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A DYNAMIC GREEN FUNCTION FORMULATION
FOR THE RESPONSE OF A BEAM STRUCTURE

TO A MOVING MASS
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A dynamic Green function approach is used to determine the response of a simply
supported Bernoulli–Euler beam of finite length subject to a moving mass traversing its
span. The proposed method produces a simple matrix expression for the deflection of the
beam. The efficiency and simplicity of the method is demonstrated by several numerical
examples. The effect of various parameters on the dynamic response is investigated.
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1. INTRODUCTION

The moving load problem is a fundamental problem in structural dynamics. The
importance of this problem is manifested in numerous applications in the field of
transportation. Bridges, guideways, overhead cranes, cableways, rails, roadways, runways,
tunnels and pipelines are example of structural elements to be designed to support moving
masses. Also, in connection with the design of machining processes, many members can
be modelled as beams acted upon by moving loads. The challenge of these designs has
attracted the attention of many investigators since 1897, when the Chester Rail Bridge
collapsed in England [1]. Various kinds of problems associated with moving loads have
been presented in the excellent monograph by Frýba [2]. More recent developments and
results can be found in state-of-the-art reviews [3–8].

The first dynamic analyses of structures under moving loads involved a simply supported
beam in two limiting cases. In the first case, the effects of the load inertia were neglected
in the analysis, and the problem is commonly called a moving force approximation. The
methods of solution were generally within the framework of modal expansion and linear
transformation techniques. A closed form solution can be obtained when the force travels
with a constant velocity. This classical case was first solved by Krylov [9] and then by
Timoshenko [10]. In the second case, the inertial effects of the beam were neglected. This
problem was originally formulated and approximately solved in the first half of the
nineteenth century by Zimmermann [11] and Stokes [12].

The above analyses introduced extreme approximations in modelling the physical
problem of moving loads. Modern computational techniques have elminated the needs for
many of the limitations and simplifications previously imposed. As a consequence, more
precise modelling is required for the simulation of physical systems.

The double Laplace transform has been utilized by Hamada [13] to find a solution for
a beam with damping under the action of a moving massless load. Olsson [14] presented
analytical and finite element solutions of a simply supported beam subjected to a constant
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force moving at constant speed. His analytical solution is a series solution, as was given
in reference [2]. Mackertich [15] studied the response of a simply supported beam excited
by a moving force based on the Timoshenko beam theory. In another recent paper,
Mackertich [16] used the modal superposition method for the beam deflection and
compared the response of a Timoshenko beam to a moving mass to that of a
Bernoulli–Euler one. He approximated the total time derivative of the mass displacement
by the partial derivative to circumvent the difficulty that arises from the existence of a
coupling term in the mass acceleration expression. A very recent work by Michaltsos et
al. [17] follows the same approximation to derive a series solution for beam dynamic
deflection in terms of beam normal modes, by using as a first approximation the solution
of the corresponding problem without the effect of the mass inertia. More recently, using
the well known assumed mode method, Lee [18] presented a numerical solution based on
integration programs using the Runge–Kutta method for integrating the response of
clamped–clamped beam acted upon by a moving mass. He pointed out the possibility of
the mass separating from the beam during the course of motion by monitoring the contact
force between the mass and the beam.

Ting et al. [19] formulated and solved the problem using the influence coefficients (static
Green function). The distributed inertial effects of the beam were considered as applied
external forces. Correspondingly, at each position of the mass, numerical integration had
to be performed over the length of the beam. However, the use of the dynamic Green
function in the present investigation makes the deflection expression for the beam to be
written in a simple form. This is an auxiliary benefit of the current investigation over the
earlier work, because the computation becomes more efficient. We recall that Ting et al.
used influence coefficients, which are the static deflection due to a unit force.

An exact and direct modelling technique is presented in this paper for modelling beam
structures subjected to a mass moving at constant speed. This technique is based on the
dynamic Green function. The equation of motion in matrix form is formulated and is
non-dimensionalized so that the numerical results presented are applicable to large
combinations of system parameters. The computational algorithm presented is
straightforward and efficient. In order to demonstrate the procedure and to show the
simplicity and efficiency of the method presented, quantitative examples are given. The
influence of variation of the parameters of the system on the dynamic response is studied.
In addition, the physical implications of the mathematical results are addressed.

2. PROBLEM FORMULATION

The differential equation of a Bernoulli–Euler beam of finite length, subject to a
concentrated force, is

EI
14w(x, t)

1x4 +m
12w(x, t)

1t2 =Fd(x− u), (1)

where E is Young’s modulus, I is the second moment of area of the beam cross-section,
m is the mass per unit length, x is the axial co-ordinate, t is the time, w(x, t) is the transverse
deflection of the beam, F is the applied force and d(x− u) is the Dirac delta function. The
boundary conditions for a simply supported beam and the initial conditions are

w(x, t)=
12w(x, t)

1x2 =0 at x=0 and L, (2)

w(x, 0)=
1w(x, 0)

1t
=0. (3)
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Referring to Figure 1, F is the reaction force exerted by the mass M on the beam. For
the mass shown in the free body diagram, Newton’s second Law yields

F=M 0g−
d2b

dt21, (4)

where g is the gravitational acceleration and b is the transverse displacement of the mass.
Therefore, in the above and hereinafter we use the notation

b(t)=w(x, t) =x= u . (5)

The dynamic Green function is utilized to find the solution for the stated problem.
Hence, if G(x, u) is the dynamic Green function, as yet unknown, for the stated problem,
then the solution of equation (1) takes the form

w(x, t)=G(x, u)F, (6)

where G(x, u) is the solution of the differential equation

d4W(x)
dx4 − q4w(x)= d(x− u), (7)

where q is the frequency parameter (separation constant) and is given by

q4 =v2m/EI, (8)

in which v is the circular frequency that expresses the motion of the mass and is equal
to pv/L.

The solution of equation (7) is assumed in the form [20]

G(x, u)=6A1 cos (qx)+A2 sin (qx)+A3 cosh (qx)+A4 sinh (qx),
B1 cos (qx)+B2 sin (qx)+B3 cosh (qx)+B4 sinh (qx),

0E xE u,
xE uEL,

(9)

The eight constants A1, . . . , A4 and B1, . . . , B4 are evaluated such that the Green function
G(x, u) satisfies the following conditions [21]: (a) two boundary conditions at each end of
the beam depending on the type of end support—for a simply supported beam,

G(0, u)=G(L, u)=G0(0, u)=G0(L, u), (10)

where the prime indicates a derivative with respect to x; (b) continuity conditions of
displacement, slope and moment at x= u, i.e.,

G(u+, u)=G(u−, u), G'(u+, u)=G'(u−, u), G0(u+, u)=G0(u−, u); (11)

Figure 1. A mass traversing a beam with constant velocity.
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(c) shear force discontinuity of magnitude one at x= u, i.e.,

EI[G1(u+, u)−G1(u−, u)]=1. (12)

The Green function as determined by the above procedure is given by

G(x, u)=
1

2EIq3 sin (qL) sinh (qL) 6g(x, u),
g(u, x),

0E xE u,
xE uEL,

(13a)

where

g(x, u)= sinh (qL) sin (qx) sin (qL− qu)− sin (qL) sinh (qx) sinh (qL− qu), (13b)

and g(u, x) is obtained by switching x and u in g(x, u). This follows from the fact that
G(x, u) must be symmetric to satisfy the Maxwell–Rayleigh reciprocity law.

It is to be noticed that when q is equal to zero, the expression given by equation (13)
reduces to the static Green function (beam influence coefficients). Specifically,

lim
q:0

G(x, u)=
L3

6EI 01−
u
L1 x

L 02−0xL1
2

−0u
L1

2

%, 0E xE u. (14)

It proves convenient [19] to change the variable by using the relationship u= u(t), so that

db

dt
=

db(t)
du

du
dt

= v
db(u)
du

,

d2b

dt2 = v2 d2b(u)
du2 , (15)

where

b(u)=w(x, u) =x= u . (16)

Eliminating F between equations (4) and (6) and making use of equation (15) yields

w(x, u)=G(x, u)M $g− v2 d2b(u)
du2 %, (17)

Equation (17) is a second order differential equation, which specifies the beam deflection
at position x caused by the load at location u. It represents the particular solution for the
governing equation (equation (1)); i.e., the forced vibration part of the deflection. The
boundary conditions, equations (2), are embedded in the Green function. However, one
still needs to satisfy the two initial conditions given by equation (3). Therefore, one should
add the complementary solution wd (x, u), which is given by [13]:

wd (x, u)=
−2MgL3

p4EI
s
a

j=1

a

j3( j2 − a2)
sin 0jpx

L 1 sin 0j2pu
aL 1, 0E x, uEL, (18a)

where the speed parameter a is defined as

a=
vL
p Xm

EI
. (18b)
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It is to be noted that for a moving force problem, in which the inertial term of the moving
mass is removed, the forced vibration part of the deflection as is given by equation (17)
is

wf (x, u)=
Mg

2EIq3 sin (qL) sinh (qL) 6g(x, u),
g(u, x),

0E xE u,
xE uEL.

(19)

According to formula (1.31) in reference [2], the well known Fourier series solution of the
moving force at a non-critical speed is

W(x, u)=Wd (x, u)+wf (x, u), 0E x, uEL, (20a)

where

wf (x, u)=
2MgL3

p4EI
s
a

j=1

1
j2( j2 − a2)

sin 0jpx
L 1 sin 0jpu

L 1, 0E x, uEL, (20b)

and wd (x, u) is given by equation (18a).
Thus, by making use of the dynamic Green function, the sum of the Fourier series,

equation (20b), has been obtained in a closed form.
It is also interesting to note that the expression given by equation (19) is exactly the

forced vibration part obtained by Hamada [13], using the double Laplace transform
approach (second part of equation (7) in reference [13]). Specifically,

wf (x, u)=
2MgL3

p4EI $sin (apu/L)
sin ap

sin ap01−
x
L1−

apu
L 01−

x
L1

−sin ap0u
L

−
x
L1+ ap 0u

L
−

x
L1%, xE uEL, (21)

Therefore, equations (19), (20b) and (21) are different representations for the forced
vibration part of the deflection. Verification of this result may be obtained by evaluating
these three expressions numerically, after recalling the fact that q= p(a)1/2 and truncating
the series solution given by equation (20b) after 12 terms. This is shown in Figure 2 for
different speed parameters a. The three representations are identical up to the fourth
decimal place. However, one needs elegant procedures to prove mathematically that these
three expressions are equivalent.

3. COMPUTATIONAL ALGORITHM

Since the closed form solution of equation (17) is not known, one seeks an approximate
solution in which one replaces the derivatives by its finite difference approximation. Hence
the beam is divided into (N−1) intervals of length h. The discretized version of equation
(17) is

w(xi , u)=G(xi , u)M $g− v2 d2b(u)
du2 %, (22)

where the subscript i refers to any one of the N discrete station points. It is to be noted
that equation (22) is explicit in u and, accordingly, implicit in time t. Without loss of
generality, the variable u that represents the location of the mass is discretized in the same
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Figure 2. A comparison of different representations for the forced vibration part of the deflection when
a=0·25, 0·5 and 0·75. q q q q, equation (19); r r r r, equation (20b); ++++, equation (21).

way. Therefore the increments of u are also taken to be of length h. This incrementation
is equivalent to using time intervals that are the length of the time required to travel from
any one of the N stations to the next adjacent one.

All that remains to be done is to use finite divided difference formulas to represent the
u derivative in equation (22). The Houbolt method [22] is chosen, since u is equivalent to
the time variable. Therefore, upon letting f(u) be any sufficiently smooth function, the
approximate formula is [22]

d2f
du2 buj

=
1
h2 s

3

k=0

ak f(uj− k )+O(h2), (23)

where uj indicates that the mass is at the jth station point. The coefficients ak are a0 =2,
a1 =−5, a2 =4 and a3 =−1.

Application of equation (23) to equation (22) results in the following set of algebraic
equations:

h2w(xi , uj )=G(xi uj )M $h2g− v2 s
3

k=0

ak w(xj− k , uj )%, i, j=1, 2, . . . , N, (24)

where use has been made of equation (16) with the remark that

b(uj )=w(x, uj ) =x= uj =w(xj , uj ). (25)

Equation (24) is the same as equation (11) in reference [19], neglecting the numerical
integration in that equation, replacing the influence coefficient by the dynamic Green
function, and setting v̇=0.

Equation (24) can be expressed concisely in matrix form:

[h2[I]+ a0 v2[G]M[Pij ]]{wuj}=M[G] $h2g{D}− v2 s
3

k=1

ak [Pj, j− k ]{wuj− k}%, (26)
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where [I] is the identity matrix and

{wuj}= {w(x1, uj ), w(x2, uj ), . . . , w(xN , uj )}T,

{Duj}= {0 · · · 010 · · · 0}T,
Q

jth column

( j− k)th column
4

G(x1, u1) · · · G(x1, uN ) 0 · · · · · · · 0K L K L
G G G G· · · · · · · · · · · · · · ·
G G G G

[G]= · · · · · · , [Pi, j− k ]= 0 · · 0 1 0 · · 0 9jth row.G G G G
· · · · · · 0 · · · · · · · 0G G G G

G(xN , u1) · · · G(xN , uN ) 0 · · · · · · · 0k l k l
(27)

Equation (26) describes the transverse displacement of the beam when the mass is at any
station j. In order to include the initial conditions, equations (3), which describes the
displacement and slope of the beam at onset of motion, one refers back to the change of
variables introduced earlier. Accordingly, the initial conditions correspond to the mass
being at the initial station point j=0. For this station, equation (26) requires values of
{wuk}, where kE 0. These values may be set equal to zero.

Equation (26) may be placed into non-dimensional form so that the numerical results
presented are applicable for large combinations of system parameters. This is achieved by
letting wst be the scaling factor for the transverse displacement, where wst is the static
deflection at the beam mid-span due to the weight of the mass, and by letting T be the
time scale, where T is the period of the lowest vibration mode of the beam. Thus

wst =
MgL3

48EI
, T=

2L2

p Xm
EI

. (28)

The appropriate non-dimensional quantities can be

ŵ=w/wst , Ĝ =
EI
L3 G. (29)

Upon using equation (29), the resulting non-dimensional form of equation (26) is found
to be

[[I]+ ga0 [Ĝ] [Pj, ]]{ŵuj}=[Ĝ]$48{D}− g s
3

k=1

ak [Pj, j− k ]{ŵuj− k}%, (30)

where the non-dimensional parameter g depends on the mass ratio M/mL, the speed ratio,
as given by equation (18b), a= v/vcr , and the number of segments, and is given by

g= p2 0M
mL10Lh1

2

0 v
vcr1

2

. (31)
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where the critical speed vcr is defined as

vcr =2L/T0
p

LXEI
m

. (32)

The case v/vcr =1 corresponds to resonance with the fundamental mode when the load is
a constant force.

4. EXAMPLES

The parameters selected for the given examples correspond to the data used in reference
[17]. From equation (30) one can see that ŵ(x, u) depends on only three non-dimensional
parameters, x/L, u/L and g. Quantities such as mid-span dynamic magnification factors
ŵ(x/2, u/2) are thus functions of g alone. Consequently, the parameter g plays an important
role in understanding the dynamic characteristics of the fundamental moving mass
problem. For a moving force without mass, the response ŵ(x, u) depends on only x, u and
a. In Figure 3 is shown the influence of variation of the speed parameter a on the mid-span
deflection for a moving force (i.e., the inertia of the moving mass is neglected). As a

increases one can see that histories or influence lines deviate more from the quasi-static
ones (a=0). One can also note that the curves for a=0·05, 0·125 and 0·5 oscillate about
the quasi-static influence lines. For these values of a, the travel times (L/v) are ten, four
and two times larger than the lowest vibration period, respectively. Hence, the lowest
vibrating beam mode has enough time to complete ten, four and two vibration cycles,
respectively. From the curve for a=0·25, the maximum deflection ŵ=1·2497 occurs when
the load is located at u/L=0·4, while for a=0·375, the maximum deflection becomes
ŵ=1·5608, taking place when the load is located at u/L=0·5444. In Figure 4, the inertia
of the moving mass is included. The mass ratio M/mL is 0·3. For a=0·25, the maximum
deflection is ŵ =1·3496 when the mass is located at u/L=0·4222, while for a=0·375 the
maximum deflection is ŵ=1·6051 when the mass is at u/L=0·5556.

In Figure 5, the mass ratio M/mL=0·6. For a=0·25, the maximum deflection
ŵ=1·2531 occurs when the mass is located at u/L=0·3889, while for a=0·375 the
maximum deflection is ŵ=2·056, which occurs when the mass is at u/L=0·5444. It can

Figure 3. The central deflection of a beam traversed by a moving force when a=0, 0·05, 0·125, 0·25 and 0·375.
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Figure 4. The central deflection of a beam traversed by a moving mass when M/mL=0·3; a=0, 0·05, 0·125,
0·25 and 0·375.

be concluded that if the moving mass is small in comparison to the mass of the beam, it
is sufficient to consider the mass as a moving force only.

In Figures 6 and 7, the parameters selected correspond to data used in reference [16],
which are for a typical simply supported beam representing a bridge with span L=50 m,
modulus of elasticity E=3·34×1010 N/m2, moment of area of cross-section I=1·042 m4

and mass per unit length m=4800 kg/m, excited by a moving mass of M=50 000 kg.
These data correspond to a mass ratio of M/mL=0·2083 and a critical velocity of
vcr =169·2 m/s. In Figure 6 is shown the deflection at mid-span of the beam when the effect
of the load mass on the dynamic response is neglected for travelling velocities of
v=25 m/s, v=50 m/s and v=100 m/s, which correspond to a=0·1478, a=0·2955 and
a=0·5911, respectively. In Figure 7, the effect of the load mass is included. Comparing
these two figures, one can conclude that the effect of the mass inertia is significant in
determining the dynamic response of a beam excited by a high velocity moving load. In
other words, the inertial effect of the moving mass cannot be neglected in comparison with
the gravitational effect if the travelling velocity of the mass is not small.

Figure 5. The central deflection of a beam traversed by a moving mass when M/mL=0·6; a=0, 0·05, 0·125,
0·25 and 0·375.
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Figure 6. The central deflection of a beam traversed by a moving force when v=25, 50 and 100 m/s.

The purpose of the foregoing presentation was to display the versatility of the algorithms
developed. Beams with various combinations of boundary conditions and Timoshenko-
type beams can be treated in a similar manner. Put simply, the Green function G(x, u)
in the algorithms presented is replaced by the proper one. In the Appendix, Green function
for fixed–fixed beams and for cantilever beams are cited. Green functions for other
complicated boundary conditions are tabulated in reference [20], while Green functions for
Timoshenko-type beams are derived by Lueschen et al. [23].

5. CONCLUSIONS

The objective of this work was to present a simple and direct technique to treat the
problem of a beam traversed by a moving mass. The influences of variations of the
travelling velocity and the ratio of the moving mass to the mass of beam on the dynamic
response are studied. Finally, the effect of neglecting the inertia of the mass on the dynamic
response of the beam is demonstrated.

Figure 7. The central deflection of a beam traversed by a moving mass when M/mL=0·2083; v=25, 50 and
100 m/s.
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APPENDIX

The Green functions are given by

G(x, u)=
1

2EIq3D 6g(x, u),
g(u, x),

0E xE u,
xE uEL,

(A1)
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where

g(x, u)=D1 (cos qx−cosh qx)+D2 (sin qx−sinh qx). (A2)

For fixed–fixed beams,

D=2(1−cos qL cosh qL), (A3)

D1 = (cos qL−cosh qL) (sin z−sinh z)− (sin qL−sinh qL) (cos z−cosh z), (A4)

D2 = (sin qL+sinh qL) (sin z−sinh z)+ (cos qL−cosh qL) (cos z−cosh z). (A5)

where z= q(L− u), while for cantilever beams,

D=2(1+cos qL cosh qL), (A6)

D1 = (cos qL+cosh qL) (sin z+sinh z)− (sin qL+sinh qL) (cos z+cosh z), (A7)

D2 = (sin qL−sinh qL) (sin z+sinh z)+ (cos qL+cosh qL) (cos z+cosh z). (A8)


