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BOLTED JOINT CLAMPING FORCE VARIATION
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Recent experiments and analyses have revealed that threaded fasteners subjected to axial
vibration can experience either loosening or tightening. In this paper, the authors examine
the variation of clamping force in a single-bolt assembly model due to axial vibration.
Specifically, the effect of vibration level and initial pre-load on clamping force is studied.
It is found that the clamping force can remain steady, decrease, or increase when the
assembly is subjected to axial vibration. However, changes in clamping force are generally
transient and a steady value is reached over time.
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1. INTRODUCTION

Threaded fasteners have found wide spread use in many machines and structures.
Assemblies which utilize fasteners are often subjected to vibratory environments. Such
conditions can lead to vibration-induced fastener loosening which can result in increased
maintenance and/or failure.

Existing theories of the mechanism of vibration-induced loosening of threaded fasteners
are based on static torque balances with supporting experimental data limited to low
frequency conditions [1–3]. The basis of these theories is that friction holds a bolted joint
together at a given clamping force, and vibration causes a reduction in friction which
results in slip at the thread and head interfaces, and a reduction in clamping force.

Junker [1] proposed that bolts subjected to transverse vibrations become momentarily
free of friction during each cycle of vibration and loosen. He showed that setting the thread
and head coefficients of friction to zero in the static torque balance predicts loosening.
Daadbin and Chow [4] modelled the elastic and damping characteristics of the thread
interface of a simple bolt model and showed that the contact forces fluctuate, and are
eliminated at separation, when the system is subjected to dynamic loading.

Experiments and analyses of threaded fasteners loaded by gravity and subjected to axial
harmonic vibration revealed that threaded components can twist with or against gravity
in the presence of vibration [5–6]. It was found that the applied vibration could be tuned
such that either action occurs. The physical explanation for this observed behavior involves
the non-linear dynamic interaction of the vibration and friction, and the resulting patterns
of momentary sliding, sticking, and separation between the threaded components.

Hess and Sudhirkashyap [7] examined the dynamics of a moderately pre-loaded
single-bolt assembly subjected to axial vibration. A broad range of vibration levels and
frequencies were considered and both loosening and tightening behaviors were observed
in experiments. A single-bolt assembly model was developed and simulations were
performed for the first few cycles of applied vibration. This allowed the effect of various
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system parameters on initial loosening and tightening to be examined and compared with
experimental observations.

In this paper, an improved version of the single-bolt assembly model introduced by Hess
and Sudhirkashyap [7] is used to perform longer time simulations to examine changes in
clamping force over time. In this work, a more realistic friction model is incorporated in
the assembly model to more adequately accommodate complete stick. It is found that
loosening or tightening, i.e., changes in clamping force, are generally transient and a steady
value of clamping force is reached over time.

The focus in this paper is on axial vibration since ideally, bolted joints should be
designed to carry static and dynamic loads axially. This is not always possible and the total
load acting on a bolted joint is usually some combination of axial and transverse loads.
The authors are currently studying assemblies subjected to transverse and combined
transverse and axial vibrations.

2. MODEL

The single-bolt assembly consists of a bolt clamping a component to a base with a
tapped hole. The dynamic model for this system can be visualized by unwrapping the
threads of the tapped hole in the base and viewing them as upper and lower inclined
constraints on the bolt threads, modelling the bolt as a lumped mass mb constrained
between the upper base threads and the clamped component, and modelling the clamped
component as a lumped mass mc constrained between the bolt head and the base. A sketch
of this model is shown in Figure 1.

In the model the bolt is considered rigid with elastic interfaces. This model is sufficient
for bolts with moderate pre-load as found in electronic equipment and joints with gaskets.
One of the authors’ current goals is to incorporate into the model both axial and torsional
elastic bolt characteristics found in more heavily pre-loaded bolts.

Figure 1. Dynamic model of the single-bolt assembly.
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When in contact, the interfaces are modelled with elastic stiffness kh , ki , and kt in parallel
with dampers ch , ci , and ct . Non-linear damping elements are used to avoid unrealistic
discontinuous forces at the onset of contact and separation [8]. The friction forces at the
thread interface and the bolt head interface are modelled with a friction model described
below.

The system input and normal motion of the base is w=w0 sin vt. Co-ordinate z
describes the normal motion of the clamped component. The co-ordinates x and y describe
the motion of the bolt. Co-ordinate x represents the circular displacement of the bolt at
the pitch diameter. This displacement is proportional to the turning angle u= x/rp, where
rp is the pitch radius of the bolt. The lead angle of the bolt thread is b, and the thread
clearance without pre-load is do . Note that an actual bolt system exhibits axial and
rotational motion. The model described here represents an equivalent system in which the
bolt can translate in two directions, x and y. This approach simplifies the model
development considerably and is useful for studying the qualitative behavior of threaded
fastener systems.

The equations of motion for this model depend on the relative positions of the bolt, the
clamped component and the base. There exist six possible forms for the governing
equations of the bolt and four possible forms for the clamped component. In one
configuration, the bolt is in tension, the clamped component is in compression and all
interfaces are in contact (see Figure 1). This condition is expressed mathematically as
(y−w cos b)e−dt , (y cos b+ x sin b− z)E dh , (z−w)E di , where dt , dh and di are the
static deflections at the thread interface, bolt head and clamped component interface, and
clamped component and base interface, respectively. The governing equations of motion
for this configuration are

mb ÿ=−Ntt +Nh cos b−Fh sin b−mb g cos b, (1)

mb ẍ=Ftt +Nh sin b+Fh cos b−mb g sin b, mc z̈=−Nh +Ni −mc g, (2, 3)

where the normal contact forces are

Nh =(z+ dh − y cos b− x sin b) (kh + ch (ż− ẏ cos b− ẋ sin b)), (4)

Ni =(w+ di − z) (ki + ci (ẇ− ż)),

Ntt =(y+ dt −w cos b) (kt + ct (ẏ− ẇ cos b)), (5, 6)

and the static deflections are

dh =0ki di −mc g
kh 1, dt =0kh dh −mb g

kt 1 cos b, (7, 8)

di =
P
ki

−0(x−w sin b) sin b

1+ ki /kh + ki /kt 1, (9)

where P is the initial pre-load in the joint. The clamping force is defined by Fc = ki di . The
thread interface friction force, Ftt , and the bolt head interface friction force, Fh , both
oppose the circular sliding or twist of the bolt. The non-linear contact forces couple the
axial motions of the system components with the twisting motion of the bolt.

The friction forces in the assembly are modelled with a friction model introduced by
Karnopp [9]. The standard Coulomb friction model is discontinuous and has numerical
limitations when the relative sliding velocities at the bolt thread and head interfaces
approach zero. A number of friction models exist which remove these limitations (for an
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excellent review see Armstrong et al. [10]), however, many of these models do not
accommodate true stick. A friction model which includes stick and is both physically
realistic and numerically manageable has been proposed by Karnopp [9]. This friction
model defines a small velocity region between −vmin and vmin surrounding zero sliding
velocity. Inside this region, velocity is considered to be zero and the friction is determined
by the forces acting on the system or by the friction breakaway value, whichever is less.
Outside this region, friction is a function of velocity.

For the single-bolt assembly configuration in which the bolt is in tension, the clamped
component is in compression and all interfaces are in contact (see Figure 1); there are
friction forces at the bolt head and thread interfaces. To correctly determine the friction
forces at these two interfaces, four cases must be considered: (1) both threads and head
stick; (2) only threads stick; (3) only bolt head sticks; and (4) both threads and head slip.
When both the threads and head stick, the friction force at the thread interface is

Ftt = 8Ftts ,
−mts Ntt ,
+mts Ntt ,

for =Ftts =Q =mts Ntt =,
for Ftts E−mts Ntt ,
for Ftts e+mts Ntt ,

−vmin E (ẋ− ẇ sin b)E vmin ,
−vmin E (ẋ− ẇ sin b)E vmin ,
−vmin E (ẋ− ẇ sin b)E vmin ,

(10)

and the friction force at the bolt head interface is

Fh = 8Fhs ,
−mhs Nh ,
+mhs Nh ,

for =Fhs =Q =mhs Nh =,
for Fhs E−mhs Nh ,
for Fhs e+mhs Nh ,

−vmin E (ẋ cos b− ẏ sin b)E vmin ,
−vmin E (ẋ cos b− ẏ sin b)E vmin ,
−vmin E (ẋ cos b− ẏ sin b)E vmin ,

(11)

where

Ftts =0 1
sin b1(mb ẅ −Nh +Ntt cos b+mb g), Fhs =−Ftts cos b−Ntt sin b, (12, 13)

and mt , mts , mh and mhs are the sliding and static coefficients of friction for the thread and
head interfaces. When only the threads stick, the friction force at the bolt head interface
is

Fh =6−mh Nh ,
+mh Nh ,

for (ẋ cos b− ẏ sin b)q vmin ,
for (ẋ cos b− ẏ sin b)Q−vmin ,

(14)

and the friction force at the thread interface is

Ftt = 8Ftts ,
−mts Ntt ,
+mts Ntt ,

for =Ftts =Q =mts Ntt =,
for Ftts E−mts Ntt ,
for Ftts e+mts Ntt ,

−vmin E (ẋ− ẇ sin b)E vmin ,
−vmin E (ẋ− ẇ sin b)E vmin ,
−vmin E (ẋ− ẇ sin b)E vmin ,

(15)

where

Ftts =mb ẅ sin b−Nh sin b−Fh cos b+mb g sin b. (16)

When only the bolt head sticks, the friction force at the thread interface is

Ftt =6−mts Ntt ,
+mts Ntt ,

for (ẋ− ẇ sin b)q vmin ,
for (ẋ− ẇ sin b)Q−vmin ,

(17)
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and the friction force at the bolt head interface is

Fh = 8Fhs ,
−mhs Nh ,
+mhs Nh ,

for =Fhs =Q =mhs Nh =,
for Fhs E−mhs Nh ,
for Fhs e+mhs Nh ,

−vmin E (ẋ cos b− ẏ sin b)E vmin ,
−vmin E (ẋ cos b− ẏ sin b)E vmin ,
−vmin E (ẋ cos b− ẏ sin b)E vmin ,

(18)

where

Fhs =−Ftt cos b−Ntt sin b. (19)

When both threads and head slip, the friction forces are defined by equations (14) and (17).

3. SYSTEM PARAMETERS

To examine the changes in clamping force resulting from vibration-induced loosening
or tightening, the non-linear constrained equations of motion of the dynamic bolt assembly
model are solved numerically using the fifth-order Runge–Kutta method.

Figure 2. Effect of integration time-step: ——, 4×10−4 s; · · · , 4×10−5 s; –·–·, 4×10−6 s; – – –, 4×10−7 s
(pre-load of 45 N, acceleration level of 750 m/s2 and vmin of 1×10−4 m/s).
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The model parameters have been determined from a combination of direct measurement
and estimation from acceleration measurements and bolt twist observations. The
techniques used to determine the various system parameters have been described
previously [6, 7]. For the simulation results presented in Figures 2–6, the parameters varied
are the initial pre-load P, the input acceleration amplitude v2wo , the integration time-step
Dt, and the Karnopp velocity parameter vmin . The specific values for these parameters are
given in each figure title. The remaining parameters, which are kept constant for all of these
simulations, are v=2p(500) rad/s, mb =0·0096 kg, mc =0·049 kg, kh =2·025×107 N/m,
ki =7·578×104 N/m, kt =2·80×107 N/m, ch =8·0×106 Ns/m2, ci =1·80×104 Ns/m2,
ct =1·3×108 Ns/m2, mh = mt =0·2, mts = mhs =0·22, rp =3·17 mm (0·125 in.), b=0·05 rad
(2·87°), do =0·015 mm, and g=9·81 m/s2.

Although Karnopp’s friction model is known to be accurate for short time intervals,
the accuracy of the technique for long intervals is unknown. As a result, it is necessary
to examine the robustness of the simulation results to changes in the Karnopp velocity
deadzone parameter vmin and the integration time-step Dt. Figure 2 provides representative
simulations which illustrate the effect of the time-step on clamping force over a long time
interval. Only small changes in the data are found when time-step intervals less than or

Figure 3. Effect of Karnopp deadzone parameter vmin : ——, 1×10−3 m/s; · · · , 1×10−4 m/s; –·–·, 1×10−5 m/s;
– – –, 4×10−9 s (pre-load of 45 N, acceleration level of 750 m/s2 and Dt of 4×10−6 m/s).
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equal to 4×10−6 s are used. The effect of the Karnopp deadzone parameter is shown in
Figure 3. The data is quite consistent for values of vmin ranging from 10−4 to 10−9 m/s.
However, for larger values a significant error accumulates over a large number of cycles.
In an effort to minimize computer time while maintaining numerical accuracy, a time-step
of 4×10−6 s and a Karnopp parameter vmin of 1×10−4 m/s are used in the simulations
presented in this paper.

4. VARIATION IN CLAMPING FORCE

Before proceeding, it is worth summarizing the basic twisting behavior found by Hess
and Sudhirkashyap [7]. At low levels of axial vibration, no twisting was observed. As the
vibration level was increased, a loosening action occurred over a broad range of
frequencies. As the vibration level was increased further, a tightening action developed at
higher frequencies. In addition, it was found that changes in pre-load, component mass,
input vibration frequency, or contact stiffness could cause a shift from one type of behavior
to another. For example, for a given set of system parameters and vibration input level

Figure 4. Loosening for different initial pre-loads: ——, 30 N; · · · , 35 N; –·–·, 40 N; - - -, 45 N; ———, 55 N;
– · · · –, 75 N; — – — –, 100 N (acceleration level of 750 m/s2, Dt of 4×10−6 s and vmin of 1×10−4 m/s).
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and frequency, it was found that just varying the pre-load could result in a change from
loosening to tightening.

The clamping force in the joint is found to remain steady for significant pre-loads and
moderate vibration levels. As the pre-load decreases for a given vibration level, a transient
reduction in clamping force occurs, but a steady value is reached over time. Figure 4 shows
clamping force versus cycles of vibration for the single-bolt assembly pre-loaded from 30
to 100 N with an input vibration acceleration level of 750 m/s2. The number of cycles to
steady state decrease with pre-load. In addition, the amount of clamping force reduction
decreases with pre-load. When the pre-load in the assembly is between 27 and 32 N, the
clamping force remains steady or steady with small oscillatory fluctuations (e.g., see data
for pre-load of 35 N).

As the pre-load is decreased from 30 N, the bolt actually tightens. Clamping force data
for the single-bolt assembly pre-loaded from 12 to 30 N with an input vibration
acceleration level of 750 m/s2 are given in Figure 5. As the pre-load is decreased from 30 N,
which gives a steady clamping force, the clamping force is found to increase. The number

Figure 5. Tightening for different initial pre-loads: ——, 30 N; · · · , 25 N; –.–., 20 N; - - -, 17 N; ——, 15 N;
–. . .–. . . , 12 N (acceleration level of 750 m/s2, Dt of 4×10−6 s and vmin of 1×10−4 m/s).
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Figure 6. Clamping force versus cycles of vibration for different vibration acceleration levels : ——, 10 m/s2;
· · · , 80 m/s2; –·–·, 250 m/s2; - - -, 500 m/s2; ——, 600 m/s2; –· · · –· · · , 750 m/s2; — – —, 1000 m/s2; −+−,
2000 m/s2 (initial pre-load of 20 N, Dt of 4×10−6 s and vmin of 1×10−4 m/s).

of cycles necessary to reach a steady clamping force increases as the pre-load decreases.
Also, the percentage increase in clamping force is found to increase as pre-load drops.

The effect of varying vibration level while keeping the initial pre-load constant has been
examined. Figure 6 shows clamping force data for vibration levels ranging from 10 to
2000 m/s2 with an initial pre-load of 20 N. Loosening is found for vibration levels below
250 m/s2. As the vibration level is decreased from this value, the amount of clamping force
loss increases until about 80 m/s2. Below this level, the loss of clamping force decreases.
The maximum percentage reduction in clamping force is 52·9%. Tightening occurs for
vibration levels of 500 through 2000 m/s2. At 2000 m/s2 the percentage increase in clamping
force is 83·4%. Simulations are currently being performed with higher vibration levels to
determine whether the clamping force continues to increase with vibration level.

The steady state clamping force, percentage change in clamping force, and the number
of cycles to steady state for the data in Figures 4 through 6 are given in Tables 1 and 2.
Drops in clamping force by as much as 52·9% are found. Bickford [11] states that axial
vibration can result in up to 40% reduction in clamping force, whereas transverse vibration
can lead to complete loss of clamping force. This amount of reduction is 10% lower than



.   . . 264

T 1

Change in clamping force for different pre-loads with constant vibration level of 750 m/s2

Pre-load Steady state Change in Cycles to Time to steady
(N) clamping force (N) clamping force (%) steady state state (s)

12 21·0142 0·068 +75·1 15050 30·1
15 22·5252 0·075 +50·3 12500 25·0
17 23·4902 0·030 +38·2 1700 3·4
20 25·0092 0·007 +25·1 2000 4·0
25 27·4792 0·031 +11·0 2050 4·1
30 29·9752 0·025 0·0 0 0·0
35 34·7602 0·520 −0·7 150 0·3
40 39·6402 0·000 −1·0 200 0·4
45 42·1352 0·005 −6·4 1850 3·7
55 47·1352 0·005 −14·4 6800 13·6
75 57·1352 0·005 −23·9 15500 31·0

100 69·6332 0·004 −30·4 26650 53·3

what our simulations predict. Increases in clamping force by as much as 83·4% are also
found. Although, significant amounts of loosening and tightening were observed in
experiments with a single-bolt assembly apparatus [7], the maximum decrease and increase
in clamping force possible from axial vibration were not determined.

This work and the data in Hess and Sudhirkashyap [7] suggest that substantial axial
vibration levels are necessary to achieve an increase in clamping force. However, recent
experiments show that lower levels of combined axial, transverse and angular vibration,
as found in structures with bending, longitudinal and torsional modes of vibration, are
necessary to achieve significant tightening [12]. For example, a vibration acceleration level
of 25 g is capable of increasing the clamping force in a single-bolt joint on a cantilevered
beam from 80 to 120 N.

4. CONCLUSIONS

Simulation of a single-bolt assembly model subjected to axial vibration have been
performed to examine the variation of clamping force in the assembly due to the applied
vibration. With high preloads and/or low vibration levels, the clamping force remains
steady over a large number of cycles. As the pre-load decreases and/or the vibration level

T 2

Change in clamping force for different vibration levels with constant pre-load of 20 N

Vibration Steady state clamping Change in Cycles to Time to steady
level (m/s2) force (N) clamping force (%) steady state state (s)

10 10·8272 0·001 −45·9 31250 62·5
80 9·4232 0·030 −52·9 12800 25·6

100 9·5072 0·573 −52·5 11350 22·7
250 16·8682 0·004 −15·7 5900 11·8
500 20·8612 0·861 +4·3 1250 2·5
600 23·3062 0·052 +16·5 2600 5·2
750 25·0092 0·007 +25·1 2000 4·0

1000 28·4302 0·007 +42·2 2150 4·3
2000 36·6802 0·009 +83·4 4350 8·7
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increases, first loosening and then tightening of the assembly is found to occur. It is found
that when loosening or tightening occurs, changes in clamping force are generally transient
and a steady value is obtained with time. The model predicts that 52·9% is the maximum
loss of clamping force possible from axial vibration. Increases in clamping force by as
much as 83·4% are also found.
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