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NON-STATIONARY RESPONSE OF A VARIABLE
SECTION FLEXIBLE WING AIRCRAFT OVER

UNEVEN ELASTIC TRACK
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Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208016,
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(Received 24 July 1996, and in final form 3 September 1997)

The coupled dynamics of flexible vehicle-track systems has been analysed with an aircraft
in ground runs. The aircraft is modelled as a combination of lumped and continuous
members with the wings idealised as variable section beams. The track is treated as a beam
resting on an elastic subgrade. Suspension behaviour is assumed to be linear and the track
unevenness a non-homogeneous random process. Closed form expressions for second order
response statistics have been developed for a general description of vehicle forward motion.
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1. INTRODUCTION

Ground vehicles and aircraft during ground manoeuvers receive dynamic excitation from
an uneven track. The vibration environment causes fatigue in the vehicle structure,
discomfort to passengers and crews, undesirable movement and damage to the cargo and
wear and tear to the track. In extreme cases, it may even affect the controllability of the
vehicle. Aircraft landing touch-down induces an impact force on the vehicle structure as
well as the runway which may be significant for the design of some structural components
and the track.

The study of track-induced vehicle dynamics started with simple problems of linear
models on pavements with discreet flaws [1]. Subsequently more realistic modelling and
efficient solution techniques followed. Linear vehicle models on runways with
homogeneous random profile have been analysed at uniform [2–4] and variable [5, 6]
velocities. The coupled vehicle-track dynamics have been studied at constant and
accelerating vehicle forward motion patterns [7–11].

Many vehicles have slender attachments; aircraft wings may be quoted as an example.
These also carry concentrated masses such as fuel tanks, engines, pylons, guns, missiles,
bombs, etc. Slender members undergo appreciable deformations under load, and modelling
these as rigid may lead to error in estimation of the response. Incorporating the flexibility
effects in the vehicle and track model would increase the accuracy of the analysis. In the
present paper, a procedure for the analysis of coupled vehicle–track dynamics with elastic
appendages has been presented, utilizing a recently proposed approach [12] of analysis for
variable section beams. The vehicle considered is an aircraft with flexible wings that carry
concentrated mass loadings and distributed damping. Most ground vehicles with slender
attachments would fit a similar structural description. The elastic track is assumed to have
a non-homogeneous random profile. The vehicle forward velocity may have any general
pattern. The system equations of motion have been discretized and decoupled using the
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modal approach. Closed form expressions for the second order response statistics have
been developed. Numerical results are presented for an aircraft in ground runs.

2. PROBLEM FORMULATION

2.1.  

A model of the aircraft and the runway track is shown in Figure 1. The wheel track
contact is assumed to be at one point only. The aircraft fuselage is modelled as a rigid
lumped sprung mass Ms on to which are attached flexible left and right wings, designated
by superscript/subscript L and R respectively (Figure 1a). Each wing is considered to be
a cantilever beam having distributed mass mw , flexural rigidity Ew Iw and damping cw , that
are variable along the span. Various stores carried by the wings are modelled as
concentrated mass loadings M1, M2, . . . , Mp located at s1, s2, . . . , sp from the wing root.
The landing gear assembly is idealised as a lumped unsprung mass Mus . Linear airspring
Ks and viscous damping Cs have been assumed for the aircraft suspension. The tyre stiffness
Kus and damping Cus are also assumed to be linear.

The track pavement has an uneven profile denoted as h(x) above a horizontal datum
(Figure 1b). The runway track elastic behaviour is accounted for by modelling the
pavement as a Euler–Bernouli beam (Figure 1c), with distributed flexural rigidity Ep Ip and
mass mp , taken constant along the span. The track is supported over elastic subgrade
foundation having distributed stiffness kf and damping cf , assumed constant.

The system displacements are considered only in the vertical plane (Figure 1). The
displacements z1 and z2 of the sprung and the unsprung masses are measured from their
respective static equilibrium positions. The transverse displacements of both left and right
wing wL and wR are measured off their respective bending axes drawn from the wing roots.
Deflection of the track mean line y is taken transverse to its longitudinal axis-x.

The suspension system, wheel and foundation dampings are general in nature. However,
the wing damping is assumed to be proportional to its mass distribution. This is
necessitated because of limitation of the decoupling technique for the variable section
beams [12].

2.2.   

The position of the vehicle at any instant t from a fixed reference point can be described
by a polynomial of degree m as

xc (t)= s
m

k=0

ak tk. (1)

This form can be used to represent different conditions of vehicle forward motions with
suitable selection of the coefficients.

2.3.  

The vertical level h(x) of the track above a flat datum is a non-homogeneous random
process with FhR hR (V1, V2) as its generalised PSD function. The variable mean track level
is assumed as a polynomial

hm (x)= s
l

i=1

hi xi. (2)

Different mean shapes can be represented with this form.
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During variable velocity runs the vehicle senses the track input as a time function.
Mapping of the temporal frequency v into the wave number V gives [10]

FhR hR (V1, V2)=FhR hR (v1 /V1, v2 /V2), (3)

where V1 and V2 are vehicle forward velocities at instants t1 and t2 respectively.
Making use of equation (1) in equation (2), the mean track height experienced by the

vehicle wheel at instant t may be expressed as [13],

hm (t)= s
l

i=0

hi s
mxi

r=0

ci,r tr, (4)

where ci,0 = ai
0, and

ci,r =
1
ra0

s
r

k=1

(ki− r+ k)ak ci,r− k , re 1, (i=0, 1, . . . , l). (5)

2.4.  

The equations of motion of the two lumped masses are

Ms z̈1 +Cs (ż1 − ż2)+Ks (z1 − z2)=−
12

1s2
L

[EwL IwL (sL ) 12wL /1s2
L ]SL =0

− (12/1s2
R ) [EwR IwR (sR ) 12wR /1s2

R ]SR =0, (6)

Mus z̈2 +Cus {ż2 − ẏ(xc , t)− h� (xc )}+Kus {z2 − y(xc , t)− h(xc )}

−Cs (ż1 − ż2)−Ks (z1 − z2)=0. (7)

The wings act like cantilever beams with base excitation as these are clamped at the
fuselage and are excited by the fuselage vertical displacements. The distributed
aerodynamic lift as well as concentrated mass loadings act on the wing. The equation of
motion of the left wing is

12

1s2 $EwL IwL (sL )
12wL

1s2 %+mwL (sL )
12wL

1t2 + cwL (sL )
1wL

1t

=− s
pL

k=1

ML
k
12wL

1t2 d(sL − sL
k )− {mwL (sL )z̈1 + cwL (sL )ż1}+VL (sL , t). (8)

The equation of motion for the right wing is obtained by exchanging the extension L with
R in the above equation. The aerodynamic lift force on either wing can be expressed as
[14]

V(s, t)=L0 V(t)2[1− (s/Lw )]1/2, where L0 = ra cL Sw /2pLw (9)

in which ra is the air density, cL is the lift coefficient, Sw is the wing surface area, Lw is the
semiwing span and V(t) is the aircraft forward velocity. For vehicles where aerodynamic
lift is not significant, the lift terms may be dropped from equation (8).
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The track is assumed to behave like a beam with continuous elastic support along its
length. Its differential equation of motion for a single point input is given by [10]

Ep Ip
14y
1x4 +mp

12y
1t2 + cf

1y
1t

+ kf y=−[Cus {ż2 − ẏ(xc , t)− h� (xc )}

+Kus {z2 − y(xc , t)− h(xc )}]d(x− xc ) (10)

where the subscript p refers to the track pavement and f to the foundation subgrade.
Equations (6) to (10) constitute the system governing equations and are required to be

solved for the response statistics.

2.5.       

The distributed mass and bending rigidity of the wings vary along its length.
Representing these by polynomial functions and assuming the damping to be proportional
to the mass distribution one can write

Ew Iw (s)=Ew Iw (0) s
a

i=0

pi si, mw (s)= rw Aw (0) s
a

i=0

qi si, cw (s)= cw (0) s
a

i=0

qi si, (11)

where rw is the density of the wing material, Aw is the cross-sectional area and the quantities
Iw (0), Aw (0) and cw (0) correspond to the reference station.

Considering the wing deflection w as a superimposition of its normal modes with hi (t)
as the normal co-ordinates and fi (s) the associated mode shape functions and invoking
the orthogonality property of the normal modes, the discretized equations of motion for
the left wing beam takes the form [12]

$ḧLi (t)+
1

MgL
i

s
pL

r=1

ML
r fL

i (sL
r ) s

a

k=1

fL
k (sL

r )ḧLi (t)%+DL ḣLi (t)

+ {(v2
Li − b2

Li −DL bLi )− jvLi (2bLi +DL )}hLi (t)

=
1

MgL
i gLwL

[−{mwL (sL )z̈1 + cwL (sL )ż1}+VL (sL , t)]fL
i (sL ) dsL ; i=1, 2, . . . ,

(12)

where D= cw (0)/rw Aw (0); v is the damped natural frequency of the wing and b is a factor
related to the damping, MgL

i is the left wing generalised mass given by

MgL
i =gLwL

mwL (sL )fL
i (sL )2 dsL . (13)

The corresponding relation for the right wing is obtained by replacing extension L by R
in equation (12).

2.6.       

The track equation of motion, equation (10) can be discretized in terms of the normal
co-ordinates hpi [10]

ḧpi (t)+Bḣpi (t)+ {(v2
pi − j2

i −Bji )− jvpi (2ji +B)}hpi (t)

= −(ci (xc )/Mp
i ) [{Cus (ż2 − ẏ(xc , t)− h� (xc )}
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+ {Kus (z2 − y(xc , t)− h(xc )}], i=1, 2, . . . , (14)

where vp is the track damped natural frequency, j is a factor related to the foundation
damping, v2

f = kf /mp , B= cf /mp and ci is the modal displacement function of the track
beam and Mp

i is the generalised mass for the ith mode.

2.7.     

The system equations (6), (7), (12) for left and right wings and (14) are coupled second
order ordinary differential equations. If only the first nw and np modes for the wings and
the track respectively are retained the number of coupled equations is n=2+2nw + np .
The system equations can be expressed in matrix notation

Mq̈(t)+Cq̇(t)+Kq(t)=F(t), (15)

where q(t) is the response vector, F(t) is the generalised force vector and M, C, and K are
system mass, damping and stiffness matrices respectively.

The system equations (15) can be cast into a 2n dimensional first order equation of the
following form

ṗ(t)+Ap(t)=P(t), (16)

where

p(t)=6q̇(t)
q(t)7, P(t)=6M−1F(t)

0 7, A=$M−1C
−I

M−1K
0 % (17)

I being an identity matrix and 0 a null vector/matrix.
It is possible to uncouple the system equations (16) as [15]

v̇i (t)+ ai vi (t)=Ri (t), i=1, 2, . . . , 2n, (18)

with

Ri (t)= s
n

r=1

ūir Pr (t)= s
n

r=1

ūir s
n

k=1

m̄rk Fk , (19)

where ai are the eigenvalues and ui the eigenvectors for the matrix A, v(t)=U−1p(t) with
U as the modal matrix, ūir and m̄rk as the elements of the inverse of matrices U and M
respectively.

2.8.  

The general solution of equation (18) may be obtained and expressed in terms of the
generalised co-ordinates by using equations (17) and (19)

qm (t)= s
2n

i=1

Xoi um1 i exp(−ai t)

+ s
2n

i=1

um1 i s
n

r=1

ūir s
n

k=1

mrk g
a

−a

Hi (v, t) dS(Fk (v)); m=1, 2, . . . , n, (20)
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where m1 =m+ n, Xoi are the constants of integration and Hi (v, t) are the transient
frequency response functions given by [15]

Hi (w, t)=
1

jv+ ai
[exp(jvt)− exp{−ai (t− t0)}]. (21)

2.8.1. Mean response
Expectation of equation (20) yields the mean response

mqm (t)= s
2n

i=1

Xoi um1 i exp(−ai t)+ s
2n

i=1

um1 i s
n

r=1

ūir s
n

k=1

mrk

×g
a

−a

Hi (v, t)
1
2p g

a

−a

mFk (t) exp(−jvt) dt dv, m=1, 2, . . . , n. (22)

The mean generalised force mF depends on the track profile characteristics as well as the
aerodynamic lift force. The kth element of the mean generalised force vector can be
expressed as

mFk (t)=Ak hm (t)+Bk h� m (t)+Ck V(t)2, (23)

in which the coefficients Ak , Bk and Ck are given by

Ak = 80,
Kus ,
(ck− n1)/M

p
k− n1

Kus ,

k=1, 3, 4, . . . , n1,
k=2,
k= n1 +1, n1 +2, . . . , n,9 (24)

where n1 =2nw +2.

0, k=1, 2, n1 +1, n1 +2, . . . , n,

Ck =g
G

G

G

G

G

G

F

f

L0

MgL
k−2 gLwL

fL
k−2 (sL ) (1− (sL /LwL))1/2 dsL , k=3, 4, . . . , nw +2,

L0

MgR
k−2 gLwR

fR
k−(nw +2) (sR )01−

SR

LwR1
1/2

dsR , k=(nw +3), (nw +4), . . . , n1.

(25)

Bk is obtained from equation (24) by replacing Kus with Cus .
Using equations (21) and (23) in equation (22), and performing the integration over v,

yields

mqm (t)= s
2n

i=1

Xoi um1 i exp(−ai t)+ s
2n

i=1

um1 i s
n

r=1

ūir s
n

k=1

mrk Iik (t); m=1, 2, . . . , n, (26)

where

Iik (t)=Ak I1 (t)+Bk I2 (t)+Ck I3 (t). (27)
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The components I1, I2 and I3 are

I1 (t)=0h0 + s
l

i=1

hi ci,0 1J1 + s
l

i=1

hi s
mxi

r=1

ci,r J2, (28)

I2 (t)= s
l

i=1

hi ci,1 J1 + s
l

i=1

hi s
mxi−1

r=1

ci,r+1 (r+1)J2, (29)

I3 (t)= c'0 J1 + s
2(m−1)

r=1

c'r J2, (30)

with

J1 = (1/ai ){1−exp(−ai t)},

J2 =
tr

ai
+ s

r

k=1

(−1)kr!
(r− k)!

tr− k

ak+1
i

−(−1)r r!
ar+1

i
exp(−ai t). (31)

Utilizing the set of equations (27)–(31) in equation (26), the mean displacement mqm (t)
can be obtained. The mean velocity may be found by substituting um for um1 in the
expression for mqm . The mean acceleration is determined by differentiating mean velocity
with respect to t.

2.8.2. Covariance response
Utilizing equations (20) and (22), the expression for the response covariance of the

system generalised co-ordinates can be put as

Kqi qk (t1, t2)= s
2n

l=1

s
n

r=1

s
2n

p=1

s
n

s=1

s
n

b=1

s
n

w=1

uin l ūlr m̄rs ukn p ūpb m̄bw {Is,b (t1, t2)− Ils (t1)Ipb (t2)},

i, k=1, 2, . . . , n, (32)

where in = i+ n, kn = k+ n, Ils and Ipb are defined in equation (27) and Is,b is given by

Is,b (t1, t2)=g
a

−a g
a

−a

Hl (v1, t1)H*p (v2, t2)FFs Fb (v1, v2) dv1 dv2. (33)

Assuming the aerodynamic lift to be uncorrelated to the track roughness, FFs Fb (v1, v2) can
be expressed as,

0, s= b=1, 3, 4, . . . , n1,

FFs Fb (v1, v2)=g
G

G

F

f

fF2 F2 (v1, v2), s= b=2, (34)

cs− n1

Mp
s− n1

cb− n1

pMb− n1

FF2 F2 (v1, v2), s= b= n1 +1, . . . , n,

with

FF2 F2 (v1, v2)= {C2
us v1 v2 + jCus Kus (v1 −v2)+K2

us}FhR hR (v1, v2). (35)
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To proceed further, the PSD of the track roughness process is required. Numerical results
have been obtained with the PSD assumed as in reference [10]

FhR hR (V1, V2)=Ar exp(−kr V
2
1 )d(V1 −V2). (36)

Integral Is,b for the base value s= b=2 takes the form

I2,2 (t1, t2)=
2pAr V1

vr $exp6−al

vr
=vr t1 − t2 =7−exp(−al t1 − ap t2)% exp0kr a

2
l

V2 1
×6vr Kus +(1− vr )Cus Kus al −Cus al

(al + vr ap ) 7, (37)

where vr =V1 /V2. The integrals for other suffixes can be obtained from equations (34) and
(37).

Substituting the value of Is,b (t1, t2), the covariance of displacement Kqi qk (t1, t2) is known
from equation (32). The velocity covariance is obtained by substituting uil and ukp for ui1 l

and uk1 p respectively in the expression for Kqi qk . The covariance of acceleration has to be
obtained by differentiating the velocity covariance successively with respect to t1 and t2.

3. RESULTS AND DISCUSSIONS

A passenger plane has been selected for the study. The following system data have been
adopted to generate numerical results: sprung mass (Ms )=1·44×105 kg, unsprung mass
(Mus )=2·22×103 kg, linearised stiffness of the landing gear (Ks )=29·62×106 N/m, tyre
stiffness (Kus )=16·92×106 N/m, linearised damping in the landing gear
(Cs )=103×104 Ns/m, tyre damping (Cus )=0·5×104 Ns/m, wing semi span
(Lw )=10·0 m, aspect ratio (AT )=7·08, flexural rigidity at root section
(Ew Iw (0))=7·174×106 Nm2, mass at the root section (rw Aw (0))=42·7 kg/m, concen-
trated masses on each wing M1, M2 =0·2rw Aw (0)Lw at s1 =0·46Lw and s2 =0·72Lw ,
damping at root section (cw (0)/rw Aw (0))=0·16 s−1, lift coefficient (CL )=0·8, density
of air (ra )=1·20 kg/m3, runway length (Lp )=1400 m, track mass (mp )=3620 kg/m,
track flexural rigidity (Ep Ip )=1·38×107 Nm2, foundation spring constant (kf )=1·7 ×
108 N/m2, foundation damping (jf )=0·04, roughness constant (Ar )=0·51×10−5,
correlation constant (kr )=0·102. Track mean profile is assumed to be a combination of
uniform slope (1 in 1000) and sinusoidal vertical curve of wave length (W1) 100p m
and amplitude (A0) 0·05 m. The coefficients of the polynomial hm (x) are h1 = (0·001 +
A0 2p/W1), h2 =0, h3 =−(A0 /3!) (2p/W1)3, h4 =0, h5 = (A0 /5!) (2p/W1)5 etc.

Response statistics of the aircraft model has been obtained for constant velocity taxi,
accelerating takeoff and decelerating landing runs during ground manoeuvers. The
responses selected for study are displacements, velocities and accelerations of the sprung
mass, unsprung mass and the first three normal co-ordinates for the wing and the track
modes. Only the left wing response is presented as the other wing has similar
characteristics. The mean and the variance of these are plotted as time histories.

3.1.  

The aircraft is assumed to move forward at constant velocity in the taxi run. The results
are presented for three forward velocities—40 km/h, 60 km/h and 80 km/h. The plots are
shown for the initial 20 s period.

The mean responses are presented in Figure 2. The response of the sprung and unsprung
masses and the track modes are influenced primarily by the mean track profile. Initial
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Figure 2. Mean responses for taxi run. Key: vehicle speed (km/h); ——, 40; — - —, 60; · · · · · · · ·, 80.
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transience is small and gets dampened out quickly. The magnitude of these mean
displacements, during early phases of travel, does not show much variation with vehicle
velocity. However, with the elapse of time, a higher velocity seems to produce increased
displacement. The displacement mean response of the wing’s first three normal
co-ordinates has initial high transient values, diminishing to a steady state oscillation. The
mean steady state value is lower compared to the transient response. A higher vehicle
velocity is found to produce larger amplitudes for the wing modes. This pattern is followed
by the velocity and acceleration response also.

The mean velocities of the lumped masses and the track modes reveal stronger and more
persistent transience compared to the displacement response. Except for the wing normal
modes, which show very low values, the other steady state velocity responses have the same
general pattern as the displacements with a difference in phase. The magnitude of the mean
velocity is higher for higher vehicle velocity.

The mean acceleration of the lumped masses follows a pattern somewhat similar to their
mean velocity, except for the difference in phase. The wing normal mode mean
accelerations have sustained steady state values that are sensitive to the vehicle forward
velocity. The mean acceleration of the track’s first three normal co-ordinates has initial
transience on entry of the vehicle over the track which is quickly dampened out.

The transient mean response shows the presence of a dominant frequency which does
not change with forward velocity. This indicates its association with the structural mode,
rather than the external excitation. In most of the cases, the vehicle forward velocity is
seen to modify the steady state response frequency of oscillation.

The response variances are presented in Figure 3. The displacement variances show that
in the early stage, the response is oscillatory with a high peak at the onset of vehicle motion.
Subsequently the response subsides to reach a steady asymptotic value. The steady state
covariance magnitudes for displacements are higher for higher vehicle speeds. The track
mode characteristics have low frequency variations in the steady state. The variances of
the velocity response follow a trend similar to the displacements. The acceleration
variances indicate dominant values at the initiation of motion. The steady state condition
is reached within a shorter time than that for displacement and velocity without any
oscillations, showing progressively smaller peaks. The steady state values, however, are
very low compared to the initial values.

Increase in the vehicle speed is seen to increase the magnitude of the response variances
for all the co-ordinates. Comparison of response mean and variance in the first three
flexible wing and track bending modes indicates that response magnitude decreases as the
order of mode increases. This conforms to the usual assumption that the lower modes
dominate the higher ones.

3.2.  

The aircraft is assumed to start from rest, increasing its speed at uniform accelerations
of 1·6 m/s2, 1·8 m/s2 and 2·0 m/s2 to takeoff. The takeoff speed is taken to be 216 km/h.
The time history plots are from the start of the aircraft’s forward motion until it
lifts off.

Figure 4 presents the mean responses. The initial portion of the vehicle response shows
low magnitude transience. The accelerating vehicle takes some time to attain a certain level
of velocity for the track input to become effective in setting up vibration in the vehicle
structure. Subsequently, mean response magnitude grows with increase in vehicle speed
and track mean elevation. The influence of the mean track profile is apparent in the vehicle
mean response pattern—increasing level with sinusoidal variation. The constant frequency
transient oscillation, as in taxi, is not observed in the takeoff run. Mean acceleration
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Figure 3. Response variance for taxi run: key as in Figure 2.



    129

Figure 4. Mean response for takeoff run. Key: vehicle acceleration (m/s2); ——, 1·6; — - —, 1·8; · · · · · · · ·,
2·0.
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response of unsprung mass starts with high frequency oscillation which finally reaches a
steady state pattern.

The magnitude of the mean displacement responses of the track beam is quite low
compared to that in constant velocity run. This may be because as the moving load is
passing fast over the track beam, the track structure has little time to react to this load.
The mean velocity has stronger initial transience and its magnitude is comparable to the
steady state values. The mean acceleration of the first three normal co-ordinates of the
track has high values prior to takeoff.

The response variances in takeoff run are presented in Figure 5. The variances for the
vehicle response show very low values in the initial stage. As the vehicle accelerates from
rest, the track input increases in strength with an increase in forward velocity. The variance
characteristics of the vehicle also follow this pattern. The magnitude of the variances is
seen to increase with the forward acceleration of the vehicle, but at takeoff time the
differences in magnitudes are very small. The unsprung mass response variances are
smaller when compared to the sprung mass in displacement but larger in velocity and
acceleration.

The variances of the first three track normal co-ordinates have an oscillatory pattern
about an increasing mean level. There is a gradual increase in amplitude of oscillation until
takeoff. Higher vehicle accelerations induce increased response variances of the track’s first
three normal co-ordinates. The oscillatory trend increases from displacement to velocity
to acceleration response.

3.3.  

The time histories are taken from touch down to the stoppage of the forward motion
of the aircraft. The results are presented for sink velocities 0·6, 0·9 and 1·2 m/s. The glide
velocity and deceleration are assumed to be 215 km/h ad 1·5 m/s2, respectively in each case.
The shock strut at the time of landing, being under no load, is fully extended. The initial
displacements of the sprung and unsprung masses are assumed to be their corresponding
static values. The initial velocities for them are the sink velocity of the aircraft. The initial
condition for the wing relative to the sprung mass and for the track is assumed to be zero.
Response characteristics plots have been obtained from the instant of touch down till
stoppage of the aircraft’s forward motion.

Figure 6 presents the mean displacement response of the vehicle-track system. The
response pattern shows initial high values due to touch down impact, increasing with a
rise in sink velocity. After the initial impact energy is dissipated, the steady state response
becomes dependent on the track roughness. The mean track input frequency is seen to play
a dominant role in the steady state displacement response. As the vehicle loses its forward
velocity, the effectiveness of input from the track decreases, reducing the system response.
The magnitude of responses during the impact phase is larger than that of the taxi and
takeoff runs. The mean displacement and velocity of the wing’s first normal co-ordinates
show the development of the highest peak subsequent to impact. The velocity mean for
the wing’s second normal co-ordinate indicates the presence of more than one frequency
in the oscillation during the impact phase.

Response variances are presented in Figure 7. Strong oscillatory patterns are present for
all the displacements and for the vehicle velocity responses in the touch down phase which
subsequently decrease gradually with the slowing of the vehicle’s forward motion. The
magnitude of the first peak seems to be higher with higher sink velocity. The wing’s third
mode velocity variance rises to a peak after impact and then decreases with a slow rate
showing little oscillation. The initial oscillations are not apparent for the velocity variances
of track modes. These, however, indicate the presence of oscillation in the steady state
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Figure 5. Response variance for take off run: key as in Figure 4.
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Figure 6. Mean response for landing run. Key: sink velocity (m/s); ——, 0·6; — - - —, 0·9; · · · · · · · ·, 1·2.
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Figure 7. Response variance for landing run: key as in Figure 6.
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phase. The initial impact oscillations are subdued in the acceleration variance showing only
one or two peaks.

4. CONCLUSIONS

In the present paper an analytical approach to the study of the flexible vehicle–flexible
track coupled dynamics has been presented. A vehicle model with lumped masses
combined with variable section continuous elements has been used. The method is
restricted to linear suspension and tyre model of the vehicle as well as linear
track/pavement behaviour. It incorporates any deterministic forward velocity description
of the vehicle. Non-homogenity of the track profile characteristics can be handled. Modal
analysis used to decouple the system equations allows vehicle suspension and pavement
dampings to be general. Any deterministic function describing the mean track profile and
any suitable function for the track generalised power spectral density can be used to obtain
the second order system response statistics. Some conclusions arrived at in this study with
aircraft ground runs are presented below.

Mean response characteristics of the vehicle are dependent on the mean description of
the track profile whereas the nature of the covariance response depends on the track profile
second order statistics. It is important to maintain the mean level as well as superimposed
random unevenness in the track profile low to keep the vehicle–track response level low.

All the responses are higher during the landing impact phase at touch down compared
to the taxi and takeoff runs. Flexible wings have strong transients set up at landing touch
down, and the response suggests that its inclusion in the rigid aircraft model is important
for the analysis of possible metal fatigue damage as well as for catastrophic failure. The
flexible wing has appreciable response in the taxi as well as takeoff runs also. Thus,
inclusion of slender members in the vehicle model is important for design and performance
considerations.

A runway track modelled as a beam responds to vehicle imposed loads in different runs.
The response is dependent on vehicle forward velocity and roughness input to the vehicle.
The evaluated magnitude of the track deformation is very low for the vehicle parameters,
track and subgrade properties in the example selected for this study of a passenger aircraft
on a flexible bituminous pavement. This low level of track deformation may not strongly
affect the response of the vehicle. However, it may be important for prediction of track
fatigue life, maintenance and rehabilitation. For some different combinations of vehicle
and track data the pavement response may be significant.
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