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FREE VIBRATION OF POLAR ORTHOTROPIC
LAMINATED CIRCULAR AND ANNULAR PLATES
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The paper deals with the free vibration analysis of polar orthotropic laminated circular
and annular plates. The first order shear deformation theory and the variational energy
method are employed in the mathematical formulation, and an eight-node isoparametric
finite element model in polar co-ordinates is used for finding natural frequencies. The effects
of material property, stacking sequence, hole size, plate thickness to radius ratio and
boundary conditions on natural frequencies are investigated. Numerical results are shown
in tabular and graphical forms, and some comparisons with existing results are made for
the validation purpose.
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1. INTRODUCTION

Numerous investigations on free vibration of elastic plates are available, but little has been
done on the vibration of plates having polar orthotropy. Analytical solutions for natural
frequencies of polar orthotropic circular and annular plates can only be obtained under
some special conditions. Minkarah and Hoppman [1], Pandalai and Patel [2] investigated
the natural frequencies of polar orthotropic circular and annular plates by analytical
methods, but these studies are constrained to certain conditions such as a specific ratio
of elastic constants (Eu /Er ) or specific boundary conditions and so on. Analytical solutions
have not been found for the general case so far. Vijayakumar and Ramaiah [3–5], Narita
[6, 7] determined the natural frequencies of polar orthotropic circular and annular plates
by using the Rayleigh–Ritz method. Using the finite difference technique, Greenberg and
Stavsky [8] analyzed the natural frequencies of polar orthotropic laminated sandwich
circular and annular plates with different materials and boundary conditions. Ginesu et
al. [9] presented a finite element analysis for finding natural frequencies of polar
orthotropic circular and annular plates with different boundary conditions; Gorman [10]
also investigated the natural frequencies of polar orthotropic circular and annular
plates by the finite element method. The studies mentioned above are all based on the
classical plate theory. However, to the authors’ knowledge, no known work exists on free
vibration of polar orthotropic circular and annular plates including the transverse shear
effect.

The essential purpose of this article is to investigate the free vibration of polar
orthotropic laminated circular and annular plates by using a finite element model with
first-order shear deformation theory.
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Figure 1. Geometry and co-ordinates of circular or annular plates.

2. MATHEMATICAL FORMULATION

The laminated plate of constant thickness h is composed of polar orthotropic laminae
stacking symmetrically or antisymmetrically about the middle surface of plate. Polar
co-ordinates (r, u, z) are used for plate co-ordinates as shown in Figure 1, where ur , uu ,
w denote the displacements of any point of the plate in the corresponding r, u, z directions.
The external forces acting on the plate are shown in Figure 2 in which q, t�n , t�ns , t�nz , are
the external forces, and n, s denote normal and tangential directions at the boundary of
the plate, respectively.

A first-order shear deformation theory is employed, and the displacement field is
assumed to be of the form

ur (r, u, z, t)= u0
r (r, u, t)+ z8r (r, u, t),

uu (r, u, z, t)= u0
u (r, u, t)+ z8u (r, u, t), w(r, u, z, t)=w(r, u, t). (1)

where u0
r , u0

u , w denote the displacements of any point on the middle surface, and 8r , 8u

are the rotations of the normal to the midplane about the u, r-axes, respectively.
Strain-displacement relations are of the following form in polar co-ordinates

or = o0
r + zkr , ou = o0

u + zku , gru = g0
ru + zkru ,

grz = g0
rz

guz = g0
uz, (2)

where

o0
r = u0

r,r , o0
u =(1/r) (u0

u,u + u0
r ), o0

u =(1/r) (u0
u,u + u0

r ),

g0
ru =(1/r) (u0

r,u − u0
u )+ u0

u,r ,

g0
rz =8r +w,r , g0

uz =8u +(1/r)w,u , kr =8r,r ,

ku =(1/r) (8u,u +8r ), kru =(1/r) (8r,u −8u )+8u,r . (3)

Figure 2. Loadings of circular or annular plates.
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According to the shear deformation theory, the constitutive equations for the kth layer
of a polar orthotropic laminated plate can be written in the following form in polar
co-ordinates

8sr

su

tru9
(k)

= &Q11

Q12

0

Q12

Q22

0

0
0

Q66'
(k)

8 or

ou

gru9, 6trz

tuz7
(k)

=$Q44

0
0

Q55%
(k)

6grz

guz7, (4)

where Qij are the stiffnesses of the material.
The stress resultants are defined as

&Nr

Nu

Nru

Mr

Mu

Mru'=g h/2

−h/2 8sr

su

tru9(1, z) dz, $Qr

Qu%=g
h/2

−h/2 6trz

tuz7 dz (5)

Using equations (2) and (4) in (5), the constitutive equations of laminated plate become

Nr [Aij ] [Bij ] o0
rK L K L K L

G G G G G GNu o0
u

G G G G G GNru g0
ru Qr A44 A45 g0

rzG G G G G G K
k

L
l

K
k

L
l

K
k

L
lMr

=
kr

,
Qu

=
A45 A55 g0

uz
,

G G G G G G
Mu kuG G G G G G

k l k l k lMru [Bij ] [Dij ] kru

i, j=1, 2, 6. (6)

where

(Aij Bij Dij )=g
h/2

−h/2

Q(k)
ij (1 z z2) dz, i, j=1, 2, 6,

Aij = k2 g
h/2

−h/2

Q(k)
ij dz, (k2 =5/6) i, j=4, 5, (7)

in which Q(k)
16 , Q(k)

26 and Q(k)
45 are not included according to equation (4). The kinetic energy

of a laminated plate is

T=g g gV

1
2 r(u̇2

r + u̇2
u + ẇ2) dV, (8)

where r denotes mass density per unit volume, and the total potential energy of laminated
plate is defined as

U=Ub +Us +Um +Ve , (9)

where Ub is strain energy of bending, Us is strain energy of shear, Um is strain energy due
to stress resultants Nr , Nu , Nru induced by inplane forces in conjunction with additional
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strains o'r , o'u , g'ru of middle surface due to deflection w, and Ve denotes the potential energy
of external forces (q, t�n , t�ns , t�nz ). They are given as

Ub =g g gV

1
2 (sr or + su ou + tru gru ) dV, Us =g g gV

1
2 (trz grz + tuz guz ) dV,

Um =g gR

(NR o'r +Nu o'u +Nru g'ru ) dA,

Ve =0−g gR

qw dA1+$−GG

(t�n un + t�ns us + t�nz w) dG% (10)

where R is the inplane region of the plate, and G is its boundary.
Applying the Hamilton’s principle and the variational method, one may obtain the

equations of motion

Nr,r +(1/r)Nru,u +(1/r) (Nr −Nu )= I0 ü0
r + I1 8̈r ,

Nru,r +(1/r)Nu,u +(2/r)Nru = I0 ü0
u + I1 8̈u ,

(Qr +Nr w,r +(1/r)Nru w,u ),r +(1/r) (Qu +(1/r)Nu w,u +Nru w,r ),u

+(1/r) (Qr +Nr w,r +(1/r)Nru w,u )+ q= I0 ẅ,

Mr,r +(1/r)Mru,u +(1/r) (Mr −Mu )−Qr = I1 ü0
r + I2 8̈r ,

Mru,r +(1/r)Mu,u +(2/r)Mru −Qu = I1 ü0
u + I2 8̈u , (11)

where (I0, I1, I2)= fh/2
−h/2 r(1, z, z2) dz and the subscript after a comma denotes partial

differentiation with respect to the subscript variable.
The boundary conditions are specified in the form on C as

du0
r =0 or N�r =Nr , du0

u =0 or N�ru =Nru , d8r =0 or M�r =Mr ,

d8u =0 or M�ru =Mru , dw=0 or Q�r =Qr +Nr w,r +(1/r)Nru w,u , (12)

where C is the boundary line of the midplane, and N�r , N�ru , M�r , M�ru , Q�r are applied loads
given at C.

3. FINITE ELEMENT ANALYSIS

The eight-node isoparametric element is used in the analysis for finding the natural
frequencies. Since the geometry, material property and boundary conditions of the
problems considered in this paper are axial symmetric, a quarter plate is taken as the
analysis model for simplifying the problem.

If the quarter plate model is divided into n finite elements, then the Lagrange functional
L is expressed as

L= s
n

e=1

Le (u0e

r , u0e

u , we, 8e
r , 8e

u ). (13)
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The displacement field {de} of any point in the element e can be expressed in terms of
the nodal displacements {qe

i } of the element

{de (r, u)}= s
8

i=1

[Ni ]{qe
i },

{qe
i }t =(u0e

ri , u0e

ui , we
i , 8e

ri , 8e
ui ), {de}t = (u0e

r , u0e

u , we, 8e
r , 8e

u ), (14)

where [Ni ] is the ith interpolation (shape) function, and the superscript t denotes the matrix
transpose.

With strain–displacement relations given in equations (1) and (2), one may obtain

{oe
b}= s

8

i=1

[Be
b ]{qe

i }, {oe
b}t = (o0

r , o0
u , g0

ru , kr , ku , kru ),

{oe
s }= s

8

i=1

[Be
s ]{qe

i }, {oe
s }t = (g0

rz , g0
uz ), (15)

where

1Ni /1r 0 0 0 0

(1/r)Ni (1/r)1Ni /1u 0 0 0

(1/r)1Ni /1u 1Ni /1r−(1/r)Ni 0 0 0
[Be

b ]=G
G

G

G

G

G

G

K

k

0 0 0 1Ni /1r 0
G
G

G

G

G

G

G

L

l

,

0 0 0 (1/r)Ni (1/r)1Ni /1u

0 0 0 (1/r)1Ni /1u 1Ni /1r−(1/r)Ni

[Be
s ]=$00 0

0
1Ni /1r

(1/r)1Ni /1u

Ni

0
0
Ni%, (16)

where [Be
b ] denotes the elemental strain matrix of bending, and [Be

s ] denotes the elemental
strain matrix of shear. It is noted that both [Be

b ] and [Be
s ] are not constants but are functions

of r.
The following equation is derived by the aid of stress–displacement relations again

{se
b}= s

8

i=1

[Db ]{oe
b}= s

8

i=1

[Db ] [Be
b ]{qe

i },

{se
s }= s

8

i=1

[Ds ]{oe
s }= s

8

i=1

[Ds ] [Be
s ]{qe

i }, (17)

where

[Db ]=$Aij

Bij

Bij

Dij%, i, j=1, 2, 6, [Ds ]=$A44

A45

A45

A55%.

Free flexural vibration for small deformation of plates without inplane loading are dealt
within this study. The stretching of middle surface due to w is negligible and thus only
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the strain energies due to bending and shear are accounted for. Other terms of Um and
Ve in equation (10) are omitted.

Strain energies due to bending and shear of any plate element e are given as

Ue
b = 1

2 g gRe

{oe
b}t[Db ]{oe

b} dRe = 1
2 ({qe

i }t[Ke
b ]{qe

i }),

Ue
s = 1

2 g gRe

{oe
s }t[Ds ]{oe

s } dRe = 1
2 ({qe

i }t[Ke
s ]{qe

i }), (18)

and the kinetic energy of any plate element e is written as

Te = 1
2 g gRe

({q̇e
i }t[Ni ]t) [I] ([Ni ]{q̇e

i }) dRe = 1
2 ({q̇e

i }t[Me]{q̇e
i }), (19)

where

I0 0 0 I1 0

I0 0 0 I1

[I]=G
G

G

G

G

K

k

I0 0 0 G
G

G

G

G

L

l

, [Ke
b ]=g gRe

[Be
b ]t[Db ] [Be

b ] dRe ,

sym I2 0

I2

[Ke
s ]=g gRe

[Be
s ]t[Ds ] [Be

s ] dRe , [Me]=g gRe

[Ni ]t[I] [Ni ] dRe . (20)

Since it is difficult to integrate equation (20) directly according to the isoparametric
element formulation, the global coordinate system (r, u) is transformed to the local
co-ordinate system (j, h). Then equation (20) takes the following form

[Ke
b ]=g

1

−1 g
1

−1

[Be
b ]t[Db ] [Be

b ] det =J = dj dh,

[Ke
s ]=g

1

−1 g
1

−1

[Be
s ]t[Ds ] [Be

s ] det =J = dj dh,

[Me]=g
1

−1 g
1

−1

[Ni ]t[I] [Ni ] det =J = dj dh, (21)

where J is the Jacobian matrix given by J(j, h)= [1(r, u)/1(j, h)]. As mentioned before,
[Be

b ] and [Be
s ] are not constants but are functions of r. Although Guassian quadrature is

capable of dealing with the variable radius r, for simplicity of integrations involved in
equation (21), a suitable constant radius r̄e is selected to replace the variable radius r in
the strain matrices. In this paper, r̄e =(re

min + re
max )/2 is chosen, which is the mean value

between the minimum radius and maximum radius of plate element e.
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Assembling the following strain energy of bending Ub and Us , and kinetic energy T of
the n elements, they are

Ub = s
n

e=1

Ue
b = 1

2 s
n

e=1

{qe
i }t[Ke

b ]{qe
i }= 1

2 {D}t[Ke
b ]{D},

Us = s
n

e=1

Ue
s = 1

2 s
n

e=1

{qe
i }t[Ke

s ]{qe
i }= 1

2 {D}t[Ke
s ]{D},

T= s
n

e=1

Te = 1
2 s

n

e=1

{q̇e
i }t[Me]{q̇e

i }= 1
2 {D� }t[Me]{D� }, (22)

where {D}t = [{u0
r }t, {u0

u }t, {w}t, {8r}t, {8u}t] is a 5m×1 column vector with m being the
number of total nodal points, which denotes the global displacement vector of laminated
plates.

Again, applying the Hamilton’s principle in conjunction with the variational method

d g
t2

t1

L dt= d g
t2

t1

({D}t[Kb ]{D})+ {D}t[Ks ]{D}− {D� }t[M]{D� }) dt=0, (23)

one arrives at

g
t2

t1

([M]{D� }+[K]{D}) d{D}t dt=0, [K]= [Kb ]+ [Ks ]. (24)

The equation of motion can be derived directly from equation (24), which is

[M]{D� }+[K]{D}=0. (25)

For free vibration, the motion is assumed to be simple harmonic for each mode, i.e.,
{D}= {D�} eivt. Hence equation (25) can be rewritten in the form

([K]−v2[M]){D�}=0, (26)

and the natural frequencies can be determined from the following determinant

Det = [K]−v2[M] ==0, (27)

where v denotes the natural frequency of laminated plates, and the corresponding
solutions of {D�} in equation (26) describes the vibration mode.

4. NUMERICAL RESULTS AND DISCUSSIONS

Exploiting the axisymmetric characteristics on the fundamental natural frequency and
the corresponding mode shape, only one quadrant of plate is modelled. The whole plate
mesh should be taken when investigating the higher modes of vibration. The boundary
conditions and finite element mesh of the plate are shown in Figure 3. When b is very small
in comparison with a, say b/a=0·00001, then the annular plate can be considered as a
circular plate. In this paper, calculations for circular plates are simulated with this
assumption to avoid the singularity at the origin (r=0) when integrations are made.
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Figure 3. Finite element mesh and boundary conditions. Boundary conditions: clamped circular plate;
u0

r = u0
u =w=8r =8u =0 at r= a; simply supported circular plate, N�r = u0

u =w=8r =Mr =0 at r= a; C–C
annular plate; u0

r = u0
u =w=8u =0 at r= a, b; S–C annular plate, N̄r = u0

u =w=8r =M�r =0 at r= b,
u0

r = u0
u =w=8r =8u =0 at r= a; F–C annular plate, N�r =N�ru =M�r =M�ru =Q�r =0 at r= b.

A subspace iteration method [11] is applied to determine the eigenvalues and
eigenvectors. According to the results of program executions, it took less than 10 iterations
to reach convergent eigenvalues.

The parameters of materials are divided into two groups which are listed in Tables 1
and 2. It can be seen from Table 1 that materials I, II and III are different; whereas in
Table 2, IV and V are of the same composite material but their fiber orientations along
the radial and the circumferential directions are reversed.

To verify the algorithm and calculations made in this paper, comparisons between the
present results and those of existing results based on the classical plate theory are made.

T 1

Material property for materials I to III

Materials Eu /Er Eru /Er Erz /Er Euz /Er nur r

I 2 0·35 0·292 0·292 0·3 1·0
II 5 0·35 0·292 0·292 0·3 1·0

III 50 0·6613 0·5511 0·5511 0·26 1·0

T 2

Material properties for materials IV and V. (Ultra high modulus graphite epoxy)

Materials Er (N/m2) Eu (N/m2) Eru (N/m2) nru r (kg/m3)

IV 31×1010 0·62×1010 0·41×1010 0·26 1·613×103

V 0·62×1010 31×1010 0·41×1010 0·0052 1·613×103

T 3

Fundamental natural frequencies (l=va2zrh/D) of clamped isotropic (n=0·3) circular
plates

h/a present (SDT) (Raleigh-Ritz) [12] Analytical (CPT)

0·05 10·047 10·145 –
0·1 9·812 9·941 –
0·15 9·453 9·629 10·216
0·2 9·016 9·240 –
0·25 8·536 8·807 –
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60.00

a/h

Ω
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/D

r
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T 4

Fundamental natural frequencies (l=va2zrh/D) of clamped–clamped isotropic (n=0·3)
annular plates

b/a a/h present (SDT) (CPT, FEM) [13] Analytical (CPT)

0·1 10 24·480 – –
40 27·466 27·295 27·281

100 27·585 – –
0·3 10 38·621 – –

40 45·143 45·371 45·346
100 45·406 – –

0·5 10 67·934 – –
40 88·069 89·299 89·251

100 89·034 – –

As shown in Table 3, the present results and those obtained by Irie et al. [12] for clamped
isotropic circular plates are in good agreements. Excellent agreements between the present
results and those of Pardoen’s [13] for clamped–clamped isotropic annular plates are also
shown in Table 4. In Figure 4, effects of the thickness on the fundamental frequency of
clamped polar orthotropic circular plates are compared with those using the classical plate
theory by Narita [7]. As expected, excellent agreements are obtained when the plate is thin.
However, large discrepancy occurred when the plate thickness becomes larger, especially
for plates clamped at the center point. Results of polar orthotropic annular plates with
a free inner edge and a clamped outer edge are compared with those obtained by
Vijayakumar and Ramaiah [4] using the classical plate theory, as shown in Figure 5. It
shows that results based on the classical plate theory give significant errors when a/hE 20.
All of these comparisons show that the present model is reliable and effective for
isotropic/polar orthotropic circular or annular thin plates.

Fundamental natural frequencies of polar orthotropic laminated circular plates
with clamped and simply supported boundary conditions are listed in Table 5. Results
show that natural frequencies are influenced by stacking sequence, the order of the
magnitude of the fundamental frequency for the five different laminates being

Figure 4. Fundamental frequencies versus thickness ratio of clamped polar orthotropic circular plates (material
III). Key: — —, [7]; ——, present.
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Figure 5. Fundamental frequencies versus thickness ratio of free–clamped polar orthotropic annular plates
(material I). Key: — —, [4]; ——, present.

(III)q (III/II/II/III)q (III/II/III/II)q (II/III/III/II)q (II). For annular plates, the effects
of stacking sequence on natural frequencies when the outer edge is clamped and the inner
edge is either clamped, simply supported or free are illustrated in Table 6, and are similar
to those for circular plates. It is noted that the free–clamped annular plate can be regarded
as a clamped circular plate with a free hole. Effects of the hole of the fundamental
frequency of clamped circular plates are shown in Figure 6. It shows that the fundamental
frequency increases as the size of the hole increases for all stacking sequences considered.

Another class of laminated circular or annular plates composed of polar orthotropic
laminae made of the same composite material with their fiber orientated in either the radial
or circumferential direction is considered. The ultra-high modulus graphite epoxy
composites are used in the examples. Material IV has fibers arranged along the radial
direction and material V has fibers arranged along the circumferential direction. Results
on the fundamental frequency of several polar orthotropic laminated circular plates with
clamped or simply supported boundary conditions are shown in Table 7. They reveal that
among these different stacking sequences, the smallest natural frequency occurs when the
plate is composed of laminae which are made of material V only. It seems to be reasonable,
since the displacement and curvature of the first vibration mode of plates are varied in

T 5

Fundamental frequencies (L=va2zrh/D11) of polar orthotropic laminated circular plates
with clamped and simply supported boundary conditions

BC a/h (III) (II) (III/II/III/II) (III/II/II/III) (II/III/III/II)

Clamped 10 25·807 12·998 19·782 23·422 15·864
20 27·736 13·665 21·456 26·309 16·706
50 28·644 13·872 22·008 27·331 16·967

100 28·781 13·902 22·090 27·487 17·006

S–S 10 21·206 8·546 15·602 19·758 11·365
20 22·800 8·816 16·467 21·457 11·755
50 23·446 9·026 16·867 22·145 12·001

100 23·628 9·139 17·011 22·337 12·114



50.00

10.00
0.00

b/a

40.00

30.00

20.00

0.20 0.40

Λ
 =

 ω
a2  √

ρh
/D

n
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T 6

Fundamental frequencies (L=va2zrh/D11) of polar orthotropic laminated annular plates

BC b/a a/h (III) (II) (III/II/III/II) (III/II/II/III) (II/III/III/II)

C–C 0·1 10 43·231 26·865 35·844 39·740 31·344
20 54·224 30·914 43·616 50·977 36·044
50 59·824 32·461 47·156 57·101 37·857

100 60·811 32·710 47·754 58·214 38·150
0·5 10 84·977 66·057 75·706 79·266 72·661

20 102·623 82·416 92·216 98·656 87·009
50 110·036 89·776 99·272 107·374 92·916

100 111·239 91·002 100·425 108·826 93·867

S–C 0·1 10 43·023 25·558 35·497 39·557 30·557
20 53·722 28·381 42·901 50·495 34·771
50 59·117 30·030 46·226 56·382 36·364

100 60·065 30·220 46·785 57·448 36·620
0·5 10 76·596 54·319 65·559 71·644 59·979

20 88·679 63·002 75·585 84·914 67·735
50 93·307 66·337 79·362 90·250 70·557

100 94·033 66·860 79·987 91·102 70·911

F–C 0·1 10 25·743 13·526 21·107 23·791 16·152
20 28·410 13·936 21·798 26·670 17·007
50 29·053 14·147 22·356 27·727 17·273

100 29·193 14·178 22·440 27·886 17·313
0·5 10 37·329 20·636 30·173 35·010 24·751

20 41·246 21·851 32·847 39·320 26·204
50 42·591 22·233 33·737 40·850 26·662

100 42·794 22·290 33·870 41·084 26·730

Figure 6. Fundamental frequencies of different clamped polar orthotropic circular plates with free holes,
(a/h=20). Key: —q—, stacking all III; —r—, stacking all II, —w—, stacking III/II/III/II; —*—, stacking
III/II/II/III; —e—, stacking II/III/III/II.
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T 7

Fundamental frequencies ( f=va2zrh/D66) of polar orthotropic laminated circular plates
with clamped and simply supported boundary conditions

BC a/h (IV) (V) (V/IV/V/IV) (IV/V/V/IV) (V/IV/IV/V)

Clamped 10 44·836 30·871 42·587 45·919 38·250
20 56·479 34·143 52·433 58·869 44·991
50 61·639 35·247 56·653 64·886 47·618

100 62·489 35·416 57·341 65·897 48·623

S–S 10 26·095 9·574 24·097 26·963 18·844
20 28·057 9·917 25·699 29·173 19·676
50 28·851 10·316 26·388 30·111 20·118

100 29·075 10·566 26·614 30·397 20·306

the radial direction only. Hence, the laminated plate having higher stiffness in the radial
direction would produce higher natural frequency and vice versa. Because the fibers of
material V are placed along the circumferential direction, the stiffness in the radial
direction for the material V laminate is smaller than any other laminates. As a result, the
natural frequency of laminated plate made of pure material V is the lowest of all laminated
plates. The major difference from the former example is that the effect of stacking sequence
on the fundamental frequency is no longer the same. The order of the magnitude of the
fundamental frequency for these five different types of laminates is (IV/V/V/IV)
q (IV)q (V/IV/V/IV)q (V/IV/IV/V)q (V). Here one observes that the fundamental
frequency of (IV/V/V/IV) laminated plate is higher than the (IV) laminate. The same
interesting behavior had been found for sandwich plates by Greenberg and Stavsky [8].
Fundamental frequencies of C–C, S–C and F–C polar orthotropic laminated annular
plates are listed in Table 8. It shows that the same trend of the order of the magnitude

T 8

Fundamental frequencies ( f=va2zrh/D66) of polar orthotropic laminated annular plates

BC b/a a/h (IV) (V) (V/IV/V/IV) (IV/V/V/IV) (V/IV/IV/V)

C–C 0·1 10 80·76 53·19 74·93 80·04 66·23
20 136·32 66·73 114·70 133·29 91·64
50 200·00 73·62 147·05 191·23 107·61

0·5 10 161·00 104·63 156·51 160·53 144·42
20 302·89 126·33 276·10 299·76 222·54
50 564·15 135·45 431·90 544·61 283·73

S–C 0·1 10 78·96 52·94 73·00 78·23 65·22
20 125·48 66·11 105·88 122·71 88·29
50 165·35 72·75 127·66 159·26 101·85

0·5 10 155·83 94·29 148·77 154·92 140·12
20 278·56 109·16 244·22 273·96 156·39
50 457·39 114·86 338·82 438·61 166·20

F–C 0·1 10 46·13 31·35 43·20 46·38 39·01
20 58·42 34·63 53·00 59·03 45·88
50 63·94 35·75 57·16 64·78 48·55

0·5 10 80·43 45·95 70·78 79·18 60·36
20 118·28 50·77 92·46 114·33 72·25
50 143·12 52·43 102·99 136·24 77·03
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of the fundamental frequency as those of circular plates only takes place when the
boundary condition is free–clamped and the hole–radius ratio b/a=0·1. Whereas for the
other cases, the order of the magnitude of the fundamental frequency for these five
laminates is (IV)q (IV/V/V/IV)q (V/IV/V/IV)q (V/IV/IV/V)q (V). This is quite
different from that for circular plates.

5. CONCLUSIONS

The fundamental natural frequency of polar orthotropic laminated plates has been
estimated by employing the first order shear deformation theory and the eight-node
isoparametric finite element technique. With the numerical results obtained, several
conclusions are reached.

1. The present analytical method established systematically in polar co-ordinates is
reliable and effective for finding natural frequencies and mode shapes of polar orthotropic
circular and annular plates.

2. The fundamental frequency of polar orthotropic laminated circular plates with free
hole increases as the hole size increases.

3. Transverse shear effects are more significant for polar orthotropic laminated plates
than isotropic plates. Furthermore, the transverse shear effect are much more apparent for
annular plates.

4. For polar orthotropic laminated circular plates or plates with a small free hole, the
laminates (say IV/V/V/IV) stacked with outer layers having fibers along the radial direction
and inner layers having fibers along the circumferential direction may have an higher
fundamental frequency than the laminate stacked with all layers having fibers along the
radial direction. However, for polar orthotropic laminated annular plates with inner edge
constrained, the laminate stacked with all layers having fibers along the radial direction
always has the highest fundamental frequency. The possible reason for these phenomena
is that the circumferential stiffness in the central region makes a significant contribution
to the vibration mode.
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