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VIBRATION AND STABILITY OF ROTATING PLATES WITH ELASTIC EDGE
SUPPORTS
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1. 

In typical rotating plate vibration texts and handbooks it is assumed that the plate
considered is annular with the free outer edge. However, there are other configurations
of this problem referring to the support. In Figure 1 an elastic circular plate the edge of
which is welded to a rigid cylinder rotating at constant angular speed is shown. The plate
considered can be the lid or the base of a rotating compartment. The elasticity of the
welded seam, which will be modelled by linear and torsion springs uniformly distributed
around the edge of the plate, will be taken into account.
The present work is concerned with the effect of elastic edge supports on axisymmetric

vibrations of rotating circular plates. More generalized research into vibrations of rotating
circular plates would include non-axisymmetric modes as well.

2.  

The radius and thickness of the plate are R and h, and E and n are Young’s modulus
and the Poisson ratio. The material of the plate is assumed to be homogeneous and
isotropic, with mass density r. The radial and tangential stresses in the plate due to
rotation, sr and sc respectively, are given by [1]

dsr

dr
+

sr − sc

r
+ rrv2 =0. (1)

The stress–strain relations in the polar co-ordinate system, from Hooke’s law, are

or =
sr − nsc

E
, oc =

sc − nsr

E
, (2, 3)

which, along with the strain–displacement relations for or and oc , yield

dsc

dr
− n

dsr

dr
=

1+ n

r
(sr − sc ). (4)

The governing equations for the axisymmetric deflection of a circular rotating plate in
terms of w and sr become

D94w+ rh
12w
1t2 =

h
r

1

1r 0rsr
1w
1r1, (5)

where w is the transverse deflection of the plate and D=Eh3/12(1− n2).
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Figure 1. A circular plate supported elastically around its edge.

For a plate with an elastically restrained outer edge, with rotational and in-plane
stiffnesses k and c, the boundary conditions are

r=R; w=0, k
1w
1r

+D012w
1r2 +

n

r
1w
1r1=0, cu+ hsr =0, (6a–c)

where u is the radial displacement.

3.   

It is convenient at this stage to introduce some dimensionless parameters:

l=
rv2R4

Eh2 , y=
w
h

, x=
r
R

, t= tX D
hrR4 , K=

kR
D

, C=
cR
E

. (7)

After solving equations (1) and (4) simultaneously, and applying the boundary condition
(6c) one obtains

sr = rR2v2[A−B(r/R)2], (8)

where

A=
3+ n+C(1− n2)
8[1+C(1− n)]

, B=
3+ n

8
. (9, 10)

Figure 2. The frequency parameter V in the fundamental mode for K=1 (n=0·3, M=5).
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Figure 3. The critical speed parameter lcr . ×, K=0; w, K=a.

Then, substituting equation (8) into equation (5) and reducing the resulting equation to
the dimensionless form yields

94y+
12y
1t2 −12(1− n2)

l

x
1

1x $x(A−Bx2)
1y
1x%=0. (11)

The dimensionless forms of boundary conditions (6a, b) are

y=x=1 =0, (K+ n)
1y
1x bx=1

+
12y
1x2 bx=1

=0. (12a, b)

Solution of equation (11) is obtained by application of the Galerkin method. To this end,
the solution is assumed in the form

y= s
M

i=0

CiRi (x) sin Vt, (13)

where Ci are unknown constants, Ri are functions chosen to satisfy the boundary
conditions of the plate (12a, b), V=vNR2zrh/D is a frequency parameter with vN being

T 1

Critical speed parameter lcr (n=0·3, M=5)

K
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

C 0 1 10 a

0 a a a a
0·5 213·883 265·136 636·950 2741·29
0 50·2593 69·8367 200·342 657·048

10 5·3708 8·9626 29·1151 60·0450
100 4·0374 6·7392 21·2646 40·6947
a 3·9098 6·5231 20·4860 38·8533
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the radian frequency of free vibration. In the present analysis it is assumed that Ri is a
polynomial in x of the form

Ri =$1−2
K+4i+ n+3
K+4i+ n+5

x2 +
K+4i+ n+1
K+4i+ n+5

x4%x2i. (14)

Substituting equation (13) into equation (11) and applying the Galerkin procedure
(multiplying both sides by xRj (x) and integrating from x=0 to x=1) leads to the
equations

s
M

i=0

Ci (Aij −V2Bij )=0, j=0, 1, . . . , M, (15)

where

Aij =g
1

0 6x94Ri −12(1− n2)
d
dx $x(A−Bx2)

dRi

dx%7Rj dx, Bij =g
1

0

RiRjx dx, (16, 17)

which in turn leads to the frequency equation

det [Aij −V2Bij ]=0, i, j=0, 1, . . . , M. (18)

The frequency equation (18) in V2 can be solved by a numerical method. The lowest value
of V provides the fundamental frequency.

4. 

The results are presented in Figures 2 and 3 and Table 1.
In Figure 2 is shown the effect of l on the frequency parameter V for different values

of in-plane stiffness parameter C for K=1, when the plate is vibrating in the fundamental
mode. In Figure 3 the critical speed parameter lcr depending on the rotational stiffness K
is shown for different values of the in-plane stiffness parameter C (1, 2, 3, 5, 10, 100 and
a). The critical speed lcr is defined as the rotational speed at which the natural frequency
of the fundamental mode vanishes. In Table 1, lcr is presented for different values of
rotational stiffness parameter K and in-plane stiffness parameter C.

5. 

In this note the following results have been obtained.
1. The fundamental frequency of vibration of the rotating plate, depending on the

rotation speed (parameter l) and the in-plane spring stiffness (parameter C) on the plate
edge, have been determined.

2. The critical value of the parameter l, depending on the stiffness of the springs, has
been determined. The values of the stiffness of the torsional springs do not change the
qualitative nature of the buckling problem. For C=0, the rotating plate does not buckle.
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