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The non-linear nature of very high speed, flexible rod mechanisms has been previously
confirmed, both experimentally and analytically in reference [1]. Therefore, effective control
system design for flexible mechanisms operating at very high speeds must consider the
non-linearities when designing a controller for very high speeds. Active control via fuzzy
logic is assessed as a means to suppress the elastic transverse bending vibration of a flexible
rod of a slider crank mechanism. Several pairs of piezoelectric elements are used to provide
the control action. Sensor output of deflection is fed to the fuzzy controller, which
determines the voltage input to the actuators. A three mode approximation is used in the
simulation study. Computer simulation shows that fuzzy control can be used to suppress
bending vibrations at high speeds, and even at speeds where the uncontrolled response
would be unstable.
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1. INTRODUCTION

The design and vibration control of flexible linkage mechanisms has been much
investigated in the recent literature. One method of designing links is by cross-sectional
geometry optimization [2, 3]. Another method was proposed by Sung and Thompson [4],
who proposed the use of modern composite materials for flexible linkage design because
of their superior damping and high stiffness to weight ratios. These two aforementioned
design approaches can be classified as passive vibration control. Oliver et al. [5] introduced
an active vibration control scheme incorporating a microprocessor controlled actuator
included in the original mechanism to reduce the midspan deflection of the flexible
linkages.

Advances in composite technology—including materials such as optic fibers,
piezoelectric ceramics and polymers—can be bonded or embedded in composite laminates
and structures and may play a significant role in active vibration control. Flexible linkage
mechanisms equipped with these materials (as sensors and actuators) and possessing
computational and control capacities may be classified as smart mechanisms [6].

Bailey and Hubbard [7] designed an active vibration damper using piezoelectric
actuators and distributed parameter control theory. Theoretical and experimental studies
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on multi-layered thin shells coupled with piezoelectric shell actuators for distributed
vibration control were performed by Tzou and Gadre [8].

Sung and Chen [9] employed a state feedback optimal control scheme to suppress the
elastodynamic responses of a high speed four bar mechanism. A Luenberger observer was
also included for states estimation. The instabilities caused by the combined effect of the
control and observation spillover were investigated and prevented. Lee et al. [10] developed
a variational theorem for the finite element analysis and control of flexible linkage systems
using piezoelectric ceramic actuators.

Liao and Sung [11] presented an analytical and experimental study on the elastodynamic
analysis and control of a four bar mechanism using piezoceramic sensors and actuators.
A linear quadratic Gaussian regulator with a loop transfer recovery control scheme was
designed to control the motion of a four bar linkage mechanism with one flexible link. The
results obtained showed that the midspan vibration of the flexible link was greatly
suppressed and the spillover instability can be avoided. However, non-linearities were not
considered in controller design in either reference [9] or [11], because the speeds were low.

Thompson and Tao [12] experimented with a flexible slider crank mechanism using
piezoceramic actuators and strain gage sensors. In one effective scheme, sensor output was
amplified and fed back to the piezoceramics, with gains perhaps determined by a
trial-and-error procedure. Because there is no analytical controller design in reference [12],
one conjectures that controller gains were chosen via an informal trial-and-error procedure
based on error rather than model-based as in references [9] and [11]. These sorts of
procedures are formally employed in fuzzy logic controller design (i.e., trial-and-error
membership function determination and an error-based design instead of model-based),
which is firmly rooted in fuzzy mathematics. Their work bolsters our contention that fuzzy
logic control is worth investigating for flexible mechanisms.

Fuzzy logic control is a non-linear control that has been applied in a wide variety of
control applications. Applications include consumer products, such as washing machines
that can set the cycle time for the amount of dirt in clothes and load size. Research
applications most resembling flexible mechanisms like slider cranks include flexible links
on robots requiring control for accurate positioning [13, 14]. Generally speaking, fuzzy
logic control is justified for both linear and non-linear systems because precise
mathematical models inadequately describe the real world device the model had been
intended to emulate. Founders of fuzzy logic control recognized that classical control
placed too much emphasis on precision and precise models, and therefore could not handle
complex systems. Conventional model based control has been successfully applied when
the dynamics of the plant are well understood, where performance of the plant strongly
depends on the operating parameters. However, uncertainties in the model can yield
unsatisfactory performance of the conventional controller. Conversely, fuzzy logic
controllers are error based controllers that do not depend upon the mathematical model,
that is, they are not model based.

In the case of the slider crank and flexible mechanisms, there are mathematical modelling
uncertainties. Modelling uncertainties can arise from incomplete mathematical models
because of the necessity to create tractable equations; for example slider cranks do not run
at an exact constant crank speed, nor are the rods of constant cross-sectional area, the
joints are not frictionless, a truncated mode approximation is made, non-linearities are
dropped from the analysis, etc. The analytical and experimental response shown in
reference [1] demonstrated non-linear behavior such as bifurcations, jumps, and period
doubling toward chaos in a flexible mechanism. Equilibrium solutions (needed for
linearization for linear controller design methods) are not stationary points but periodic
orbits, and dependent upon the operating speed. In theory, a controller must be designed
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by linearizing about a particular equilibrium solution; however there can be many in the
presence of bifurcations and changing operating crank speeds [15]. In general, controllers
designed using linear control theory after linearization for highly non-linear systems have
been shown to be limited or ineffective, and possibly unstable. Fuzzy logic controllers can
effectively control systems under conditions such as these where other controllers may fail.
For these aforementioned reasons, flexible mechanisms are candidates for fuzzy logic
control.

Lim and Hiymane [16] proposed proportional–integral and fuzzy logic controllers to
control a two link rigid robot. The PI controller was used to ensure fast transient response
and zero steady-state error. The fuzzy logic controller was used to enhance the damping
characteristics of the system. However, they found that the gains adjustment of the PI
controller requires a large effort and the control scheme does not compensate for the
non-linear effects of the robot system.

Liu and Lewis [13] designed a feedback–linearization/fuzzy logic hybrid scheme for
a robotic manipulator with link flexibility. The control scheme was composed of a
feedback–linearization inner-loop control and a fuzzy linguistic outer-loop control.
A reduced-order computed torque control was first used to linearize the whole system to
a Newton’s law-like system, then a linguistic fuzzy controller (of 33 if–then fuzzy rules)
was used to command the rigid modes to track a desired trajectory while the residual
vibrations were maintained as small as possible.

Kubica and Wang [14] applied a fuzzy control strategy to control the rigid body and
the first flexural mode of vibration in a single link robotic arm. Two fuzzy logic controllers
were constructed. The first one was designed to govern the rigid motion of the beam as
it was rotated from one position to another. The second controller was designed to
attenuate the vibrations resulting from the rigid body motion. The results obtained showed
an improvement over those obtained using conventional multivariable techniques.

Boghiu and Marghitu [17] employed a fuzzy logic controller to remove the vibrations
of a periodic impacting flexible link. The flap motion of the flexible link was analyzed.
A fuzzy logic controller was also designed to control the vibrations of a parametrically
excited rotating flexible beam [18].

Due to the attractive features of fuzzy logic controllers, this control strategy is also used
in this work for vibration suppression of an elastic crank–slider mechanism. Robustness
of the fuzzy controller is examined using an external random sine function disturbance.
Studies are based on a three mode approximation of rod bending, higher modes being
truncated from the analysis; this brings up the issue of spillover which is not discussed in
this simulation study. Linear systems methods have been previously proposed to avoid
spillover, but this is still an open question for non-linear systems. Challenges in fuzzy logic
control include systematic ways to determine membership functions and a development
of a stability theory.

2. MATHEMATICAL MODEL

2.1.  

The diagram of the system is shown in Figure 1. The system consists of a rigid massless
link OA (of length a) that can rotate in the horizontal plane with a constant angular
velocity v. A flexible link AB connects the link OA with a piston. The flexible beam has
length L, a constant flexural rigidity EI and a uniformly distributed mass per unit length
r=m/L, where m is the total mass of the beam. The piston, of mass Ms , can slide in the
horizontal direction and Ps is an applied force (e.g., gas force).
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Two reference frames are considered: a ‘‘fixed’’ reference frame (N), of unit vectors i,
j and k, whose origin is at O, and a ‘‘mobile’’ reference frame (R), of unit vectors e1, e2

and e3, with the origin at A. This frame is attached to the flexible link AB, such that the
unit vector e1 is along the undeformed elastic link AB, as shown in Figure 1. Let −f be
the angle between a horizontal line parallel with the i vector passing through joint A and
the direction of the e1 vector. The unit vectors are related by the transformation

&e1

e2

e3'= & cos f

−sin f

0

sin f

cos f

0

0
0
1'& ijk'. (1)

Let P be a current point of the flexible link AB. Because the foreshortening effect is
considered, let u and v be longitudinal and transversal deflections of the point P from its
undeformed position (point P0 on Figure 1). In vector form, these deflections can be written
as

u=−P0 P1 e1 =−ue1, v=P1 Pe2 = ve2. (2)

Let x be the distance from the point A to P0 and rP the position vector of point P with
respect to origin O,

rP = a cos vti+ a sin vtj+(x− u)e1 + ve2. (3)

The transversal deflection v (P1 P in Figure 1) is computed using the expression

v(x, t)= s
n

j=1

Fj (x)qj (t), (4)

where qj (t) are the generalized elastic co-ordinates, and n is the total number of vibrational
modes. The functions Fj (x) are chosen as the mode shapes of a pinned–pinned beam and
are defined by the expression

Fj (x)= sin ( jpx/L). (5)

The longitudinal deflection u (P0 P1 in Figure 1), due to the foreshortening effect is given
by

Figure 1. The system model.
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u= 1
2 g

x

0 01v
1x1

2

dx. (6)

The total kinetic energy T of the system is

T=
r

2 g
L

0

ṙP · ṙP dx+ 1
2 Ms ṡ2. (7)

Using equation (3), one can get

ṙP =drP /dt=[av sin (f−vt)− vf� − ut ]e1 + [av cos (f−vt)+ (x− u)f� + vt ]e2, (8)

where ut and vt are the partial derivatives with respect to time of u and v respectively.
Taking into account that the longitudinal deflection u is much smaller than any other
distances involved in equation (8), the expression of ṙP can be simplified to

ṙP =drP /dt=[av sin (f−vt)− vf� ]e1 + [av cos (f−vt)+ xf� + vt ]e2. (9)

The potential energy U of the system is

U= 1
2 g

L

0

EI012v
1x21

2

dx−Ps s. (10)

The angle f and the linear displacement s of the piston can be determined from the
geometry of Figure 1, using the vectorial equation

OA+AB+BC=OC. (11)

Thus, two constraint equations are obtained:
(1) the i component is

F1 = a cos vt+ s− a−L+(L− u(L)) cos f=0, (12)

where u(L) is the foreshortening value of the point B, computed with the expression

u(L)= 1
2 g

L

0 01v
1x1

2

dx. (13)

(2) the j component is

F2 = a sin vt+(L− u(L)) sin f=0. (14)

Because the mechanism has two constraints F1 and F2, Lagrange’s equations of motion
have the form

d
dt

1T
1q̇0,i

−
1T
1q0,i

+
1U
1q0,i

=Qi +F1 l1 +F2 l2 +Di . (15)

In equation (15), l1 and l2 are Lagrange multipliers (one for each constraint), Qi is the
vector of generalized non-conservative forces and Di is the vector of generalized
disturbance unmodelled forces. The vector q0 is defined by

q0 = [q1, q2, . . . , qn , f, s]T, (16)

and q0,i is the ith component of the vector q0. In this work a three mode approximation
(n=3) of the elastic link is considered. The vector q0 has five components,
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T 1

Properties of piezoelectric material

Specifications Prescribed value Unit

Width (bp ) 1·905×10−2 m
Thickness (tp ) 1·905×10−2 m
Young’s modulus (Ep ) 63×109 N/m2

Strain constant (d31) 180×10−12 m/V

q0 = [q1, q2, q3, f, s]T. (17)

The following equations of motions are obtained:
(1) for the generalized elastic co-ordinates qi , i=1, 2, 3:

1
2 rLq̈i +(−1)i+1 rL2

ip
f� +

i2p2qi cos f

2L
l1 +

i2p2qi sin f

2L
l2 −

rL
2

f� 2qi

+
i4p4EI
2L3 qi +6 0,

2rav2 sin (f−vt)L/ip,
i even
i odd7=Fi + dq,i , (18)

where Fi is the force given by the actuators (piezoelectric elements) and its expression will
be derived later. The force dq,i is the disturbance force associated with the elastic
co-ordinates.

(2) for the angle f,

s
n

i=1

(−1)i+1 rL2

ip
q̈i + s

n

i=1

qi f� rLqi q̇i +0rL3

3
+ s

3

i=1

rL
2

q2
i1f�

+0L sin f− s
n

i=1

i2p2qi sin f

4L 1l1 +0−L cos f+ s
n

i=1

i2p2qi cos f

4L 1l2

+
2rav2L2 sin (f−vt)

p
+ g

G

G

F

f

0,

s
n

i=1

2rav2Lqi cos (f−vt)
ip

,

i even

i odd
h
G

G

J

j
= df , (19)

where df is the disturbance force associated with the angle f.
(3) for the co-ordinate s,

Ms s̈−Ps − l1 = ds , (20)

where ds is the disturbance force associated with the displacement s. The second order
differential equations (18), (19) and (20) and the algebraic equations (12) and (14) form

Figure 2. Actuator locations.
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Figure 3. Basic configuration of a fuzzy logic controller.

a system of twelve equations with twelve unknowns: q1, q2, q3, f, s, their time derivatives,
as well as l1 and l2.

2.2.   

The piezoelectric material is an electromechanical transducer. When an electric field is
applied to piezoelectric material, a strain is produced in the material (assuming free
boundary conditions). Similarly, if the material is stressed, an electric field is generated.
When an electric voltage U(t) is applied, the bending moment produced is [19]

M(x, t)= cU(t) [h(x−L1)−h(x−L2)], (21)

where h( · ) is the Heaviside step function, and L1 and L2 are the locations of the actuator
ends, measured from the joint A. The coefficient c is the moment-voltage constant, defined
by

c= bp d31 Ep (tb + tp )/2, (22)

and is a function of the piezoelectric material properties, such as bp (width of the
piezoelectric), Ep (piezoelectric Young’s modulus), tp (thickness of a single layer of
piezoceramic), d31 (piezoelectric strain constant), and tb (thickness of the beam).

The piezoelectric actuator provides a non-conservative force to the system whose work
can be written as [20]

Wnc =g
L

0

M(x, t)
12v
1x2 dx. (23)

Three pairs of G-1195 piezoelectric actuators (properties shown in Table 1) manufactured
by Vernitron Inc. are attached to the beam shown in Figure 2. The locations of the ends
of each actuator pair (measured from point A) are: L1,1 =0·2L, and L1,2 =0·35L for the
first element, L2,1 =0·45L and L2,2 =0·55L for the second element and L3,1 =0·65L and
L3,2 =0·8L for the third one. The moment-voltage coefficient c is calculated using equation
(22) and has a value of c=1·6464×10−3 lbin/volt. U1 (t), U2 (t) and U3 (t) are the voltages
applied to each top actuator of the pair, and oppositely to the bottom. The transversal
deflection is measured by three sensors, placed at the x1 =L/3, x2 =L/2 and x3 =2L/3
from the point A. These may be strain gages placed on top of the top actuators as in
reference [12]. The output of the kth sensor (k=1, 2, 3) is the actual transversal deflection
of the sensor,

yk = s
3

j=1

Fj (xk )qj (t). (24)
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The output from the kth sensor is used to generate the input voltage for the kth actuator
pair.

The total non-conservative work produced by all three actuator pairs is

Wnc,tot =Wnc,1 +Wnc,2 +Wnc,3 =g
L

0 0 s
3

j=1

Mj (x, t)1 12v
1x2 dx. (25)

Using equation (25), the generalized non-conservative control force in equation (18)
is

Figure 4. The fuzzy sets of the controller input E in (a), E� in (b) and output V in (c).
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T 2

Fuzzy control rules

E PB PM PS ZE NS NM NB

E� =P NM NM NS NS ZE PS PS
E� =Z NB NM NS ZE PS PM PB
E� =N NS NS ZE PS PS PM PM

Qi = c
ip
L $0cos

L1,1 ip
L

−cos
L1,2 ip

L 1U1 (t)+0cos
L2,1 ip

L
−cos

L2,2 ip
L 1U2 (t)

+0cos
L3,1 ip

L
−cos

L3,2 ip
L 1U3 (t)%. (26)

3. FUZZY LOGIC CONTROL

The diagram of a fuzzy logic controller is shown in Figure 3 [21]. Three identical fuzzy
logic controllers (one for each actuator pair) are designed. Each fuzzy logic controller has
as inputs the normalized error E, defined as the difference between the output of the
corresponding sensor (y) and the desired value (yd , zero in this case),

E=(y− yd )/GE= y/GE, (27)

and the normalized value of the error derivative

E� = ẏ/GC. (28)

The output of each fuzzy logic controller is the normalized value of the voltage V that
can be applied to the corresponding actuator. The actual and normalized voltages are
related by the expression

U=VGU. (29)

Here GE, GC and GU are predefined scaling factors.

3.1. 

During fuzzification (the FI block in Figure 3), input variables are associated with a set
of linguistic fuzzy variables (e.g., fuzzy error E and fuzzy change in error E� ). Fuzzy
variables have value—describable not by numbers—but by fuzzy sets (for example NB for
Negative Big, etc.). Associated with each fuzzy set are triangular membership functions

Figure 5. Influence of RULE 1 on output mE in (a), mE� in (b), and mV in (c).
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Figure 6. Influence of RULE 2 on output mE in (a), mE� in (b), and mV in (c).

m, like those shown in Figure 4. The process of associating a numerical value with a
fuzzy set is called fuzzification. A membership function provides through m a measure of
the degree of membership a variable has in a given set. The scaling factors GE and GC
are chosen such that the minimum and maximum values of E and E� lie within the
aforementioned intervals. These intervals are called the Universe of Discourse associated
with that particular variable. Individual triangular membership functions will overlap, as
one can see in Figure 4. The overlap between the sets allows for a smooth transition
between sets. The error E and the normalized output voltage V membership functions have
seven sets, defined as positive big (PB), positive medium (PM), positive small (PS), zero
(ZE), negative small (NS), negative medium (NM) and negative big (NB). The E�
membership function has 3 sets: positive (P), zero (Z) and negative (N).

As an example, let one consider that for a certain moment of time, the error E and its
derivative E� , for one sensor, are 0·3 and 0·05, respectively. From Figure 4, one can see
that the error belongs to both positive small (PS) and positive medium (PM) sets, with
‘‘grades’’ m of 2/3 and 1/3, respectively (grade being an indication of the degree of partial
membership of element E in a linguistic set). A maximum grade of 1 indicates that E
belongs entirely to one set. The error derivative E� belongs to both zero (Z) and positive
(P) sets, with grades 0·75 and 0·25, respectively.

It should be mentioned that the fuzzy logic controller design is a heuristic process, and
determination of gains GE and GC and the number of fuzzy sets in Figure 4 that make
up a membership function is not an analytical procedure, as in classical control system
design. The approach taken here was to design a fuzzy controller with a small number of
fuzzy sets, but yet with a sufficiently complete rulebase to achieve small rod bending
deflections and without exceeding the breakdown voltage of the piezoceramic material
(1500 V).

3.2.  

In the inference engine (the IE block in Figure 3), fuzzy control rules (predetermined
rules among the fuzzy variables described by IF–THEN statements, and easily presented

Figure 7. Influence of RULE 3 on output mE in (a), mE� in (b), and mV in (c).
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Figure 8. Influence of RULE 4 on output mE in (a), mE� in (b), and mV in (c).

in table form) are applied to determine another fuzzy set to describe the output control
action. The inference engine is driven by such a rule-base control scheme, which is usually
derived from an operator’s experience and/or a control engineer’s expertise. In this study,
a proportional–derivative type of control action is utilized and has the following
IF–THEN conditional statement structure:

IF Ei is Ai and E� i is Bi , THEN UF is Ci ,

where i is the ith rule, and Ai , Bi , and Ci are linguistic fuzzy sets in the membership
functions for Ei , E� i and UF respectively. The control rules used in this study are a
combination of 7×3=21 rules as shown in Table 2.

From Table 2, one notices that, for the present example, 4 rules are set

Rule 1: IF E is PS and E� is Z, THEN V is NS;

Rule 2: IF E is PS and E� is P, THEN V is NS;

Rule 3: IF E is PM and E� is Z, THEN V is NM;

Rule 4: IF E is PM and E� is P, THEN V is NM.

The effects of the AND operation (or ‘‘Mamdani’s minimum operation’’) associated with
each rule on the output fuzzy sets are shown in Figures 5, 6, 7 and 8. Each hatched
trapezoid represents the configuration of the output fuzzy set, for a given rule. The global
configuration of the output fuzzy set, for all 4 rules, is shown in Figure 9, where the OR
operation is applied. The hatched zone represents the figure created by putting together

Figure 9. The output fuzzy set after the AND operation.
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Figure 10. (a) Uncontrolled and (b) controlled mid span deflection for 1435 r.p.m.

all the four trapezoid from Figures 5, 6, 7 and 8. It should be noticed that overlapped areas
are eliminated.

3.3. 

The fuzzy output is converted to a crisp or exact numerical value of output for input
to control the process or plant (after scaling).

The output of the fuzzy controller is a fuzzy variable defined here on the interval [−1, 1]
and convertible into the non-fuzzy variable V by a process called defuzzification (performed
in the block DFI in Figure 3). The defuzzification block is aimed at creating a
numerical-valued non-fuzzy control action that best represents a fuzzy control action. In
this paper, the common method called ‘‘center of area method’’ is applied.

For the considered example, the normalized control voltage V of the specific actuator
is the horizontal co-ordinate of the center of gravity of the hatched zone from Figure 9.
The actual voltage U is computed using equation (29).

4. SIMULATIONS AND RESULTS

Parameters of that apparatus were chosen to be from reference [1]: aluminum rod length
L=11·5 in; rod cross-section 0·75 in×0·0603 in; and a damping ratio=0·02 for the first
and 0·04 for the second and third modes, respectively; piston mass Ms =0·478 lbm, and
rod mass per unit length=0·0045 lbm/in. Membership functions and fuzzy sets used were
those in Figures 4 and 5. In this study, the scaling factors were chosen after trial-and-error
to be GE=104 when =yk =Q 10−4, otherwise, GE=10; GC=1 and GU=1500.

Figures 10(a) and 10(b) show the uncontrolled and controlled midspan deflection of the
connecting-rod for a 0·25 in crank running at 1435 r.p.m. The horizontal axis represents
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Figure 11. (a) Uncontrolled and (b) controlled mid span deflection for 912 r.p.m.

the time in cycles, where one cycle corresponds to one rotation of the crank.
Experimentally the authors have observed that under these conditions the response period
doubled and hence the system is unstable, as shown in Figure 10(a) from Halbig and Beale
[1]. When the fuzzy logic controller is applied, the amplitude of the deflection decreases
to 50 min.

Figures 11(a) and 11(b) show the uncontrolled and controlled mid-span response of the
connecting-rod when the crank length is 0·25 in and running at 912 r.p.m. The

Figure 12. (a) Second mode and (b) third mode response for 912 r.p.m.: ——, without control input; – – –,
with control input.
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Figure 13. Applied voltages on actuators: ——, first actuator; ——, second actuator; – – –, third actuator.

uncontrolled response amplitude was about 0·04 in midspan deflection. In both instances,
the rod is initially started without transverse deflection and velocity of deflection. It reveals
that the midspan deflection is reduced quickly by this control scheme. Figures 12(a) and
12(b) show the time variation of the second and third mode, respectively. Although the
second and third modes are not important contributors to the total response of the
uncontrolled beam, the possibility exists that a controller may excite these higher modes.
However, Figures 12(a) and 12(b) show that the second and third mode response is indeed
controlled, and are strongly suppressed by this controller. Figure 13 shows the
corresponding input voltage applied to the three piezo-actuators. Note that peak voltages
are below the breakdown voltage of the piezo-material at 21500 volts.

The robustness of the control scheme is tested by including unmodellable disturbance
effects as a randomized sine function in equation (15) which has the form d=[dq df ds ]T.
The randomized sine function is

d=D× rand×sin vt, (30)

where rand is the random number and D is the amplitude. The response of the controlled
system to no disturbance and disturbance with D equalling 10% are plotted in Figure 14
for the speed again equalling 912 r.p.m., for the crank size 0·25 in. This plot shows that
the proposed control law is able to contain undesired disturbances while still keeping the
response small.

Figure 14. Mid span deflection for random noise for 912 r.p.m.: ——, without noise; ——, with noise
(D=10%).



   51

5. CONCLUSIONS

Research has not been focussed on flexible mechanism control in the presence of
non-linearities. Even though the traditional linear control laws have been applied to
flexible mechanisms, they may not be suitable when the non-linearities are not negligible.
In this paper, the application of fuzzy control for flexible mechanisms is explored. Fuzzy
logic is found to be quite suitable. From the numerical simulation, the transverse deflection
of the flexible link was significantly reduced by a fuzzy control algorithm. The next logical
step is experimental work.
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