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MODELLING OF MULTI-BEARING ROTOR
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A complete mathematical model for a multi-bearing rotor system incorporating a newly
developed active journal bearing has been presented. Both a non-linear model and a general
linearization method have been developed. The system configuration parameters (the
relative positions of the bearings) were expressed explicitly in the equations of motion.
Therefore it is convenient to carry out dynamic analysis of the rotor system in either the
rotating speed domain or the system configuration parameter domain. The Guyan matrix
condensation technique has been adopted to reduce the number of equations in the
equations of motion. The mathematical model developed has been used in predicting the
critical speeds, thresholds of instability and unbalance response of a multi-bearing rotor
system.
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1. INTRODUCTION

Increasing demands for high performance rotating machinery have made the rotor
dynamic problems more and more complex, and more and more attention has been drawn
to the dynamics of rotors. Modelling and computer simulation technology have been
widely used in designing and analyzing rotor-bearing systems.

A multi-bearing rotor system is statically indeterminate. Its dynamic behaviour depends
on the relative positions of the bearings as well as the properties of its sub-systems. The
relative positions of bearings are usually referred to as system configuration, or bearing
alignment [1]. Therefore, the dynamic properties of a multi-bearing rotor system are a
function of the rotating speed and the system configuration. Consequently, the
investigation of the system dynamic behvaiour can be undertaken in two domains. One
is in the rotating speed domain, where the analysis of the threshold speed of instability
and the critical speeds of the system is the major concern. The other is in the configuration
domain, where the analysis of the system properties, at the operating speed, as a function
of the bearing alignment is the main interest.

The dynamics of a rotor system supported by fluid film bearings are inherently a
non-linear problem. Both linearized methods and non-linear approaches have been used
in the modelling and solving of rotor dynamic problems. Linearized models are commonly
used in predictions of critical speeds, vibration response and instability threshold in a large
range of operating points. Non-linear models are used not only to verify results obtained
from a linearized model, but also to study some important rotor-bearing dynamic
phenomena. These phenomena such as sub-harmonic resonance and limit cycles cannot
be observed without accounting for highly non-linear forces produced by fluid-film
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bearings under large amplitude vibrations. Lund [2] used a linearized model to calculate
the threshold speed of instability and damped critical speeds of a flexible rotor supported
by journal bearings. Adams [3] used a non-linear model to simulate the response of a
multi-bearing rotor system.

In order to develop high performance rotating machinery, active vibration control has
received growing attention to improve the system dynamic properties by employing active
devices. These active devices include: magnetic bearings [4], piezoelectric bearing pushers
[5, 6], hydraulic actuator journal bearings [7], variable impedance bearings [8–10], damper
using electro-rheological fluids [11], deformable bushes [12], and active journal bearing
with a flexible sleeve [13].

This paper presents a modelling technique of multi-bearing rotor system incorporating
the newly developed active journal bearing presented by Krodkiewski and Sun [13]. Both
a general non-linear model and a linearization method are presented with numerical
solutions and simulations.

2. DESCRIPTION OF THE ACTIVE JOURNAL BEARING

The flexible sleeve can be considered as a new feature of the proposed active journal
bearing as shown in Figure 1. The sleeve is activated by the chamber pressure pc , which
is controlled by valves in the hydraulic system. The oil film of the bearing and the pressure
chamber is separated by the flexible seal. Therefore, the chamber pressure will not influence
the boundary conditions of the oil film.

The deformation of the flexible sleeve can be changed by adjusting the chamber static
pressure. Therefore the geometry and thickness of the oil film, and hence the dynamic
properties of the rotor system, can be controlled without stopping the operation of the
machine. The chamber pressure can also be changed dynamically by a servo valve. So the

Figure 1. Schematic of the active journal bearing.
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Figure 2. Model of the flexible sleeve.

active journal bearing can deliver dynamic control forces to the rotor via the oil film to
control the forced vibration by either an open-loop means or feedback approaches.

3. MODELLING OF THE ACTIVE JOURNAL BEARING

3.1.     

To obtain the stiffness and mass matrices of the flexible sleeve, the finite element method
(FEM) was employed. The flexible sleeve was considered as a curved cantilever beam. Each
node has three degrees of freedom (d.o.f.) s, n, y, which correspond to nodal forces S, N
and M as shown in Figure 2. By assembling the individual elements along the global
co-ordinates xg , yg and vg , the initial model of the flexible sleeve was obtained.

In order to reduce the number of d.o.f., the Guyan reduction technique [14] was used
to condense the mass and stiffness matrices. The condensation was performed in three
steps. First, the original matrices were condensed along co-ordinates xg and yg (the angular
co-ordinates were eliminated). Then, the matrices were transferred to a system of
co-ordinates r, t. Finally, the matrices were condensed to a final dimension containing only
a few normal co-ordinates.

After the condensed mass and stiffness matrices are obtained, the equations of motion
of the flexible sleeve can be adopted as follows:

Ms · r̈s +Ks · rs =Hs +Cs , (1)

where rs is the retained co-ordinates, Ms and Ks stand for the condensed mass and stiffness
matrices, and Hs and Cs represent the hydrodynamic forces due to the instantaneous oil
film pressure p and the chamber pressure pc respectively.

3.2.     

The configuration of the active bearing is shown in Figure 3. The pressure distribution
of the oil film is a function of the instantaneous displacements and velocities of the flexible
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sleeve and the journal, as well as the rotating speed of the rotor, i.e., p= p(V, rs , q, ṙs , q̇).
The Reynolds equation was used to model the pressure distribution:
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The thickness of the oil film can be written as:

h= h'+Dh, (3)

where Dh is the deformation of the sleeve which can be obtained by solving equation (1).
(The full motion of the flexible sleeve is calculated by a co-ordinate transformation
provided by the Guyan method, after the solution of equation (1) is obtained). h' is the
thickness disregarding the deformation of the flexible sleeve which can be approximated
by:

h'= c+ q · cos (8− a), (4)

where c is the bearing radial clearance, q and a are the polar co-ordinates of the centre
of the journal. Then,

1h
1t

=
1q
1t

cos (8− a)+ q ·
1a
1t

sin (8− a)+
1Dh
1t

. (5)

The integration of equation (2) produces the oil film pressure distribution p. The
principle of virtual work applied to the instantaneous oil pressure results in the

Figure 3. Configuration of the active bearing.
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Figure 4. A multi-bearing-rotor system with rigid supports.

hydrodynamic forces Hs acting on the flexible sleeve. The same principle applied to the
chamber pressure pc yields the force vector Cs .

The fluid in the chamber was assumed to be incompressible here. Modelling of the
compressible control fluid in the chamber and its influence on system dynamics are
presented and discussed in reference [15].

4. MODELLING OF MULTI-BEARING SYSTEMS WITH THE ACTIVE BEARING

Figure 4 illustrates a multi-bearing rotor system with a rigid foundation. The system is
statically indeterminate. Its configuration is defined by vector a. The rotor was treated as
a free–free body and was modelled by the FEM using Timoshenko beam elements. After
matrix condensation using the Guyan method, the equations of motion for the transverse
vibration of the rotor can be expressed in the form,

Mr · ẅ +Kr · w=Hr +Qr +Fr , (6)

where w is the absolute position vector of the rotor nodes, Mr and Kr are the mass and
stiffness matrices of the rotor, Qr and Fr are static load vector and external excitation forces
acting on the rotor, respectively, and Hr is the vector of hydrodynamic forces from the
oil film.

The absolute displacements at the nodes of rotor where bearings are present can be
expressed as,

wi = qi + ai , i=1, 2, . . . , m (7)

where m is the number of bearings, whereas for all the other nodes,

wj = qj , (8)
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then, vector w can be expressed as,

w= q+ a. (9)

The elements of vector a are zero for the nodes where there is no bearing.
Substituting equation (9) into equation (6), we have,

Mr · q̈+Kr · q=Hr +Qr −Kr · a+Fr . (10)

When tha active bearing is present in the system, the hydrodynamic forces Hr and Hs

in equation (1) are a non-linear function of the motion of both the journal and the flexible
sleeve of the bearing. Therefore, equation (1) and equation (10) form a simultaneous set
of non-linear differential equations coupled by the hydrodynamic forces from oil films
governed by equation (2).

The hydraulic force from the pressure chamber Cs in equation (1) could be divided into
a constant part, Cs0, and a fluctuating part DCs over the constant component, i.e,

Cs =Cs0 +DCs . (11)

The equations of motion of the system (1) and (10) can be written in a compact form,

M · r̈+K · r=H+Q+F+C0 +DC−K · ar , (12)

where

M=$Mr

0
0

Ms%, K=$Kr

0
0
Ks%, r=$qrs%, H=$Hr

Hs%
Q=$Qr

0 %, F=$Fr

0%, C0 =$ 0
Cs0%, DC=$ 0

DCs%, ar =$a0%, (13)

where H refers to the hydrodynamic forces; it is a function of the rotating speed and the
motion of the rotor and the flexible sleeve, i.e., H=H(V, r, ṙ). Q refers to the static forces,
F the external excitation forces, C0 and DC the static and dynamic control forces from the
pressure chamber, and K · ar the forces caused by the relative positions of bearings, or the
system configuration parameters, due to the statically indeterminate property.

Equation (12) can be solved by numerical integration methods. At each time interval
the Reynolds equation (2) is solved numerically, e.g., by FEM or the finite difference
method. The authors used the Runge–Kutta method for the numerical integration and the
finite difference method for solution of equation (2). As can be expected, one solution at
one operating point generally requires a considerable time using these numerical methods
based on the non-linear model.

5. LINEARIZATION OF THE EQUATIONS OF MOTION

A linearized model is advantageous in predicting dynamic performance of a non-linear
system in a comprehensive range of operation, as solutions based on a non-linear model
is generally very time consuming.

The non-linearity of equation (12) is caused by the non-linear properties of the
hydrodynamic forces of the oil film. The linearization of equation (12) can be performed
by linearizing these forces in the vicinity of an equilibrium position. Therefore, solutions
of the equilibrium position are essential for the linearization procedure.
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The steady state equilibrium position of the system can be found by solving the following
static equations,

K · r=H(V, r, 0)+Q+C0 −K · ar . (14)

These equations are non-linear and implicit, and can only be solved by numerical
methods. The equations are not a polynomial type. Therefore, a successive
substitution method is suitable to solve it numerically [16]. The recursive procedure is
defined by

K · rj+1 =H(V, rj , 0)+Q+C0 −K · ar . (15)

The successive iterations are interpreted graphically in Figure 5 (r* refers to the solution
of equation (14)). Convergence will certainly occur in the case of Figure 5(a), while in the
case of Figure 5(b), the iterations of equation (15) will fail to converge to solution r*.
Equation (15) can be modified to make the substitutions a successful process [17]. The
modification which is made here is as follows,

K · r+Pm · K · r=Pm · K · r+H(V, r, 0)+Q+C0 −K · ar , (16)

where Pm is a coefficient to be chosen to make the iterations convergent. The authors have
found that by choosing a proper value of Pm , the iterations can always converge to an
equilibrium position.

After an equilibrium position is found, the linearization of the equations of motion is
achieved by linearizing the hydrodynamic forces in a vicinity of the equilibrium position
by perturbation methods. The displacement vector and the hydrodynamic forces can be
written in the following forms in the vicinity of an equilibrium position,

r= r0 +Dr, H+H0 +DH, (17)

where r0 refers to the equilibrium position (r* in Figure 5), and H0 the hydrodynamic forces
when the rotor system is at the equilibrium position. DH is assumed to be linearly
proportional to the displacements and velocities of the system in the vicinity of the
equilibrium position, that is,

DH=−KH · Dr−DH · Dṙ, (18)

where KH and DH are the matrices of the coefficients, which can be defined as stiffness and
damping matrices of the oil films.

Figure 5. Graphical interpretation of the successive substitution method.
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Figure 6. A three-bearing rotor test rig.

Introducing equation (17) and equation (18) into equation (12), and taking the condition
of the equilibrium position (14) into account, we have the linearized equations of motion
of the rotor-bearing system,

M · Dr̈+DH · Dṙ+(K+KH ) · Dr=F+DC. (19)

The elements of matrices KH and DH can be approximated by the following finite difference
calculation,

(KH )i, j =−
Hi (V, r0 +Dr, 0)−Hi (V, r0, 0)

Drj
, i=1, 2, . . . , n,

(DH )i, j =−
Hi (V, r0, Dṙ)−Hi (V, r0, 0)

Dṙj
, j=1, 2, . . . , n, (20)

where r0 +Dr is defined in such a way that only the jth element of the vector r is changed
by Drj with respect to the equilibrium position r0. By the same way, Dṙ implies that the
value of the jth element of the vector ṙ is Dṙj , and all the others are zero. n is the number
of d.o.f. in the equations of motion (12).

Stability analysis can be performed by solving equation (19) for eigenvalues. The forced
responses are solved under certain excitation forces, normally the centrifugal forces due
to imbalance of the rotor, and the control forces. The equations can also be used for
synthesis of control laws for various control strategies.

The solution of the equilibrium position is essential in the linearization procedure.
The stiffness and damping coefficients of the oil films are a function of the equilibrium
position, therefore, the dynamic characteristic of the system is a function of the equilibrium
position.

6. MODELLING AND SOLUTIONS OF A LABORATORY TEST RIG

The techniques developed above have been applied to a laboratory test rig as shown in
Figure 6. The rig is a three-bearing rotor system. The rotor is axially symmetric, two meters
long and weighs 11·24 kg.

The active bearing is located 663 mm from the left ball bearing and 1037 mm from the
right one. Some other parameters of the test rig are: bearing diameter, D=50 mm; bearing
length to diameter ratio, L/D=0·8; bearing nominal radial clearance, c=0·3 mm;
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b=105° and C=160° (see Figures 1 and 2); thickness of the flexible sleeve, d=5 mm;
lubricant viscosity, h=0·04 Pascal · s.

The rotor was modelled by FEM with 26 elements and 104 d.o.f. The final condensed
model contains only three rotor stations with only 6-d.o.f. The flexible sleeve was divided
evenly into 20 elements with 60 d.o.f. The final condensed model contains only three
sleeve stations with 3 d.o.f. It has been found that the final condensed models have
almost identical eigenvalues and eigenvectors to the original FEM models up to the
second mode for both the rotor and the flexible sleeve. The error of the third eigenvalue
is about 5% for the rotor and 6% for the flexible sleeve. The three eigenvalues of the
condensed models are 10·43, 43·04 and 106·38 Hz, respectively, for the rotor, and 490·2,
1754·2 and 6175·8 Hz, respectively, for the flexible sleeve.

Both the non-linear model (12), and the linearized model (19) have been used to
predict the thresholds of instability, critical speeds and unbalance response of the test
rig in both the system configuration domain and the rotating speed domain. This paper
only presents some simulation results when the chamber pressure in the active bearing
was constant. In the system configuration domain analysis, the rotating speed was
fixed at 50 Hz. The active bearing position, reative to the reference line connecting
the centres of two ball-bearings, changes vertically only. In other words, the component
of the configuration parameter ax is fixed to zero. It was defined that ay q 0, when the
active bearing is above the line and ay Q 0 if it is below the line. In the rotating speed
domain analysis, the system configuration parameter was assumed to be zero, i.e.,
ax = ay =0.

Figure 7. Journal equilibrium position as a function of ay and pc ; (ay =−1·0, −0·5, 0·0, 0·5, 1·0, 1·5, 2·0,
2·5 mm; pc =0–0·25 MPa).
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Figure 8. Journal equilibrium position as a function of V and pc , (V=10, 20, 30, 40 and 50 Hz;
pc =0–0·25 MPa).

6.1.   

Figures 7 and 8 show the equilibrium position of the journal as functions of the chamber
pressure in the configuration domain and the rotating speed domain, respectively. (It is
displayed in a non-dimensional form by dividing the actual values by the bearing nominal
clearance). The equilibrium position was obtained by solving the static equation (14) using
the successive iteration method. By integrating the non-linear dynamic equation (12) in
free vibration condition, the journal trajectory and hence the equilibrium position can also
be obtained provided that the equilibrium position is stable. It has been found that the
results obtained from these two sets of equations by the two different approaches always
agreed very well. Table 1 lists some examples of comparison between the results from the
two methods when ay =−1·85 mm and V=50 Hz. Solving equation (12) was very time
consuming, whereas by using the successive iteration method, the iteration normally
converged to equilibrium very quickly.

T 1

Comparison of equilibrium position for different chamber pressure

From static model From dynamic model
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

pc (MPa) x y x y

0·10 0·1583 0·0554 0·154 0·054
0·15 0·2915 0·1234 0·286 0·120
0·20 0·4096 0·2122 0·4060 0·2110
0·25 0·4988 0·3023 0·4987 0·3023
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Figure 9. Stability boundary in the configuration parameter domain.

6.2.     

The stability of an equilibrium position can be assessed by either using the linearized
model or the non-linear model. Eigenvalue analysis based on a linearized model is
commonly used to study stability problems as well as to predict critical speeds. If the real
part of one or more eigenvalues has positive value, the equilibrium position is unstable.
In a non-linear model approach, the integration of the non-linear equations of motion for
free vibration can produce trajectories of the rotor. If a trajectory rests on one point (an
equilibrium position), the equilibrium position is stable. If a trajectory is in a limit cycle
or in a chaos pattern, the equilibrium position is then unstable.

The threshold of stability of the system considered is a function of the configuration
parameters ax and ay , the angular speed V and the chamber pressure pc . By solving the
eigenvalue problems, the stability boundaries of the equilibrium position of the test rig
were produced both in the system configuration parameters domain and the rotating speed
domain as shown in Figures 9 and 10 respectively. If a combination of the configuration
parameter and the chamber pressure, or the rotating speed and the chamber pressure, is
located in the stable area, the corresponding equilibrium position is stable. Otherwise, it
is unstable. The charts of stability boundaries provide important information about the
system. If one selects a value of chamber pressure to be above the pressure threshold of
instability, a stable equilibrium position is ensured.

To check the validity of the results obtained from the linearized model, numerical
integration has been used to solve the free response of the system based on the non-linear
equations of motion. An example of such a numerical simulation is shown in Figure 11,
when ay =−1·85 mm, V=50 Hz, and pc =0·05, 0·1 and 0·15 MPa, respectively. It is
obvious that the journal performs a forward precession in a large limit cycle when
pc =0·05 MPa, and its trajectory converges to a stable equilibrium quickly when
pc =0·15 MPa. With pc =0·1 MPa, the trajectory approaches an equilibrium position very
slowly. Hence, 0·1 MPa could be considered as the threshold pressure of instability under
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Figure 10. Stability boundary in the rotating speed domain.

this operation configuration. It is very close to the stability boundary obtained from the
linearized model, which is 0·098 MPa as shown in Figure 9.

6.3.   

Natural frequencies and critical speeds can be obtained from the imaginary parts of
eigenvalues by eigenvalue analysis based on the linearized model. Figure 12 shows the
imaginary parts of eigenvalues (natural frequencies) as a function of rotating speed when
the chamber pressure was fixed to 0·4 MPa. (Two curves of natural frequencies
corresponding to the flexible sleeve are not plotted in the chart because their values are
too high to be fitted in the scale). The critical speeds of the rotor, read from the
intersections of the dotted line (Im=V) with the curves of the natural frequencies, are
39 and 90 Hz, respectively.

Figure 11. Journal trajectories when ay =−1·85 mm, V=50 Hz.
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Figure 12. Natural frequencies as a function of rotating speed.

The critical speed can also be predicted by numerical simulations based on the non-linear
model. Figure 13 displays a waterfall diagram of the unbalance response of the journal
when pc =0·4 MPa. The diagram was obtained by numerical intergration of the non-linear
equation (12). The synthronous harmonic of the unbalance response is shown in Figure 14.
The first and second critical speeds, read from the graph, are 39 and 91 Hz, respectively
which are very close to those from the eigenvalue analysis. It can be noticed that except

Figure 13. Waterfall diagram of journal response.
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Figure 14. Synchronous harmonic of journal response.

the synchronous vibration, sub-harmonic and harmonic vibrations can also be observed
from the non-linear simulation which cannot be obtained from the linearized mode. It
should be indicated that such a simulation of the waterfall diagram based on the non-linear
model is very time consuming.

7. CONCLUSIONS

The mathematical model presented can be used to predict dynamic behaviours of
multi-bearing rotor systems incorporating the presented active journal bearing. Solutions
obtained from the non-linear and linearized models are consistent. The linearized model
is specially suitable for an overall investigation of the system characteristics over a wide
range of system configuration parameters and the rotating speed in which numerous
combinations of configuration parameters need to be analyzed. Eigenvalue analysis
based on the linearized model provides information of critical speeds and instability
thresholds at the same time, while one sample solution of the non-linear equations of
motion by numerical integration requires a considerable computing time. Numerical
simulations based on the non-linear model provide not only a measure to verify the
validity of results from the linearized model, but also some important information about
the system, e.g., the details of the sub-harmonic whirling motion of the journal caused
by the bearing oil film and limit cycles which cannot be obtained from the linearized
model.

Computation time can be greatly reduced by employing the Guyan condensation
technique. It actually made the solution by numerical integration of the non-linear
equations of motion feasible in the calculations presented in this paper.

The developed non-linear and linearized equations of motion were also used in control
law synthesis in forced vibration control by the proposed active journal bearing using both
an open-loop approach and a feedback system. The results will be presented in other
papers.
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Due to the adopted assumptions (e.g., incompressible oil in chamber, omission of the
gyroscopic effect, limited number of d.o.f. etc.), the obtained numerical results require
experimental verification. Description of the experimental set-up, methodology, as well as
the experimental investigation of the static characteristics (Figures 7 and 8), boundary of
stability (Figures 9 and 10) and the forced response can be found in reference [18]. An
acceptable agreement between the analytical prediction and results of the experimental
investigation has been obtained.
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