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The problem of the dynamic response of an elastic structure due to a moving mass arises
in many engineering applications. The interaction force between a moving mass and a
structure obviously depends on the velocity of the moving mass and the flexibility of
structure. Thus, in some situations, the interaction force may become zero to change its
sign, which implies the onset of the separation between the moving mass and structure.
Most of the investigations on this subject have missed or ignored the possibility of the onset
of separation in solving the dynamic responses of structures excited by moving masses.
Hence, this paper investigates the onset of the separation between the moving mass and
beam, and then takes into account its effect in calculating the interaction forces and also
in calculating the dynamic responses of the beams considered herein. Numerical tests show
that the effects of separation become significant as the velocity of the moving mass and
the mass ratio (M/ml) increase.
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1. INTRODUCTION

For over 150 years since Stokes [1] first brought it to attention, the dynamic response of
a structure excited by a moving mass has been the subject of numerous investigations. This
subject has become more important and dynamic in both physics and engineering mainly
due to increased speed of moving masses and structural flexibility. Typical examples
include bridges, guideways, overhead cranes, rails, cable ways, road ways, gun-tubes, and
so forth.

Irrespective of the many viewpoints and analytical methods proposed to solve the
dynamic problems, most research can be grouped into two categories: the moving force
problem and the moving mass problem. A large number of studies on the moving force
problem is referred to in the state-of-the-art reviews, references [2, 3], and recently Olsson
[4] has discussed the assumptions inherent in the moving force problem and the basic
understanding of the moving force phenomena.

In the moving force problem, traditionally the magnitude of the moving force has been
assumed to be constant by neglecting the inertia forces of a moving mass, mainly caused
by strucure–moving mass interaction. However, in the moving mass problem, the physics
is completely different from that in the moving force problem. There must be the
interaction force between the moving mass and the structure during the time the mass
travels along the structure. The interaction force considers contributions from the inertia
of the mass, the centrifugal force, the Coriolis force, and the time-varying
velocity-dependent forces, which arise due to the fact that the mass tends to follow the
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deformed shape of the structure, and also from gravity g. Hence, the velocity of the moving
mass, structural flexibility, and the mass ratio of the moving mass and structure will be
important factors that contribute to creating the interaction force. The interaction force
is highly non-linear in nature in its local and convective derivatives and changes its position
and magnitude with time. Thus it is usually represented as a concentrated force by use
of the Dirac delta function in the dynamic equation of motion.

For instance, the most elaborate formulation of the interaction force between a moving
mass and beam can be readily deduced from the transverse dynamic equation of a pipeline
conveying internal flow (see reference [5]) as:

f (x, t)=M(g− ẅ −2vẇ'− v2w0− v̇w'− vv̇'w')d(x− vt), (1)

where w(x, t) is the transverse beam deflection for 0E xQ l and 0E tE l/v. M and v are
the mass and velocity of the moving mass, respectively, and d(x− vt) is the Dirac delta
function. In equation (1), a prime and a dot indicate the derivatives with respect to x and
t, respectively. The fifth and sixth terms on the right side of equation (1) are just due to
the local and convective effects of the velocity change of the moving mass, respectively.
The sixth term may be neglected in the case of the point moving mass while not in the
case of a distributed moving mass similar to flowing fluid within a pipeline.

Because of the difficulties in treating the interaction force between the moving mass and
structure, which is sufficiently complex, many authors have studied some simplified
versions of the moving mass problem in the past. Many simplifying assumptions on the
interaction force between the moving mass and structure have been introduced in
calculating the dynamic responses of the structure excited by the moving mass, and most
of methods used in the past are restricted to following cases. First, the inertia of a moving
mass is completely neglected and therefore the problem is reduced to the moving force
problem with constant force magnitude (references [2, 3, 6–10]). This assumption basically
requires that the mass of the moving mass be smaller than the mass of the structure, and
that the mass inertia be sufficiently small in comparison with its gravitational effect.
Secondly, the coupling terms in the interaction force, such as the Coriolis and centrifugal
forces are neglected (references [11, 12]). This assumption requires that the velocity of a
moving mass and its time rate of change be relatively small. Lastly, the velocity of a moving
mass is assumed to be constant. Thus only the force terms related to the local and
convective derivatives of the moving mass velocity are neglected (references [13–19]). Ting
et al. [20] seems to be the first to include an inertia term related to the local derivative
of moving mass velocity in their analyses.

Because of many difficulties arising in mathematical operations, many analytical
methods have been proposed in the last decasdes. The finite element method which is
powerful due to its versatility was first applied to the moving force problem in reference
[21] and then in references [22–29] was applied to the moving mass problem. The method
of an expansion of the eigenfunctions in series has been utilized in the references [4, 11,
12, 16]. Cifuentes [17] introduced a combined finite element–finite difference technique
based on a Lagrangian multiplier formulation that allows one to express the compatibility
condition at the beam–mass interface. Ting et al. [20] and Sadiku and Leipholz [18]
formulated the equation of motion for the system in the form of an integro–differential
equation utilizing influence functions, which mathematically are Green functions. The
former study used the finite difference method, and the latter study used the eigenfunctions
expansion method.

In most of investigations on the moving mass problem, to the author’s knowledge, it
has been implicitly assumed that the moving mass travels on the structure, always being
in contact with it. Under this assumption, the interaction force acting on the beam due
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to the moving mass has been represented by the function as given in equation (1). However
this is not always true in view of the physics if a moving mass simply just sits on the upper
surface of the structure and then slides along it. It is obvious from equation (1) that
the interaction force between the mass and structure depends on both the velocity of the
moving mass and the flexibility of structure. This fact is obviously different from
the moving force problem in which the magnitude of moving force is assumed to be
independent of the velocity of moving force and the structural flexibility. Thus, certainly
the magnitude of the interaction force in the moving mass problem varies with time and
can become zero at an instant to change its sign whilst traveling on the structure. This
simply implies the onset of the separation between the moving mass and structure. After
the onset of separation, the interaction force between the mass and structure must be zero
until the moving mass recontacts the structure. The case of the separation of a moving
two-axle system and the following impact was studied by Frýba [2, 29]. Hutton and Counts
[16] and Ting et al. [20] have investigated that their numerical results give slightly larger
values in comparison with the experimental results by Ayre et al. [30]. Even though there
have been very few publications on experimental work to confirm their investigation, the
author judges that this discrepancy may be in part due to the onset of the separation
between the moving mass structure. To the author’s surprise, so far most of investigators
have missed or ignored the possibility of the onset of separation in solving the dynamic
responses of a structure excited by the moving mass. Thus, the purpose of this paper is
to investigate the onset of separation between the moving mass and beam analytically. The
effect of separation is then taken into account in calculating the interaction forces and the
dynamic responses of the beams considered herein.

2. PROBLEM DEFINITION AND FORMULATION

The moving mass problem considered here is illustrated in Figure 1. The beam shown
in Figure 1 is the Bernoulli–Euler beam subjected to a single mass M at a constant velocity
v. Hence, the reaction force exerted by the moving mass on the beam is deduced from
equation (1) to be

f (x, t)=M[g− ẅ−2vẇ'− v2w0]d(x− z), (2)

where z= vt indicates the present position of the moving mass with time. The equation
of motion of the transverse beam displacement w(x, t), neglecting the effect of the rotary
inertia, shear and structural damping on the flexural motion of the beam can be written
as

EIw00=F(x, t) (3)

with

F(x, t)=−mẅ+ f (x, t), (4)

where, EI is the beam stiffness and m(x) is the mass of beam per unit length.

Figure 1. Beam with a moving mass sliding on it.



. 870

The partial differential equation of motion (3) can be transformed into the form of an
integro–differential equation [31] as

w(x, t)=g
l

0

C(x, a)F(a, t) da, (5)

where, C(x, a) is the structural influence function which indicates the static deflection at
x due to the unit force applied at x= a. The structural influence function satisfies the
reciprocal theorem C(x, a)=C(a, x). Substituting equation (4) into equation (5), the
general motion of the beam can be rewritten as

w(x, t)+g
l

0

C(x, a)m(a)ẅ(a, t) da=C(x, z)M[g− ẅ(z, t)−2vẇ'(z, t)− v2w0(z, t)].

(6)

The normal modes fn (x) of the beam without the moving mass must satisfy the equations

fn (x)=v2
n g

l

0

C(x, a)m(a)fn (a) da, (7)

and its boundary conditions. In equations (7), vn are the natural frequencies of the beam.
The normal modes fn (x) are also orthogonal functions satisfying the relation

g
l

0

m(x)fn (x)fm (x) dx= m̄n dmn , (8)

where m̄n is the modal mass and dmn is the Kronecker delta. The general solution of
equation (6) can be represented in terms of fn (x) as

w(x, t)= s
N

n=1

fn (x)qn (t), (9)

where qn (t) are the generalized co-ordinates to be determined. Introducing solution (9) into
equation (6), multiplying the result by fm (x), and then integrating over the interval
0E xE l yields

m̄n (q̈n +v2
n qn )=Mfn (z) [g− s fm (z)q̈m −2v s f'm (z)q̇m − v2 s f0m (z)]

(n=1, 2, . . . , N). (10)

In deriving equations (10), the Dirac delta integral property

g
l

0

f (x)d(x− z) dx= f (z); (0Q x, zQ l), (11)

and the relations of equations (7) and (8) are applied. Now, equations (10) can be
represented in the form of matrix differential equation as follows:

[M]{q̈}+[C]{q̇}+[K]{q}= {P}, (12)
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with

[M]=diag[m̄n ]+M diag [fn (z)] [F(z)], [C]=2Mv diag [fn (z)] [F'(z)],

[K]=diag [mn v2
n ]+Mv2 diag [fn (z)] [F0(z)], {P}=Mg{f1 (z), . . . , fN (z)}T, (13)

where,
f1 (z) . . . fN (z)

f1 (z) . . . fN (z)
[F(z)]=G

G

G

K

k

···
···

G
G

G

L

l

. (14)

f1 (z) . . . fN (z)

In equations (13), diag [ ] indicates the diagonal matrix and the matrices F' and F0 are
the first and second derivatives of the matrix F(x) with respect to x, respectively. Equation
(12) is a set of coupled ordinary differential equations and, in this study, the fifth order
Runge–Kutta scheme is employed to solve it. The dynamic responses of the beam can be
readily determined by introducing the solutions of equation (12) into equation (9).

When the separation between the moving mass and beam occurs, the interaction force
of equation (2) must be forced to be zero. That is, during separation t1 E tE t2, the
foregoing dynamic equation of motion must be replaced by the followng two equations:

w(x, t)+g
l

0

C(x, a)m(a)ẅ(a, t) da=0, z̈= g (15)

with the initial conditions specified as

w(x, t1)=w1 (x), ẇ(x, t1)= ẇ1 (x), z(t1)=w1 (z1), ż(t1)= ẇ1 (z1), (16)

where z1 = vt1 and z represents the motion of moving mass (positive downward) due to
gravity. Equations (16) represents the motion of the moving mass due to the gravity during
separation. When two separate solutions of equations (15) become equal again at t= t2,
which implies that the moving mass starts recontacting the beam, then the equation of
motion (6) must be solved in sequence by using the solutions of equations (15) at t= t2

as the new initial conditions for the dynamic response of the beam after t= t2. As studied
in Frýba [2], the separation and the following impact may be very important in practice

Figure 2. The interaction force (positive downward) acting on the simply supported beam when v=50 m/s.
Key: —, separation considered; — — —, separation not considered.
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Figure 3. The interaction force (positive downward) acting on the cantilevered beam when v=50 m/s. Key
as for Figure 2.

for highway and railroad bridges. If impact occurs, a higher number of natural modes of
vibration must be taken into account in the analysis. In the present study, however the
effects of the impact as well as the elasticity between the moving mass and beam are not
considered for simplicity.

3. NUMERICAL RESULTS AND DISCUSSION

Some moving mass problems are considered using the solution procedure described in
the previous section. The properties of the Bernoulli–Euler beam considered herein are
l=4·318 m, M=20·245 kg/m, and EI=63000 Nm2, which was also used by Ting et al.
[20]. To confirm the accuracy of the computer algorithm developed for solving the equation
(12) prior to further calculations and discussion, the exactly same problem considered by
Akin and Mofid [12] was revisited retaining only the inertia force of the mass in order to
reduce the present equation of motion to their simplified one. Obviously the present
numerical results proved to be almost identical to the numerical results obtained by them.

Figure 4. Deflection of the simply supported beam at the present position of moving mass when v=50 m/s.
Key as for Figure 2.
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Figure 5. Deflection of the cantilevered beam at the present position of moving mass when v=50 m/s. Key as
for Figure 2.

In the present numerical calculations, a sufficient number of natural modes of vibration
are taken into account so that the vibration responses converge enough within 0·1%.

With and without taking into account the effect of the separation between the moving
mass and beam, the interaction forces for the simply supported and cantilevered beams
when v=50 m/s are shown in Figures 2 and 3. When the effect of the separation is not
taken into account, the interaction force certainly can have its direction upward in some
regions, which physically means the onset of the separation between the moving mass and
beam. The solid lines indicate the interaction force calculated by forcing the function
f (x, t) of equation (2) being zero during the separation. Figures 2 and 3 also show that
the effect of separation on the interaction force is apparent in the region near the arrival
end. Accordingly, as shown in Figures 4 and 5 when v=50 m/s, the effect of separation
on the beam deflection is also apparent in the region near the arrival end. The discrepancy
between the beam deflections with and without considering the separation can be also
observed from Figures 4 and 5. Numerical tests show that the effect of separation on the
dynamic response of the beam becomes important as the velocity of the moving mass
increases. Recalling that Hutton and Counts [16] and Ting et al. [20] reported that their

Figure 6. Separation region with respect to the velocity of moving mass, in which the separation between the
mass and simply supported beam can occur. Key: Q, Separation; q, contact.
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Figure 7. Separation region with respect to the velocity of moving mass, in which the separation between the
mass and cantilevered beam can occur. Key as for Figure 6.

numerical results calculated without considering the effect of separation gave slightly larger
values compared with the experimental results by Ayre et al. [30] and also observing that
the present numerical results calculated with consideration of the separation (solid lines)
are slightly smaller than those without considering the separation (dotted lines), the author
can conclude that the discrepancy between the numerical results and the experimental
results has arisen in part due to the neglect of the separation between the moving mass
and beam. Thus, for accurate prediction of the dynamic response of a structure excited
by a moving mass, the effect of separation must be taken into account in the analysis.

Figures 6 and 7 show the separation region along the beam in which the separation
between the moving mass and beam can occur. Similarly, Figures 8 and 9 show the time
duration in which the separation can occur. The figures show that there exists no
separation region at all below certain value of the velocity of moving mass. However, the
separation region seems to widen and also move toward the departure end as the velocity
of the moving mass increases. Thus the onset of separation also seems to make an earlier
start as the velocity of moving mass increases, which is shown in Figures 8 and 9.

Figure 8. Time duration with respect to the velocity of moving mass, in which the separation between the mass
and simply supported beam can occur. Key as for Figure 6.
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Figure 9. Time duration with respect to the velocity of moving mass, in which the separation between the mass
and cantilevered beam can occur. Key as for Figure 6.

4. CONCLUSIONS

The paper has considered the onset of the separation between a moving mass and beam
by using the integro–differential equation of motion and modal analysis method.
Numerical tests show that the separation can occur more easily and has a significant effect
on the dynamic responses of the beam especially at high velocity of the moving mass. Thus,
one may conclude that the separation phenomenon must be taken into account in the
analysis for accurate prediction of the dynamic responses of a structure due to a moving
mass as the velocity and weight of the moving mass increase. To complete the issue of the
separation phenomenon, however the effects of the impact occurring after separation and
the elasticity between a structure and moving mass should be further investigated by both
theoretical and experimental approaches, which is the on-going research topic of the
present author.
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APPENDIX: NOTATION

C(x, z) structural influence function
[C] damping matrix defined in equation (13)
EI flexural rigidity of beam
f (x, t) interaction force between a moving mass and beam
F(x, t) function defined in equation (4)
g gravitational acceleration
[K] stiffness matrix defined in equation (13)
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l length of beam
m(x) mass per unit length of beam
m̄n modal mass
M mass of a moving mass
[M] mass matrix defined in equation (13)
{P} generalized forces vector defined in equation (13)
qn (t) generalized co-ordinates
t time
v velocity of a moving mass
w transverse deflection of beam
x axial co-ordinate along the beam
d(x) delta function
dmn Kronecker delta
z= vt present position of a moving mass
fn natural modes of vibration
vn natural frequencies


