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Unconditionally stable higher order time-step integration algorithms are presented. The
algorithms are based on the Newmark method with complex time steps. The numerical
results at the (complex) sub-step locations are combined linearly to give higher order
accurate results at the end of the time step. The ultimate spectral radius in the
high-frequency range is a controllable parameter for these algorithms. Among these
algorithms, the asymptotic annihilating algorithm and the non-dissipative algorithm
correspond to the first sub-diagonal and diagonal Padé approximations respectively. The
characteristics of the present algorithms with various numerical dissipations are found to
be in between these two algorithms. The algorithmic parameters for the third, fifth and
seventh order algorithms with various numerical dissipations are given explicitly. The order
of accuracy is increased by one if these algorithms are set to non-dissipative. The spectral
radii, algorithm damping ratios and relative period errors are compared favourably with
other higher order algorithms.
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1. INTRODUCTION

It is common to obtain the numerical solutions for structural dynamic problems using
step-by-step time integration algorithms. There are advantages for the algorithms to
possess numerical dissipation so as to damp out the spurious high-frequency responses.
Wood [1] suggested that the curve of the spectral radius against Dt/T (where T is the
undamped natural period and Dt is the time step) should stay close to unit level as long
as possible and decrease to about 0·5–0·8 as Dt/T tends to infinity. The corresponding
spectral radius as Dt/T:a is defined as the ultimate spectral radius and is denoted by
m in this paper. In the extreme case, the ulitimate spectral radius approaches zero so that
the high-frequency responses are eliminated in one time step. The algorithms with this
property are asymptotic annihilating.

Apart from numerical dissipation, the algorithms should be unconditionally stable so
that time steps of any size can be used without introducing numerical instability. The
ability in using a large time step is of advantage to structural dynamic problems where
the responses are contributed to mainly by the low-frequency modes. The time-step sizes
need not be too small to resolve the very high frequency modes accurately, as long as the
algorithm remains numerically stable.

The Newmark method is the most widely used algorithm for structural dynamic
problems. However, the algorithm is only first order accurate when it is dissipative. The
second order accurate Newmark method is non-dissipative.

There are other algorithms that are unconditionally stable, second order accurate and
possess numerical dissipation, e.g., Wilson-u method, collocation method, Houbolt

0022–460X/98/060069+21 $25.00/0/sv971300 7 1998 Academic Press Limited



. . 70

method, Park method, HHT-a method and Generalized-a method. A more detailed
description of these algorithms can be found in books by Wood [1], Hughes [2] and
Zienkiewicz and Taylor [3].

Higher order accurate algorithms that are unconditionally stable and non-dissipative
can be constructed from the diagonal Padé approximations [4, 5], Runge–Kutta methods
[4, 5], weighted residual methods [1, 3], Petrov–Galerkin method [6] or bi-discontinuous
time Galerkin method [7].

Higher order accurate algorithms that are unconditionally stable and asymptotic
annihilating can be constructed from the discontinuous Galerkin method [7, 8, 9],
Petrov–Galerkin method [6] and weighted residual methods [10].

Other higher order accurate dissipative algorithms can be obtained from Runge–Kutta
methods [4, 5], bi-discontinuous time Galerkin method [7] and weighted residual methods
[1, 3]. However, the high-frequency dissipation is not a directly controllable parameter in
these algorithms. Sometimes, there are cusps in the curves of the spectral radii against Dt/T
for the algorithms. It is undesirable as the responses in the mid-frequency range would have
more algorithmic damping than those in the high-frequency range.

Higher order algorithms can also be constructed by using the Romberg extrapolation
technique [11]. The accuracy of the solutions obtained from the second order accurate
Newmark method is improved by evaluating the results at the end of the time step a few
times with different sub-step sizes. The fourth, sixth and eighth order algorithms can be
constructed with 3, 7 and 15 evaluations. The numerical results are very accurate and are
comparable to the Padé approximations. However, these extrapolated Newmark methods
are unconditionally unstable, i.e., the spectral radius is greater than unity even for very
small time steps. Very small time-step sizes are required to maintain numerical stability.

Recently, Zhong and Williams [12] proposed a precise time-step integration method. The
second order differential equations were transformed into an equivalent first order form.
The exact homogeneous solution is expressed in terms of the exponent of the coefficient
matrix. The special feature of the method was that the exponential matrix was evaluated
recursively from a truncated Taylor’s series approximation. The number of recursive
evaluations was set to 20 and a highly precise time-step integration algorithm was
obtained. The exponential matrix so obtained can be regarded as numerically exact.
Solution algorithms for various non-linearly varying excitations were given explicitly [13].

The computational effort, however, is very high as many matrix multiplications are
required. The method is found to be suitable for structural non-stationary random
response problems and problems formulated by the boundary element method, where the
matrices are fully populated [12]. The method can also be used to generate convincing
benchmark solutions [12]. The computation efficiency can be improved by using the
sub-domain method [14] or the step-response and impulsive-response matrices [15].

1.1.   ’ - 

Recently, Tarnow and Simo [16] presented a sub-marching procedure (Figure 1(a)) to
construct fourth order accurate algorithms from a fairly general class of second order
accurate algorithms. In their procedure, a sequential sub-marching (forward and
backward) of three evaluations is required to advance one time step. The stability,
conservative properties and implementation of the underlying second order algorithm are
retained. When the procedure is applied to the second order Newmark method, the
resultant algorithm is non-dissipative. To introduce high-frequency dissipation, the
post-process filtering of the solution is suggested.

In this paper, a sub-stepping procedure (Figure 1(b)) is proposed. The numerical results
at different sub-step locations are evaluated independently and then combined linearly to
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give higher order accurate results at the end of the time step. As in Tarnow and Simo’s
procedure, there are no changes in the implementation of the underlying Newmark method
except the use of complex time steps. However, the high-frequency dissipation is
controllable for the present algorithms. Besides, as the numerical results at the sub-step
locations are independent of each other, the evaluations can be computed in parallel.
Furthermore, the present procedure is more general as it can construct other higher order
algorithms systematically from the underlying second order accurate Newmark algorithm.

1.2.    

Unconditionally stable higher order accurate step-by-step time integration algorithms
with controllable numerical dissipation are constructed. The Newmark method with
complex time steps is used. The numerical results at the end of a time step are obtained
by combining results at several sub-step locations. The weighting factors and the sub-step
locations are algorithmic parameters. As shown in sections 5 and 6, the algorithmic
parameters are chosen to eliminate the leading trucation error terms and to give the
desirable ultimate spectral radius m.

It is shown that for 1e mq−1, the algorithms are unconditionally stable. The spectral
radius decreases progressively to the required ultimate spectral radius m as Dt/T increases.
The high-frequency responses are subjected to more algorithmic damping as required.
Besides, the eigenvalues for the numerical amplification matrix are complex conjugates.
As a result, the algorithms derived are unconditionally C-stable and higher order accurate.

The third order algorithms are derived in detail in section 7. The algorithmic parameters
for the fifth and seventh order algorithms are given explicitly in section 8. The present
asymptotic annihilating algorithm (m=0) and non-dissipative algorithm (m=1) are found
to be the first sub-diagonal and diagonal Padé approximations respectively. Hence, for the
present non-dissipative algorithms, the order of accuracy is increased by one.

Figure 1. Sub-marching (a) and sub-stepping (b) procedures. W, Results to be used to find the response at
tn+1.
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In section 9, the spectral radii, the algorithmic damping ratios and the relative period
errors of the present proposed higher order algorithms are compared with other higher
order algorithms. A numerical example is given in section 10 to illustrate the present higher
order accurate algorithms.

2. EQUATIONS OF MOTION

The equations of motion of a multi-degree-of-freedom system after spatial discretization
using the finite element method can be written as

[M]{ü(t)}+[C]{u̇(t)}+[K]{u(t)}= {F(t)}, (1)

where [M], [C] and [K] are the mass, damping and stiffness matrices respectively, {F(t)}
is the applied load vector, {u(t)} is the unknown displacement vector which in general is
a function of time t and dots denote differentiation with respect to time t. The initial
conditions at t=0 are {u(0)}= {u0} and {u̇(0)}= {v0}. The numerical solutions of
equation (1) can be obtained by step-by-step time integration methods.

It would be cumbersome and difficult to study the characteristics of an algorithm by
applying it to equation (1) directly. Instead, the modal decomposition method can be used
to uncouple equation (1) by involving the orthogonality properties of the free vibration
mode shapes of the undamped system. In this case, modal damping is assumed.

It has been rigorously established that the integration of the uncoupled equations is
equivalent to the integration of the original system [1–4]. It is therefore more convenient
and sufficient for the purpose of investigating the characteristics of a proposed algorithm
to consider the equation of motion of a single-degree-of-freedom system in the form

ü(t)+2jvu̇(t)+v2u(t)= f(t), (2)

where j, v and f(t) are the damping ratio, undamped natural frequency of the system and
the forcing excitation respectively.

3. NEWMARK METHOD

Equation (1) can be solved by the Newmark method. The numerical solutions {un+1}
and {vn+1} approximating {u(t)} and {u̇(t)} respectively at t= tn+1 can be obtained from
{un} and {vn} at t= tn by

{un+1}= {un}+Dt{vn}+Dt2(1−2b)/2{an}+Dt2b{an+1}, (3a)

{vn+1}= {vn}+Dt(1− g){an}+Dtg{an+1}, (3b)

[M]{an}+[C]{vn}+[K]{un}= {F(tn )}, (3c)

[M]{an+1}+[C]{vn+1}+[K]{un+1}= {F(tn+1)}, (3d)

where Dt= tn+1 − tn , b and g are the algorithmic parameters. Starting from the given initial
conditions {u0} and {v0} at t=0, the approximate numerical solutions at other time point
t= tn can be found by using equations (3a–d) repeatedly. To analyse a time-step
integration algorithm, tn and tn+1 can be conveniently chosen as 0 and Dt respectively.

3.1. --- 

Equation (2) is used to study the characteristics of the Newmark algorithm and the
constructed higher order algorithms. There are many ways to express the Newmark
algorithm. Equation (3) is the single-step three-stage form. For comparison with the
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analytical solutions, the Newmark algorithm is cast in the equivalent single-step two-stage
form for the single-degree-of-freedom system as

6un+1

vn+17=[ANM (Dt)]6un

vn7+[LNM (Dt)]6 f(tn )
f(tn+1)7, (4)

where [ANM (Dt)] is the numerical amplification matrix and is given by

K L
G G

2(2b−g)jv3Dt3+(2b−1)v2Dt2

+4gjvDt+2
2+4gjvDt+2bv2Dt2 2

2(2b− g)j2v2Dt3 + (2g−1)jvDt2 +Dt
2+4gjvDt+2bv2Dt2G G

G G
G G−(2b− g)v4Dt3 −2v2Dt

2+4gjvDt+2bv2Dt2 2
−(2b−g)jv3Dt3+(b−g)v2Dt2+2(g−1)jvDt+1

2+4gjvDt+2bv2Dt2k l
and

(1−2b)Dt2 +2j(g−2b)vDt3

2+4gjvDt+2bv2Dt2

2bDt2

2+4gjvDt+2bv2Dt2

[LNM (Dt)]=G
G

G

K

k
2(1− g)Dt−(g−2b)v2Dt3

2+4gjvDt+2bv2Dt2

2gDt
2+4gjvDt+2bv2Dt2

G
G

G

L

l

.

The Taylor series expansions of the entries in [ANM (Dt)] about Dt=0 are useful when
studying the truncation errors. They are given by

ANM (1, 1)=1− 1
2 v2Dt2 +2bjv3Dt3 − 1

2 b(8gj2 −1)v4Dt4

−bj(2b+ g−8g2j2)v5Dt5 + · · · , (5a)

ANM (1, 2)=Dt− jvDt2 + b(4j2 −1)v2Dt3 − bj(2g(4j2 −1)−1)v3Dt4

−b(2gj2 + (b−4g2j2) (4j2 −1))v4Dt5 + · · · , (5b)

ANM (2, 1)=−v2Dt+2gjv3Dt2 − 1
2 g(8gj2 −1)v4Dt3 − (−8g2j2 + g+2b)

×gjv5Dt4 − 1
2 g(4g2j2(1−8gj2)+ 16bgj2 − b)v6Dt5 + · · · , (5c)

ANM (2, 2)=1−2jvDt+ g(4j2 −1)v2Dt2 − gj(2g(4j2 −1)−1)v3Dt3

−g(4g2j2(1−4j2)+2(g+2b)j2 − b)v4Dt4

+gj(8g3j2(1−4j2)+4g(g+4b)j2 − b(1+4g))v5Dt5 + · · · . (5d)

4. TRUNCATION ERRORS

The convergence of a numerical algorithm requires consistency and stability according
to Lax equivalent theorem. The consistency property can be determined from the
truncation error by comparing the numerical amplification matrix with the analytical
amplification matrix. The stability requirements and other measures of accuracy would be
considered in the next few sections.

The analytical amplification matrix for equation (2) is given by

cos (vd Dt)+
jv

vd
sin (vd Dt)

1
vd

sin (vd Dt)
[A(Dt)]= e−jvDtG

G

G

K

k −
v2

vd
sin (vd Dt) cos (vd Dt)−

jv

vd
sin (vd Dt)

G
G

G

L

l
, (6)

where vd =z1− j2v is the damped vibration frequency.
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The Taylor series expansions of the entries in [A] about Dt=0 are

A(1, 1)=1− 1
2 v2Dt2 + 1

3 jv3Dt3 − 1
24 (4j2 −1)v4Dt4 + 1

30 j(2j2 −1)v5Dt5 + · · · , (7a)

A(1, 2)=Dt− jvDt2 + 1
6 (4j2 −1)v2Dt3 − 1

6 j(2j2 −1)v3Dt4

+ 1
120 (16j4 −12j2 +1)v4Dt5 + · · · , (7b)

A(2, 1)=−v2Dt+ jv3Dt2 − 1
6 (4j2 −1)v4Dt3 + 1

6 j(2j2 −1)v5Dt4

− 1
120 (16j4 −12j2 +1)v6Dt5 + · · · , (7c)

A(2, 2)=1−2jvDt+ 1
2 (4j2 −1)v2Dt2 − 2

3 j(2j2 −1)v3Dt3 + 1
24 (16j4 −12j2 +1)v4Dt4

− 1
60 j(16j4 −16j2 +3)v5Dt5 + · · · . (7d)

Comparing equations (5) and (7), it can be seen that the truncation errors are O(Dt3)
(i.e., second order accurate) if g=1/2 and O(Dt2) (i.e., first order accurate) otherwise. The
leading truncation errors can be eliminated by linearly combining the numerical
amplification matrices at various sub-step locations (bi Dt) with weighting factor ai as
shown in the next section.

5. TRUNCATION ERROR ELIMINATION PROCEDURE

The sth order accurate numerical amplification matrix [As (Dt)] with truncation error
O(Dts+1) is to be constructed from

[As (Dt)]=Sai [ANM (bi Dt)], (8)

where ai and bi are algorithmic parameters to be determined. The range of the index i
depends on the number of parameters used and is not specified at the mean time. The
algorithmic parameters are chosen so that the Taylor series expansions of equations (7)
and (8) match for the first (s+1) terms, i.e., from Dt0 to Dts.

Comparing the Taylor series expansions of the entries in [As ] with those in [A], it can
be shown that the conditions to match the sth terms are as follows:

for s=0, Sai =1, (9a)

for s=1, Sai bi =1, (9b)

for s=2, Sai b
2
i =1, and g=1/2, (9c)

for s=3, Sai b
3
i =2/3, and b=1/4, (9d)

for s=4, Sai b
4
i =1/3, (9e)

for s=5, Sai b
5
i =2/15, (9f )

or in general, for s= n, Sai b
n
i =2n−1/n! (9g)

For example, to obtain a second order algorithm, g=1/2 and ai and bi must satisfy
equations (9a–c). It can be done easily by choosing a1 =1 and b1 =1. This is of course
the original Newmark algorithm. Higher order algorithms can be constructed
systematically by solving more equations with more undetermined algorithmic parameters.
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It can be seen that for b0 =0, [ANM (0)]= [I] is an identity matrix. No evaluation is
required. Therefore, it is at no cost to assume one of the sub-step locations to be at the
beginning of the time interval, i.e., b0 =0. The corresponding weighting factor a0 will be
determined with other algorithmic parameters when constructing higher order algorithms.

6. HIGH-FREQUENCY NUMERICAL DISSIPATION

The spectral radius is defined as the largest magnitude of the eigenvalues of a numerical
amplification matrix. It is a function of vDt (or Dt/T) and other algorithmic parameters.
For unconditionally stable algorithms, the spectral radius must be less than unity for all
vDt. In the following, the spectral radius as Dt/T (or Dt if T is considered fixed)
approaching infinity is considered.

For third or higher order algorithms, as in equation (9), it is required that b=1/4 and
g=1/2. The numerical amplification matrix in equation (8) as Dt approaches infinity is
given by

Lim
Dt:a

[As (Dt)]=Lim
Dt:a

Sai [ANM (bi Dt)]= a0 $10 0
1%+ s

i$ 0

ai $−1
0

0
−1%. (10)

The magnitude of the eigenvalues =la = is the square root of the determinant of the matrix
in equation (10). Let m denote this ultimate spectral radius, then

m2 =det (Lim
Dt:a

[As (Dt)])=0a0 − s
i$ 0

ai 1
2

= (2a0 −1)2, (11)

by using equation (9a). Hence the weighting factor a0 for the initial condition is related
to the ultimate spectral radius, i.e.,

a0 = 1
2 (12 m). (12)

The sign of m is chosen so that the algorithm is undefined as m=−1 as shown in the
following sections.

7. THIRD ORDER COMPLEX-TIME-STEP ALGORITHMS

Using three pairs of ai and bi and assuming b0 =0, there are five unknowns a0, a1, a2,
b1 and b2 to be determined. They can be used to solve five equations, in particular,
equations (9a–d) and (12). The resultant algorithm is at least third order accurate. It can
be shown that a0, a1, a2, b1 and b2 can be solved in terms of m as

a0 = 1
2 (1+ m), a1 =

1− m

4
+ i

4+7m+ m2

4z2+2m− m2
, a2 =

1− m

4
− i

4+7m+ m2

4z2+2m− m2
,

(13a)

b0 =0, b1 =
2+ m

3(1+ m)
− i

z2+2m− m2

3(1+ m)
b2 =

2+ m

3(1+ m)
+ i

z2+2m− m2

3(1+ m)
, (13b)

where i=z−1. It can be shown that b1 and b2 are the roots of the quadratic equation
3(1+ m)x2 − (4+2m)x+2=0. The algorithmic parameters are complex if
1−z3Q mQ 1+z3. Obviously, a1 and a2 (b1 and b2) are complex conjugate pairs.
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The third order numerical amplification matrix [A3 (Dt)] can be written as

[A3 (Dt)]= a0 [I]+ a1 [ANM (b1 Dt)]+ a2 [ANM (b2 Dt)]

= a0 [I]+ a1 [ANM (b1 Dt)]+ a1 [ANM (b1 Dt)], (14)

where Z� is the complex conjugate of Z. It can be seen that even though complex numbers
are used, the resultant numerical amplification matrix in equation (14) is real.

It can be shown that the eigenvalues of the undamped numerical amplification matrix
(i.e., with j=0) are complex conjugates and the squares of the moduli of the eigenvalues
are

=l1 =2 = =l2 =2 =det ([A3])=1−
v4Dt4(1− m2)

v4Dt4 +4(1+ m+ m2)v2Dt2 +36(1+ m)2. (15)

It can be shown that det ([A3])e 0 for all real values of vDt and m. Also, the algorithm
is conditionally stable with the spectral radius exceeding unity for some values of vDt if
mq 1 or mQ−1. When m approaches −1, b1 and b2 in equation (13) approach infinity
and the formulation is not valid. As a result, the algorithm is unconditionally C-stable only
when 1e mq−1. Besides, it can be seen that the spectral radius decreases monotonically
as vDt increases. This gives good algorithmic damping properties as the high-frequency
responses are damped out progressively.

The leading truncation error terms for the entries in [As ]− [A] can be shown to be
proportional to equation (9e) and are given by

Sa1 b4
1 −1/3=−

(1− m)
9(1+ m)

. (16)

The errors of an algorithm can be measured by the algorithmic damping ratio and the
relative period error. They are related to the numerical dissipation and dispersion (or the
amplitude and phase errors). If the complex eigenvalues l1 and l2 of the numerical
amplification matrix are expressed in the following form

l1,2 = exp(v̄Dt(−j�2 i)), (17)

where i=z−1, then v̄ and j� are defined as the algorithmic frequency and algorithmic
damping ratio respectively. The relative period error is defined as (T� −T)/T where
T=2p/v and T� =2p/v̄.

It can be shown that the relative period error and algorithmic damping ratio for the third
order accurate algorithm are

Relative period error=
2− m+2m2

540(1+ m)2 v4Dt4 +O(Dt6), (18a)

Algorithmic damping ratio=
1− m

72(1+ m)
v3Dt3 +O(Dt5). (18b)

From equation (18a), it can be seen that no real value of m could eliminate the leading
error term further. However, the leading error term is minimized if m=1. In this case, both
equations (16) and (18b) become zero and equation (15) becomes 1. The algorithm is then
fourth order accurate and non-dissipative. Besides, it can be seen that if m=−1, the
formulation is not valid as some of the algorithmic parameters are undefined in equation
(13).

As vDt approaches infinity, it can be shown that the squares of the moduli of the
eigenvalues are, as expected,

Lim
Dt:a

=l1 =2 =Lim
Dt:a

=l2 =2 = =la =2 = m2. (19)
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Hence, for a desirable =la =, two values of m (=2=la =) are possible. However, it can be
seen that the errors increase as m decreases from 1. As a result, for a desirable ultimate
spectral radius =la =, m= =la = would give better results than m=−=la =. In conclusion,
only algorithms with 0E mE 1 would be useful.

For record purposes, the entries in equation (14) can be explicitly written as

A3 (1, 1)=

mr4−4(2m+1)jr3−2(7m2+16m+7−12(m+1)j2)r2 +24(m+1) (m+2)jr+36(1+ m)2

r4 +4(m+2)jr3 +4(m2 + m+1+6(m+1)j2)r2 +24(m+1) (m+2)jr+36(1+ m)2 ,

(20a)

A3 (1, 2)=

−(2(m2 +4m+1)r2 +12(m−1) (m+1)jr−36(1+ m)2)r/v
r4 +4(m+2)jr3 +4(m2 + m+1+6(m+1)j2)r2 +24(m+1) (m+2)jr+36(1+ m)2,

(20b)

A3 (2, 1)=

(2(m2 +4m+1)r2 +12(m−1) (m+1)jr−36(1+ m)2)rv

r4 +4(m+2)jr3 +4(m2 + m+1+(6m+1)j2)r2 +24(m+1) (m+2)jr+36(1+ m)2,

(20c)

A3 (2, 2)=

mr4+4m(m+2)jr3−2(7m2+16m+7−12m(m+1)j2)r2−24(m+1) (2m+1)jr+36(1+m)2

r4 +4(m+2)jr3 +4(m2 + m+1+6(m+1)j2)r2 +24(m+1) (m+2)jr+36(1+ m)2 ,

(20d)

where r=vDt.

7.1.     

Consider the asymptotic annihilating algorithm with m=0. The algorithmic parameters
in equation (13) are

a0 =
1
2
, a1 +

1
4

+ i
1

z2
, a2 =

1
4

− i
1

z2
, b0 =0, b1 =

2
3

− i
z2
3

, b2 =
2
3

+ i
z2
3

,

(21)

and the entries of the numerical amplification in equations (20a–d) are

A3 (1, 1)=
−4jr3 + (−14+24j2)r2 +48jr+36
r4 +8jr3 + (4+24j2)r2 +48jr+36

, (22a)

A3 (1, 2)=
(−2r3 +12jr2 +36r)/v

r4 +8jr3 + (4+24j2)r2 +48jr+36
, (22b)

A3 (2, 1)=
(2r3 −12jr2 −36r)v

r4 +8jr3 + (4+24j2)r2 +48jr+36
, (22c)

A3 (2, 2)=
−14r2 −24jr+36

r4 +8jr3 + (4+24j2)r2 +48jr+36
, (22d)

where r=vDt. It can be shown that equation (22) is equivalent to the first sub-diagonal
(1, 2) Padé approximation. Hence, the first sub-diagonal (1, 2) Padé approximation is
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re-derived by the present complex-time-step Newmark methods. The algorithm is
asymptotic annihilating, unconditionally stable (hence L-stable) and third order accurate.

7.2.   - - 

Consider the non-dissipative algorithm with m=1. The algorithmic parameters in
equation (13) are

a0 =1, a1 = iz3, a2 =−iz3, b0 =0, b1 =
1
2

− i
z3
6

, b2 =
1
2

+ i
z3
6

,

(23)

and the entries of the numerical amplification in equation (20) are

A4 (1, 1)=
r4 −12jr3 + (−60+48j2)r2 +144jr+144
r4 +12jr3 + (12+48j2)r2 +144jr+144

, (24a)

A4 (1, 2)=
(−12r3 +144r)/v

r4 +12jr3 + (12+48j2)r2 +144jr+144
, (24b)

A4 (2, 1)=
(12r3 −144r)v

r4 +12jr3 + (12+48j2)r2 +144jr+144
, (24c)

A4 (2, 2)=
r4 +12jr3 + (−60+48j2)r2 −144jr+144
r4 +12jr3 + (12+48j2)r2 +144jr+144

, (24d)

where r=vDt. It can be shown that equation (24) is equivalent to the diagonal (2, 2) Padé
approximation. Hence, the diagonal (2, 2) Padé approximation is re-derived by the present
complex-time-step Newmark methods. The algorithm is non-dissipative, unconditionally
stable and fourth order accurate.

7.3.  

Since complex numbers are used in the evaluation, the computational effort is higher
than normal real numbers calculation. In general, the effort for complex number
multiplication is four times higher than that of real number multiplication. However, it
can be seen that b1 and b2 are complex conjugates. The numerical results corresponding
to b2 can be obtained from b1 directly since

a2 [ANM (b2 Dt)]= ā1 [ANM (b�1 Dt)]= a1 [ANM (b1 Dt)]. (25)

As a result, the present third order complex-time-step algorithms require four times the
effort of an ordinary Newmark method to advance one time step. However, the present
algorithms have the advantages of being third order accurate, unconditionally stable with
controllable numerical dissipation, while the Newmark method is only second order
accurate, unconditionally stable and non-dissipative if 2be g=1/2 or first order accurate,
unconditionally stable and dissipative if 2be gq 1/2.

For Tarnow and Simo’s method, it can be seen that the computational effort is roughly
three times that of the Newmark method as there are three evaluations to advance one
time step. However, as shown later on, the method is not very accurate although it is a
fourth order algorithm. The fourth order extrapolation Newmark method requires three
evaluations as well. However, the method is unconditionally unstable. When the third
order accurate L-stable (1, 2) Padé approximation and the fourth order accurate
A-stable (2, 2) Padé approximation are expressed in matrix form [6, 10], the bandwidth and
the matrix size are doubled. The computational effort is therefore increased by four times.
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T 1

Parameters for the fifth order complex-time-step Newmark methods

m b0 b1 Re (b2) Im (b2) Re (b3) Im (b3)

1·0 0 0·430629 0·284686 0·271600 0·284686 −0·271600
0·9 0 0·439978 0·285274 0·279493 0·285274 −0·279493
0·8 0 0·449535 0·286344 0·287727 0·286344 −0·287727
0·7 0 0·459389 0·287952 0·296333 0·287952 −0·296333
0·6 0 0·469644 0·290178 0·305346 0·290178 −0·305346
0·5 0 0·480424 0·293121 0·314804 0·293121 −0·314804
0·4 0 0·491885 0·296915 0·324747 0·296915 −0·324747
0·3 0 0·504226 0·301733 0·335210 0·301733 −0·335210
0·2 0 0·517714 0·307809 0·346225 0·307809 −0·346225
0·1 0 0·532719 0·315458 0·357800 0·315458 −0·357800
0·0 0 0·549778 0·325111 0·369899 0·325111 −0·369899

m a0 a1 Re (a2) Im (a2) Re (a3) Im (a3)

1·0 0·00 6·158266 −2·579133 0·337708 −2·579133 −0·337708
0·9 0·05 5·693062 −2·371531 0·271472 −2·371531 −0·271472
0·8 0·10 5·260683 −2·180341 0·201943 −2·180341 −0·201943
0·7 0·15 4·856633 −2·003316 0·130540 −2·003316 −0·130540
0·6 0·20 4·476854 −1·838427 0·058274 −1·838427 −0·058274
0·5 0·25 4·117655 −1·683827 −0·014149 −1·683827 0·014149
0·4 0·30 3·775628 −1·537814 −0·086257 −1·537814 0·086257
0·3 0·35 3·447553 −1·398776 −0·157763 −1·398776 0·157763
0·2 0·40 3·130276 −1·265138 −0·228542 −1·265138 0·228542
0·1 0·45 2·820562 −1·135281 −0·298631 −1·135281 0·298631
0·0 0·50 2·514889 −1·007444 −0·368254 −1·007444 0·368254

This is comparable to the present method. However, the present method is more general
as the numerical dissipation is controllable.

8. OTHER HIGHER ORDER ALGORITHMS

8.1.   

Using an additional pair of algorithmic parameters, two more equations can be solved.
The resultant algorithms would be at least fifth order accurate. It can be shown that b1,
b2 and b3 are given by the roots of the following equation for any desirable ultimate spectral
radius m

15(1+ m)x3 −6(3+2m)x2 +3(3+ m)x−2=0. (26)

The corresponding a0, a1, a2 and a3 can be solved from equations (9a–d). In particular,
a0 is found to be

a0 = (1− m)/2. (27)

The explicit formulae for ai and bi are complicated and are not shown here. Table 1 lists
the values of ai and bi for m varying from 0 to 1 by 0·1. The numerical amplification matrix
[A5 (Dt)] can be written as

[A5 (Dt)]= a0 [I]+ a1 [ANM (b1 Dt)]+ a2 [ANM (b2 Dt)]+ a3 [ANM (b3 Dt)]

= a0 [I]+ a1 [ANM (b1 Dt)]+ a2 [ANM (b2 Dt)]+ a2 [ANM (b2 Dt)]. (28)
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It can be shown that the eigenvalues of the undamped numerical amplification matrix
(i.e., with j=0) are complex conjugates and the squares of the moduli of the eigenvalues
are

=l1 =2 = =l2 =2 =det ([A5])

=1−
v6Dt6(1− m2)

v6Dt6 +3(3+2m+3m2)v4Dt4 +4(54+72m+54m2)v2Dt2 +3600(1+ m)2.

(29)

It can be shown that det ([A5])e 0 for all real values of vDt and m. Also, the algorithm
is conditionally stable with the spectral radius exceeding unity for some values of vDt if
mq 1 or mQ−1. When m approaches −1, some of the algorithmic parameters are
undefined and the formulation is not valid. As a result, the algorithm is unconditionally
C-stable only when 1e mq−1. Besides, it can be seen that the spectral radius
monotonically decreases as vDt increases. This gives good algorithmic damping properties
as the high-frequency responses are damped out progressively.

The leading truncation error terms for the entries in [A5]–[A] can be shown to be
proportional to

Sai b
6
i −2/45=

(1− m)
225(1+ m)

. (30)

It can be shown that the relative period error and algorithmic damping ratio for the fifth
order accurate algorithm are

Relative period error=
3m2 − m+3

126000(1+2m+ m2)
v6Dt6 +O(Dt8), (31a)

Algorithmic damping ratio=
(1− m)

7200(1+ m)
v5Dt5 +O(Dt7). (31b)

It can be shown that if m=−1, the formulation is not valid as some of the parameters
are undefined. The leading error term in equation (31a) is minimized when m=1. In this
case, the algorithm is non-dissipative and sixth order accurate.

It can be shown that the spectral radius is less than unity for 1q mq−1. Besides, it
can be seen that the errors increase as m decreases from 1. As a result, for a desirable
ultimate spectral radius =la =, m= =la = would give better results than m=−=la =. In
conclusion, only algorithms with 0E mE 1 would be useful.

It can be shown that the algorithms corresponding to m=0 and m=1 are the first
sub-diagonal (2, 3) and diagonal (3, 3) Padé approximations respectively.

8.2.   

Using an additional pair of algorithmic parameters, two more equations can be solved.
The resultant algorithms are at least seventh order accurate. It can be shown that b1, b2,
b3 and b4 are given by the roots of the following equation for any desirable ultimate spectral
radius m

105(1+ m)x4 −30(4+3m)x3 +30(2+ m)x2 −4(4+ m)x+2=0. (32)

The corresponding a0, a1, a2, a3 and a4 can be solved from equations (9a–e). In particular,
a0 is found to be

a0 = (1+ m)/2. (33)
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The explicit formulae for ai and bi are complicated and are not shown here. Table 2 lists
the values of ai and bi for m from 0 to 1 by 0·1. The numerical amplification matrix [A7 (Dt)]
can be written as

[A7 (Dt)]= a0 [I]+ a1 [ANM (b1 Dt)]+ a2 [ANM (b2 Dt)]+ a3 [ANM (b3 Dt)]+ a4 [ANM (b4 Dt)]

= a0 [I]+ a1 [ANM (b1 Dt)]+ a1 [ANM (b1 Dt)]+ a3 [ANM (b3 Dt)]

+ a3 [ANM (b3 Dt)]. (34)

It can be shown that the eigenvalues of the undamped numerical amplification matrix
(i.e., with j=0) are complex conjugates and the squares of the moduli of the eigenvalues
are

=l1 =2 = =l2 =2 =det ([A7])=1−
v8Dt8(1− m2)

v8Dt8 +8(2+ m+2m2)v6Dt6 +720(1+ m+ m2)v4Dt4

+14400(2+3m+2m2)v2Dt2 +705600(1+ m)2

.

(35)

It can be shown that det ([A7])e 0 for all real values of vDt and m. Also, the algorithm
is conditionally stable with the spectral radius exceeding unity for some values of vDt if
mq 1 or mQ−1. When m approaches −1, some of the algorithmic parameters are
undefined and the formulation is not valid. As a result, the algorithm is unconditionally
C-stable only when 1e mq−1. Besides, it can be seen that the spectral radius
monotonically decreases as vDt increases. This gives good algorithmic damping properties
as the high-frequency responses are damped out progressively.

The leading truncation error terms for the entries in [A7]–[A] can be shown to be
proportional to

Sai b
8
i −1/315=−

(1− m)
11025(1+ m)

. (36)

It can be shown that the relative period error and algorithmic damping ratio for the
seventh order accurate algorithm are

Relative period error=
4m2 − m+4

44452800(1+2m+ m2)
v8Dt8 +O(Dt10), (37a)

Algorithmic damping ratio=
(1− m)

1411200(1+ m)
v7Dt7 +O(Dt9). (37b)

It can be shown that if m=−1, the formulation is not valid as some of the parameters
are undefined. The leading error term in equation (37a) is minimized when m=1. In this
case, the algorithm is non-dissipative and eighth order accurate.

It can be shown that the spectral radius is less than unity for 1q mq−1. Besides, it
can be seen that the errors increase as m decreases from 1. As a result, for a desirable
ultimate spectral radius =la =, m= =la = would give better results than m=−=la =. In
conclusion, only algorithms with 0E mE 1 would be useful.

It can be shown that the algorithms corresponding to m=0 and m=1 are the first
sub-diagonal (3, 4) and diagonal (4, 4) Padé approximations respectively.

9. COMPARISON WITH OTHER ALGORITHMS

The spectral radii for various algorithms are shown in Figure 2(a). The notations used
are shown in Table 3. It can be seen that both the Houbolt and Park methods are
asymptotic annihilating. However, the dissipation in the low-frequency range is quite
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severe for the Houbolt method. The (1, 2) Padé approximation is asymptotic annihilating
with much smaller low-frequency dissipation. This algorithm is equivalent to the present
third order complex-time-step algorithm with m=0. For other values of m, the spectral
radii are decreasing smoothly to the respective ultimate spectral radii. The present
complex-time-step algorithm is non-dissipative when m=1.

Figure 3(a) shows the spectral radii for various high order complex-time-step algorithms.
The same trend can be observed as the third order algorithms. The spectral radii are
decreasing smoothly to the respective ultimate spectral radii. The higher order algorithms
exhibit smaller low-frequency dissipation, as expected.

The extrapolated Newmark method evaluates the results at the end of the time step
several times with different sub-step sizes. The numerical results given by the extrapolated
Newmark methods are very accurate. Unfortunately, the extrapolated Newmark methods
are unconditionally unstable. The spectral radii for the fourth, sixth and eighth order
extrapolated Newmark method (denoted as ENM4, ENM6 and ENM8 respectively) are
shown in Figure 4 for comparison.

Figure 2(b) shows the algorithmic damping ratios for various algorithms. The present
third order complex-time-step algorithms are comparable to the second order algorithms.
Figure 3(b) shows the algorithmic damping ratios for various higher order
complex-time-step algorithms. The algorithms are separated into three groups with
increasing accuracy. The algorithmic damping ratios for the extrapolated Newmark
methods are also shown in Figure 3(b). However, the values should be negative indicating
that they are numerically unstable.

Figure 2(c) shows the relative period errors for various algorithms. It can be seen that
the relative period errors for the present third order complex-time-step algorithms are
smaller than those for the second order algorithms. The relative period errors of the present
third order algorithms are better than Tarnow and Simo’s fourth order algorithm
(TSNM). Figure 3(c) shows the relative period errors for various higher order
complex-time-step algorithms. It can be seen that the relative period errors for the fourth,

T 3

Notations for various algorithms

Method Notation

Houbolt Houbolt
Park Park
HHT (a=−0·3) HHT
Newmark (b=1/4, g=1/2) NM
Central difference (b=0, g=1/2) CD
Fox–Goodwin (b=1/12, g=1/2) FG
Extrapolated Newmark ENM4
Extrapolated Newmark ENM6
Extrapolated Newmark ENM8
Tarrow and Simo’s Newmark TSNM
(1, 2) Padé approximation P12
(2, 2) Padé approximation P22
Present: third order CTS3
Present: fourth order CTS4
Present: fifth order CTS5
Present: sixth order CTS6
Present: seventh order CTS7
Present: eighth order CTS8
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Figure 2. (a) Comparison of spectral radii with third order complex-time-step algorithms (j=0).
(b) Comparison of algorithmic damping ratios with third order complex-time-step algorithms (j=0).
(c) Comparison of relative period errors with third order complex-time-step algorithms (j=0).
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Figure 3. (a) Comparison of spectral radii with various higher order complex-time-step algorithms (j=0);
- - - - -, third order; – · – · , fifth order; ——, seventh order. (b) Comparison of algorithmic damping ratios with
various higher order complex-time-step algorithms (j=0); · · · · · m=0; – – –, m=0·25; – · – ·, m=0·5; ——,
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Figure 4. Spectral radii for the extrapolated Newmark methods (j=0).

sixth and eighth order extrapolated Newmark algorithms are comparable to the present
third, fifth and seventh order algorithms. However, the extrapolated Newmark methods
are unconditionally unstable.

In Figures 2(a–c), the spectral radii, the algorithmic damping ratios and the relative
period errors for the third order complex-time-step algorithm with m=−0·5 are shown.
The algorithm has the same ultimate spectral radius as m=0·5. It can be seen that the
algorithm is not as accurate as the algorithm with m=0·5. This is also true for other values
of =m = for other higher order complex-time-step algorithms. As a result, only 0E mE 1
gives useful algorithms.

10. NUMERICAL EXAMPLE

Consider a single-degree-of-freedom system governed by

ü(t)+2jvu̇(t)+v2u(t)= f(t), (38)

where j=0, v=1 and f(t)=0. The initial conditions are u0 =1 and v0 =0. The period
of the system is 2p. A time-step size of about one-tenth of the period of the system is
usually recommended for second order accurate algorithms. Figures 5(a and b) show the
calculated results by various methods with different time-step sizes. The algorithms are
denoted by the notations shown in Table 3, with an additional digit appended to indicate
the time-step size used. For example, CTS41 indicates the present fourth order
complex-time-step algorithm with Dt=1.

Figure 5(a) shows the numerical results of the ordinary second order Newmark method
with Dt=0·25 (NM0·25) and Dt=0·5 (NM0·5). The results with Dt=0·25 are
acceptable while the results with Dt=0·5 are not very good. Although Tarnow and Simo’s
Newmark method is fourth order accurate, it can be seen from Figure 5(a) that the results
with Dt=1 are not accurate. On the other hand, the fourth order extrapolated Newmark
method and the present fourth order complex-time-step method give accurate results with
Dt=1.



1.2

–0.6

2

Time

u
(t

)

(a)

–0.8

–1.0

–0.4

–0.2

0.0

0.4

0.2

0.6

0.8

1.0

–1.2

4 6 8 10 12 14 16 18

1.4

–0.8

–1.4
Time

u
(t

)

(b)

–1.0

–1.2

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 6 108 12 14 16 18

0 20

0 20

-       87

Figure 5(b) shows the numerical results of the higher order algorithms with Dt=2 and
4. It can be seen that Tarnow and Simo’s Newmark method with Dt=2 is not accurate.
The present fourth order complex-time-step algorithm gives better results than the fourth
order extrapolated Newmark method when Dt=2. The sixth order extrapolated Newmark
method and the present sixth order complex-time-step method give good results when
Dt=2. The eighth order algorithms still give good results when Dt=4! The accuracy of
higher order algorithms is clearly demonstrated.

Figure 5. (a) Results for the numerical example with DtE 1; ——, exact; ×, NM0·25; +, NM0·5;
e, TSNM0·5; (, TSNM1; w, ENM41; r, CTS41. (b) Results for the numerical example with Dte 2; ——,
exact; q, TSNM2; R, ENM42; +, ENM62; r, ENM64; (, ENM84; W, CTS42; e, CTS62; E, CTS64; w,
CTS84.
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Note that the extrapolated Newmark methods are numerically unstable although the
numerical results are very accurate. The numerical results would eventually diverge.

11. CONCLUSIONS

Unconditionally stable higher order time-step integration algorithms are presented. To
advance one time step, the numerical results at a few sub-step locations are calculated and
combined linearly. The sub-step locations are expressed in terms of complex number. The
weighting factors and the sub-step locations are algorithmic parameters. The parameters
are determined to eliminate the leading truncation error terms. The parameters are
expressed in terms of the ultimate spectral radius. As a result, higher order accurate
unconditionally stable algorithms with any desirable high-frequency dissipation can be
constructed easily. It is shown that the algorithms are unconditionally stable if the ultimate
spectral radius is less than unity. The spectral radii of the algorithms are found decreasing
gradually toward the design ultimate spectral radii as the time-step size increases without
any cusps. Besides, the eigenvalues for the numerical amplification matrix are complex
conjugates. The algorithms are all C-stable. Among all the algorithms, the asymptotic
annihilating algorithm and non-dissipative algorithm are found to be the first sub-diagonal
and diagonal Padé approximations respectively. The stability properties and errors for the
present algorithms with other ultimate spectral radii are between these two algorithms. The
third order algorithms are derived in detail. The algorithmic parameters for the fifth and
seventh order algorithms are given explicitly. When the algorithms are non-dissipative, the
order of accuracy is increased by one.

The spectral radii, the algorithmic damping ratios and the relative period errors for the
present higher order complex-time-step algorithms and other higher order algorithms are
presented. The present algorithms have the advantages of low computational effort, with
controllable dissipation and are suitable for parallel implementation.
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