zm1

zm0

−11(z/L)+17
−n

= a2
0 {az+ b}−n, (69)

where a=(zm1 /zm0 −1)/L and b=1. The case n=0 corresponds to a constant wave
slowness that results from combining the quadratic shear modulus and density profiles and
results in a macroscopically homogeneous medium. Cases n=1 and n=2 correspond to
wave slowness that vary inversely as the square root and as a linear function of depth,
respectively, and are due to linear and to constant density profiles in combination with
the quadratic shear modulus.

6.1.   

In order to simulate energy absorption and dispersion phenomena which are associated
with wave propagation, it is necessary to introduce elements from the theory of
viscoelasticity [38]. Specifically, if the simple three-parameter solid is introduced within the
context of time harmonic conditions, then the elastic shear modulus m in the present
formulation is replaced by a complex impedance function mn (v), with real and imaginary
parts given by

Re {mn (v)}=(q2
0 +v2q2

1 )/(1+v2p2
1 ),

Im {mn (v)}=(v(q1 − q0 p1)/(1+v2p2
1 ). (70)

In the above q0, q1 and p1 are material constants (not to be confused with the transformed
wavenumbers qi (z)) for which the inequality q1 q p1 q0 must hold for physical reasons.
Special cases include the Maxwell fluid (q0 =0) and the Kelvin solid (p1 =0). In order to
remain consistent with the previous development, m0 and m1 in equation (66) are identified
with values of mn (v) at z=0 and z=L, respectively, while the density profile in equation
(67) remains real and depends on values of m0 and m1 for the linear elastic case. A direct
consequence of the use of viscoelastic moduli is that the wavespeeds have complex,
frequency dependent structure which filters into their wavenumbers. Thus, amplitude
reduction associated with absorption can be captured due to the presence of imaginary
components in the wavenumbers, while dispersion effects are automatically included in any
frequency-dependent representation of the wavespeeds.
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7. NUMERICAL EXAMPLES

In this section, wave propagation due to a point source in a continuously heterogeneous
geological medium is examined by using the present methodology. In particular, we
consider naturally occurring limestone with the following range of material properties [2]:

7=2100–2800 kg/m3, m=(0·2–0·3)×1011 Pa, n=0·25–0·30. (71)

Reference values at z=0 (the source location) are

m0 =0·2×1011 Pa, 70 =2100 kg/m3, (72)

while at z=1 (the bottom of the deposit) we have

m1 =0·2667×1011 Pa, 71 =2800 kg/m3. (73)

Figure 3. Material parameter depth profiles for 0 E zE 1. (a) Shear modulus m(z); (b) density 7(z); (c) shear
wavespeed cs (z); (d) the shear wave slowness a(z).
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T 2

Magnitude of f(x, y) at center of mesh versus square mesh size l for N2 =4096 points

l (m) f(0, 0)

308·6 0·9326×10−3

617·2 0·6476×10−3

1852 0·4864×10−3

2469 0·4679×10−3

Exact value 0·4145×10−3

As discussed in section 3, the methodology requires that n=0·25, which results in
l(z)= m(z). Furthermore,

cs0 =zm0 /70 =3086 ms and cp0 =z3cs0 =5345 m/s (74)

are reference values for the shear and pressure wavespeeds, respectively. We note at this
point that for wave propagation under time harmonic conditions,

l=2p/k=2pc/v (75)

where wavelength l, wavenumber k and wavespeed c are identified with either P or S
waves. Since the frequency range in which most of seismically induced wave energy is
concentrated is in the 0·2–25 Hz band, we will consider an intermediate frequency
f=10 Hz. In Table 3 are listed values for wavelengths l and wavenumbers k
corresponding to the above reference values. Of the three possible density profiles given
by equation (67), we will focus on the constant one (70 = 71 =2100 kg/m3) which results
in a linear wavespeed profile with respect to depth z, as shown in Figure 3.

Prior to investigating a Green function for the special type of heterogeneous medium
developed in sections 3–5, the Fourier transform grid was calibrated using the simpler case
of uni-dimensional (scalar) wave propagation, for which the Green function corresponding
to outgoing waves from a point source in the three-dimensional continuum is

g(x, y, z)=
1

4pr
exp(k0 r), r2 = x2 + y2 + z2, (76)

with

ḡ(k1, k2, z)=
sin (zk2

0 − k2
1 − k2

2 =z =)
zk2

0 − k2
1 − k2

2

(77)

as its double Fourier transform with respect to (x, y). The depth of the non-homogeneous
limestone deposit is related to the reference wavelength corresponding to shear waves
(ls =308·6 m), while the size of the horizontal grid is determined by taking into account
the information given in section 5.1. Specifically, for N2 =642 =4096, a square space grid
of dimension l=6ls =1852 (m) with length increments Dx=Dy= l/N=28·93 m is
considered adequate. The size of the corresponding transformed wavenumber grid is

T 3

Elastic waves in limestone under time-harmonic conditions; reference case

f(Hz) v(r/s) lp (m) ls (m) kp (1/m) ks (1/m)

10 62·83 534·5 308·6 0·01176 0·02036
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T 4

The magnitude of the numerically inverted scalar fundamental solution g(x, y, z) at mesh
co-ordinate x=0 versus the exact solution for an N2 =4096 point mesh

g (inverted) g (exact) g (inverted) g (exact)
at y=0 at y=0 Error at y=0·75ls at y=0·75ls Error
(m−1) (m−1) (%) (m−1) (m−1) (%)

z=1·5ls 0·3713×10−3 0·3438×10−3 7·9 −0·6541×10−4 −0·1361×10−3 51·9
z=2·0ls −0·2424×10−3 −0·2578×10−3 5·9 −0·1183×10−3 −0·1585×10−3 25·3

therefore K= p/Dx=0·1085 (1/m) and the sampling interval is Dk1 =Dk2

=2K/N=0·003393 (1/m). We note that sampled function ḡ(k1, k2, z) as well as inverted
function g(x, y, z) span both negative and positive values, i.e., −KQ k1, k2 EK and
−l/2Q x, yE l/2, respectively. The relevant results are summarized in Table 4, where it
is observed that: (i) the accuracy of the numerically inverted fundamental solution
g(x, y, z) does not depend on the depth co-ordinate; (ii) the results are best around the
center of the horizontal grid (y=0, =x =E 3ls ); and (iii) the accuracy deteriorates as the
periphery of the mesh is approached (e.g., yq 0·75ls , =x =E 3ls ).

We now investigate the Green function for the 3-D vector wave equation for a source
(unit point impulses in the three principal directions) placed at the top surface (z=0) of
the elastic deposit and for receivers spanning 40 equal distances along the z-axis up to a
depth z= l=0·125ls =38·58 m (note that signal decay is rapid with respect to distance).
For this particular orientation of the axes and of the heterogeneity, g11 = g22 and
g12 = g13 = g23 =0. Figures 4 and 5 yield information on the behavior of components g11

and g33 along a horizontal plane at fixed depth of z= l. We first note that the real parts
of the sampled components ḡ11 (k1, k2 =0) and ḡ33 (k1, k2 =0) have a local minimum at
k1 = k2 =0 and cross the transformed axis at k1 = k2 =20·0625 (1/m), respectively, which
would be considered as singular points in a contour integration along the complex
wavenumber plane [22]. The imaginary parts of ḡ11 and ḡ33 is zero and, as a result, the
imaginary part of the corresponding inverted functions g11 and g33 is negligible. Thus, the
inverse Fourier transform procedure in combination with the first order, matrix differential
equation solution of the vector wave equation yields the amplitude of the Green function
only. In order to recover the phase angle, it is necessary to resort a complex representation
of the wavenumbers kp and ks according to the correspondence principle of viscoelasticity
so as to produce a sizeable imaginary part in the component matrices [A]0, [A]1 and [A2]
of equation (53). Next, we observe certain similarities in the amplitude of the Green
function between the heterogeneous and equivalent homogeneous media in that there is
a peak around the center of the mesh (directly below the source) which decays with
distance.

Next, in Figures 6 and 7 respectively are plotted components g11 and g33 (amplitude
plus phase angle) versus depth z along with the difference (as a percentage) in these
amplitudes between cases corresponding to the heterogeneous deposit and the equivalent
homogeneous deposit with m(z)= m0 and 7(z)= 70, which is used as the reference solution.
It is observed that this difference increases almost linearly as the source to receiver distance
becomes larger and, for the present configuration, attains a maximum value of about 15%.
This behavior is consistent with the fact that in a continuously heterogeneous medium we
have scattering due to changing material properties and, as a result, the wave signal
deviates from what would be observed in an equivalent homogeneous medium at a rate
which increases with distance. We note at this point that the difference in amplitude is
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roughly the same for both g11 (motions perpendicular to the z-axis) and g33 (motions
parallel to the z-axis) components. Also, a negative amplitude difference indicates a
displacement signal in the heterogeneous medium that is less pronounced compared to the
one in the homogeneous medium. This de-amplification is a result of the deposit becoming
stiffer in the direction of wave propagation.

Finally, the time-dependent responses for components g11 and g33 are shown in Figures 8
and 9, respectively. We employ the same fixed source–receiver configuration as that used
in conjunction with Figures 4 and 5, except for the fact that the depth of the layer is now
l= cp0 /10=534 m. Thus, the travel times for P and S waves to reach the source (using
the reference wavespeeds of equation (74)) are tp0 =0·10 s and ts0 =0·17 s, respectively. The

Figure 6. The fundamental solution component g11 versus depth z. (a) Amplitude, (b) amplitude and (c) phase
angle for corresponding homogeneous medium and (d) percent difference in amplitude between heterogeneous
and homogeneous media.
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Figure 7. The fundamental solution component g33 vs depth z. (a) Amplitude, (b) amplitude and (c) phase angle
for corresponding homogeneous medium and (d) percent difference in amplitude between heterogeneous and
homogeneous media.

transient response is synthesized from a spectrum of values in the frequency v domain at
the receiver using the FFT [37] with

Dt=0·005 (s), T=0·64 (s),

Dv=4·91 (rad/s), V=628·5 (rad/s), (78)

where −VQDvEV is the sampling interval and −TQDtET is the time step, with
N=256 as the total number of samples. Furthermore, the discrete frequency and time
domains are related as [37]

Dv=2p/(NDt) and V= p/Dt. (79)
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We note in passing that velocity and acceleration signals can be obtained by multiplying
the displacement signal in the frequency domain prior to inversion by −iv and v2,
respectively. Also, viscoelastic material behavior is introduced by employing the Kelvin
model and assigning the following values to the parameters appearing in equation (70):

q0 = m0, vq1 = q0 /4Q2 and p1 =0, (80)

where the dimensionless quality factor Q=200 for rock materials.
Concurrently plotted in Figures 8 and 9 are results obtained from the commercial

software program ‘‘hspec 91’’ [39], which computes transient signals due to buried
dislocation sources in a multi-layered viscoelastic medium, using the method developed in
Wang and Herrmann [22]. We invoke the option for determining the transient Green
function due to a point impulse (which corresponds to a fixed seismic moment of
1020 dyn-cm) for an arbitrary source–receiver configuration inside viscoelastic layers
sandwiched between two homogeneous elastic half-spaces. Furthermore, the program
employs cylindrical co-ordinates, and the point force at the source can be oriented along
horizontal and vertical directions. Values for the material parameters in the case of a single
intermediate layer are given by equation (72). In order to approximate the heterogeneous
deposit, we employ a two-layer configuration, and material parameter values are
interpolated using equations (66–68); i.e., the top layer containing the source has
wavespeeds of cp =5551 m/s and cs =3205 m/s, while the lower layer containing the
receiver has cp =5963 m/s and cs =3443 m/s. Also, the density and quality factor are
unchanged and are equal to r=2100 kg/m3 and Q=200, respectively.

All results have been normalized by dividing by the peak value encountered for the
relevant homogeneous case (i.e., by g11 =0·657×10−9 and g33 =0·109×10−8 for the
present method and by g11 =0·946×10−9 and g33 =0·472×10−9 for program ‘‘hspec91’’,
all in m−2) during the time interval of interest. In particular, the vertical displacement signal
shows a sharp jump upon arrival of the P-wave at a time tp0 and a quiescent state is
achieved past the arrival of the S-wave at time ts0. As far as the horizontal displacement
signal is concerned, we observe a predominantly SH wave-type situation, since the sharp
jump in the signal occurs upon arrival of the S-wave at time ts0. In both cases, the presence
of heterogeneity has two basic effects; namely, the signal amplitude is reduced since the
layer is stiffer in the direction of propagation (the horizontal component for the two layer
configuration has about the same amplitude but looks less intense), and the first signal
arrival is early by one to two time steps Dt, again for the same reason. The amount of
heterogeneity is not very pronounced so that the basic transient signal shapes change only
slightly. Finally, we observe that: (i) both programs yield essentially identical results for
the homogeneous, single-layer case, which implies that the present methodology is
equivalent to that of reference [22] when the material parameters are constant; and (ii) the
double-layer representation of the continuously heterogeneous deposit examined herein is
acceptable, since both programs again yield similar results.

8. CONCLUSIONS

This work presents a methodology for computing wavefields produced by a point source
in special class of heterogeneous materials. More specifically, we consider an unbounded
three-dimensional medium with elastic parameters that depend on a single co-ordinate
(taken to be the depth for convenience) which satisfy the following conditions: a Poisson
ratio of 0·25, a shear modulus which varies quadratically in the depth co-ordinate, and
constant, linear or quadratic density profiles. The first two constraints are dictated by the
algebraic transformation procedure which is applied to both displacement and forcing
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function vectors, while the last one is a consequence of the matrix differential equation
formulation and subsequent series solution of the doubly Fourier transformed equations
of motion. Since we focus on time harmonic waves, viscoelastic material behavior can be
captured through use of the correspondence principle. The final step in the solution
procedure involves inverse transformation from the wavenumber domain back to the (x, y)
co-ordinate space using the double FFT. Also, standard Fourier synthesis is used for
capturing the transient response. Finally, a few numerical examples serve to validate the
methodology and to present results for a material with linearly varying (in the depth
co-ordinate) wavespeeds.

The present methodology combines the simplicity of an algebraic transformation
procedure with the efficiency of a first order matrix differential equation solution.
Furthermore, the methodology is easily adapted to model axisymmetric and plane strain
cases with an added simplification; namely, a single Fourier transform in lieu of the double
one employed herein. A drawback is that a numerical inverse Fourier transformation
is required which, however, is easily accomplished given the present status of
multi-dimensional FFT algorithms. As such, the methodology is a useful addition to the
relatively few existing methods for simulating wavefields in continuously inhomogeneous
media. The constraints on the elastic moduli cannot, of course, be lifted, but the method
can become more general by introducing a traction-free horizontal surface to model a
half-space and by superposition of point sources to produce the effect of a finite-size
source. Finally, the Green function recovered herein can be used as a kernel function within
the context of integral equation methods for solving wave scattering types of problems.
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