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In this paper, the bulging modes (i.e., modes where the walls oscillate moving the liquid)
of the flexible bottom annular plate of an otherwise rigid annular cylindrical container are
studied. The tank has a vertical axis and is partially filled with liquid, so that the free surface
of the liquid is orthogonal to the tank axis. The volume occupied by the liquid is delimited
by two coaxial rigid cylinders and the liquid deformation potential is obtained by using
variables separation. First, by using the simplifying hypothesis that the mode shapes of the
plate in contact with the liquid (wet modes) are the same in vacuo, the approach based on
the non-dimensionalized added virtual mass incremental (NAVMI) factor is applied, so
that all numerical computations can be made non-dimensional. Second, the accuracy of this
method is checked by using the Rayleigh–Ritz method, which removes the restrictive
hypothesis on the wet mode shapes. Finally, several experimental modal analyses were
performed on two different test tanks filled with different water levels in order to verify
the accuracy of the theoretical results.
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1. INTRODUCTION

Knowledge of the dynamic behaviour is important in the design of off-shore structures,
large liquid-fuel rockets and missiles, and heat exchangers for nuclear plants since it
influences safety, dynamic stability and control. All these structures are in contact with
liquids. Although cylindrical elements are more common in some fields, annular structures
are commonly employed in nuclear plants and sometimes in marine applications. Annular
tanks have also been proposed for launching vehicles.

The free vibrations of fluid-coupled coaxial cylindrical shells were studied by Au-Yang
[1, 2], while the shell vibrations of an annular cylindrical tank were studied by Bauer et
al. [3] and Zhou [4]. The added mass effect on an annular disc vibrating in fluid was
investigated by Kubota and Suzuki [5], but the differentials in the radial direction were
neglected and only diametral modes were considered. This study is, therefore, mainly
applicable to plates having a ratio between the inner and outer radius close to one (rings).
Recently, Amabili et al. [6] analytically solved the problem of the free vibrations of an
annular plate placed into the hole of an infinite rigid plate (infinite baffle) and in contact
with an unbounded liquid on one side. The effect of a finite fluid depth on this problem
was investigated by Amabili [7]. The vibration of an elastic membrane bottom of a rigid
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annular tank partially filled with liquid was studied by Tsui and Small [8]. No studies on
vibrations of annular bottom plates of rigid annular tanks partially filled with liquid have
been found in the open literature by the authors.

In this paper, attention is focused on the bulging modes of the flexible bottom annular
plate of an otherwise rigid annular cylindrical container. It is worthy to remember that
partially liquid-filled tanks have two families of modes: the sloshing and the bulging ones.
Sloshing modes are caused by the oscillation of the liquid free surface, e.g., they are excited
by the rigid body movement of the container; these modes can also be affected by the
flexibility of the container but are characteristic of rigid tanks. Obviously they disappear
for empty tanks. On the contrary, bulging modes are related to vibrations of the tank walls
(bottom plate and shell) that move the liquid. This family of modes is due to the flexibility
of the structure, disappears in the case of rigid walls, but is also present for empty flexible
containers.

The tank studied has a vertical axis and is partially filled with liquid, so that the free
surface of the liquid is orthogonal to the tank axis. The volume occupied by the liquid
is delimited by two coaxial rigid cylinders and the liquid deformation potential can be
obtained by using variables separation. The effects of the free surface waves on the dynamic
pressure at the free surface, the superficial tension and the gravity effects are neglected [9],
so that the plate vibrations, with only bulging modes considered, are studied by using a
simplified theory. In fact, it is well known that the effect of the free surface waves is low
on bulging modes of structures which are not extremely flexible [9]. As a consequence, the
non-dimensionalized added virtual mass incremental (NAVMI) factor approach, already
successfully used for circular plates in references [6, 7, 10–14] is applied. In particular,
Amabili [13] applied a similar method to study base circular plates of cylindrical tanks;
however, in the present study the geometry is more complicated. All computations can be
made non-dimensional and the natural frequencies of the annular plate in contact with
the liquid can be obtained directly from those in vacuo by using the actual plate boundary
conditions. This a relevant computational simplification in respect to other existing
theoretical approaches. Some interesting work on fluid-loaded plates and membranes has
been reported, e.g., in references [15–45] and this provides several solutions of different
problems. Moreover, due to their non-dimensional form, NAVMI factors can be
computed once and for all. The proposed approach is based on the Rayleigh quotient for
coupled vibrations [46, 47] and on the hypothesis that the dry (in vacuo) and wet (in liquid)
mode shapes of the plate remain unchanged (based on the assumed modes method). The
accuracy of this approach is checked by using the Rayleigh–Ritz method [48], which
removes the restrictive hypothesis on the wet mode shapes. In particular, the wet mode
shapes are expanded in a series by using the dry mode shapes as admissible functions.

The Rayleigh–Ritz approach allows one to exceed the limits of the assumed modes
method, while retaining a remarkable simplicity of computation, in respect to other
analytical techniques already applied to this kind of problem. Moreover, non-dimensional
results can be given for engineering applications.

The present study can be considered an extension to the classical problem of the
vibrations of circular bottom plates of otherwise rigid cylidrical tanks partially filled with
a liquid [13, 18–25, 32, 35, 37–39]. This classic problem can be obtained as a special case
of an annular tank, when the inner radius becomes zero. In fact, in this case, a simpler
solution of the equation of motion satisfies the boundary conditions for free vibrations
in vacuum.

In order to check the accuracy of the proposed theory, several experimental modal
analyses were performed on two different test tanks filled with different water levels.
Results obtained by the numerical simulation of the free vibration characteristics of the
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tank bottom are satisfactorily compared to data obtained by the experiments. These results
give a validation of the hypotheses and the theory used in the present work.

The theory is applicable to engineering problems and the NAVMI factor approach has
the advantage of presenting the results as tables of non-dimensional factors that can be
quickly employed in design. In the case that the entire tank must be considered flexible,
the approach used is still useful to study the whole structure if a sub-structuring method,
like the artificial spring method, is used.

2. PLATE VIBRATIONS IN VACUUM

Consider a thin annular plate vibrating in vacuo having thickness h, mass density rP ,
inner radius a1, and outer radius a2. The plate is assumed to be made of linearly elastic,
homogeneous and isotropic material. Moreover, the effects of shear deformation and
rotary inertia are neglected. A polar co-ordinate system (O; r, u) is introduced, with the
pole O placed on the plate centre. The equation of motion for transverse displacement,
w, of this plate is [49]

D94w+ rP h(12w/1t2)=0, (1)

where D=Eh3/[12(1− n2)] is the flexural rigidity of the plate; n and E are the Poisson ratio
and the Young’s modulus, respectively. In addition, 94 is the iterated Laplace operator;
the Laplace operator, in polar co-ordinates, is 92 = 12/1r2 + (1/r)1/1r+(1/r2)12/1u2. In the
case of uniform constraints along the edge, the solution takes the following form [49, 50]

w(r, u, t)=Wmn (r) cos (mu)f(t), (2)

where

Wmn (r)=Amn Jm 0lmnr
a2 1+Bmn Ym 0lmnr

a2 1+Cmn Im 0lmn r
a2 1+Dmn Km 0lmn r

a2 1, (3)

f(t)= eivt (4)

in which m and n represent the number of nodal diameters and circles, respectively. Amn ,
Bmn , Cmn and Dmn are the mode shape constants determined by the boundary conditions,
Jm and Ym are the Bessel functions of first and second kind, Im and Km are the modified
Bessel functions of first and second kind, and lmn is the frequency parameter also
determined by the boundary conditions. For circular plates Bmn =Dmn =0 as a
consequence that equation (3) must be limited for r=0. The frequency parameter, lmn ,
is related to the circular frequency, vmn , of the plate in vacuo by

vmn =(l2
mn /a2

2 )zD/(rP h). (5)

For the Poisson ratio n=0·3, the values of lmn are tabulated in reference [51] with three
significant digits for nine different boundary conditions. In reference [6] lmn with six
significant digits for three different edge constraints as well as mode shape constants of
axisymmetric modes are given.

In the present work the following normalization criterion has been used for the mode
shape constants:

g
1

a

W2
mn (r)r dr=1. (6)
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Here a= a1 /a2 is the ratio between the inner and outer radius and r= r/a2 is the
non-dimensional radial co-ordinate.

3. LIQUID-PLATE INTERACTION

The study is that of the free vibrations of an annular bottom plate of an otherwise rigid
annular tank filled with an inviscid and incompressible liquid, movement of which is due
only to the plate vibrations. In this section, the dry and wet mode shapes of the plate are
assumed to be equal. The liquid deformations are described by the spatial deformation
potential Fmn, which satisfies the Laplace equation

92Fmn (x, r, u)=0, (7)

where the Laplace operator in cylindrical co-ordinates is 92 = 12/1x2 + 12/1r2 + (1/r)1/
1r+(1/r2)12/1u2. The cylindrical co-ordinate system (O; x, r, u) has the pole O placed
where the tank axis intersects the middle plane of the plate. The conditions of impermeable
walls at the liquid–rigid tank interfaces for a non-caviting liquid are

(1Fmn /1r)r= a1 =0, (1Fmn /1r)r= a2 =0. (8, 9)

The free liquid surface condition is described by the zero dynamic pressure condition at
x=H [9, 46, 48, 52],

(Fmn )x=H =0, (10)

where H is the level of the liquid in the annular container (see Figure 1). This condition
is obtained by neglecting the contribution of the free surface waves and superficial tension
to the dynamic pressure of the liquid at x=H. This simplification does not induce
significant errors for tanks when only bulging modes are studied. Studying the shell

Figure 1. Rigid annular tank with flexible bottom plate.
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vibrations, Kondo [53] discussed this phenomenon, observing that the heights of the free
surface waves for bulging modes of circular cylindrical tanks are so small that they almost
coincide with the undisturbed liquid level. This simplification is the same as that obtained
by considering the case of zero gravity (without superficial tension) and does not constrain
the vertical velocity of the liquid. As a consequence of this condition, the free surface does
not exhibit an intrinsic capability to oscillate; thus, the liquid free surface is not subjected
to a restoring force once it has moved, and sloshing modes cannot be studied.

At the liquid–flexible plate interface, the contact is assured by

(1Fmn /1x)x=0 =−w(r, u, t)t=0. (11)

The spatial distribution of the liquid deformation potential, for asymmetric modes (me 1),
is given by

Fmn (x, r, u)= cos (mu) s
a

k=0

hmnk $Jm 0emk
r
a21+ gmk Ym 0emk

r
a21%

×$cosh 0emk
x
a21−sinh 0emk

x
a21>tanh 0emk

H
a21%, (12)

where hmnk are appropriate constants. For axisymmetric modes (m=0), Fmn is given by

F0n (x, r)= g0n0 (x−H)+ s
a

k=0

h0nk $J0 0e0k
r
a21+ g0k Y0 0e0k

r
a21%

×$cosh 0e0k
x
a21−sinh 0e0k

x
a21>tanh 0e0k

H
a21%. (13)

Equations (12) and (13) satisfy only the free surface condition (10). The conditions (8) and
(9) require that

J'm (emk )+ gmk Y'm (emk )=0, J'm (emk a)+ gmk Y'm (emk a)=0. (14)

From the first equation of the system one obtains

gmk =−J'm (emk )/Y'm (emk ). (15)

Upon introducing the function Fm ,

Fm (emk r)= Jm (emk r)Y'm (emk )− J'm (emk )Ym (emk r), (16)

substituting expression (15) into the second equation of system (14) and using equation
(16) yields

F'm (emk a)=0, (17)

where F'm = 1Fm /1r. Equation (17) is equivalent to system (14) when a$ 0; when a=0
(circular plate) only the first equation of system (14) must be used and gmk equals zero.
Therefore emk are the roots of equation (17).

By using the orthogonality of functions Fm , proved in the Appendix, one can write

g
1

a

rFm (emk r)Fm (emh r) dr= dkh amk, (18)
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where dkh is the Kronecker delta. Calling h	 mnk = hmnk /Y'm (emk ), one obtains the following
expression for Fmn for asymmetric modes:

Fmn (x, r, u)= cos (mu) s
a

k=0

h	 mnk Fm (emk r/a2)$cosh 0emk
x
a21−sinh 0emk

x
a21> tanh 0emk

H
a21%.

(19)

Then, one requires that Fmn satisfies the last boundary condition, equation (11):

cos (mu) s
a

k=0

h	 mnk Fm (emk r/a2)
emk

a2 tanh (emk H/a2)
=Wmn (r) cos (mu). (20)

Condition (20) is used to evaluate the constants h	 mnk :

h	 mnk =
a2 tanh (emk H/a2)

emk

g
1

a

Wmn (a2 r)Fm (emk r)r dr

g
1

a

F2
m (emk r)r dr

=
a2 tanh (emk H/a2)

emk

bmnk

amk
, (21)

where

bmnk =g
1

a

Wmn (a2 r)Fm (emk r)r dr.

For axisymmetric modes, the boundary condition (11) yields

−g0n0 + s
a

k=0

h	 0nk F0 (e0k r/a2)
e0k

a2 tanh (e0k H/a2)
=W0n (r). (22)

Therefore one has

g0n0 =−2g
1

a

W0n (a2 r)r dr, (23)

and the constants h	 0nk are given by equation (21) computed for m=0.

4. NAVMI FACTORS

4.1. 

If one applies Green’s theorem to the harmonic function Fmn , the reference kinetic energy
of the liquid can be computed as a boundary integral [47, 54]:

T*L =
1
2

rL ggg
V

9Fmn 9Fmn dV=−
1
2

rL gg
1V

Fmn (1Fmn /1n) dS, (24)
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where V is the liquid volume, 1V is the boundary of the volume V, and n is the direction
normal to the boundary oriented inwards to the liquid region. Due to equations (8–10),
only the integration over the plate surface gives a non-zero result; therefore, the reference
kinetic energy of the liquid, for asymmetric modes (me 1) is given by

T*L =−
1
2

rLg
2p

0 g
a2

a1

Fmn (0, r, u)
1Fmn

1x
(0, r, u)r dr du

=
1
2

rL a3
2 cm s

a

k=0

bmnk

amk

tanh (emk H/a2)
emk g

1

a

Wmn (a2 r)Fm (emk r)r dr

=
1
2

rL a3
2 cm s

a

k=0

b2
mnk

amk

tanh (emk H/a2)
emk

, cm =62p

p

for m=0
for mq 0.

(25)

The reference kinetic energy of the liquid for axisymmetric modes (m=0) is given
by

T*L =
1
2

rL a3
2 cm $Ha2

g2
0n0

2
+ s

a

k=0

b2
0nk

a0k

tanh (e0k H/a2)
e0k %. (26)

The reference kinetic energy of the plate, by using the orthogonality of the dry (equal to
wet) mode shapes, is easily obtained

T*P =
1
2

rP hg
a2

a1

W2
mn (r) cos2 (mu)r dr du=

1
2

rP hcm a2
2 g

1

a

W2
mn (a2 r)r dr=

1
2

rP hcm a2
2 , (27)

where the normalization criterion, equation (6), was used.
One can now introduce the non-dimensionalized added virtual mass incremental

(NAVMI) factors that are given by the non-dimensional ratio between the reference kinetic
energies of the liquid and the plate. These factors relate the natural frequencies
of free vibration in liquid, fL , to natural frequencies in vacuum, fV , by
using the formula fL = fV /z1+Gmn (rL a)/(rP h) [11]. This formula is easily
obtained by applying the Rayleigh quotient to the problem. The NAVMI factors
for asymmetric modes (me 1) are given by

Gmn =
T*L
T*P

rP h
rL a2

= s
a

k=0

b2
mnk

amk

tanh (emk H/a2)
emk

; (28)

NAVMI factors for axisymmetric modes (m=0) are

G0n =
H
a2

g2
0n0

2
+ s

a

k=0

b2
0nk

a0k

tanh (e0k H/a2)
e0k

. (29)

4.2.  

The NAVMI factors Gmn are numerically obtained from equations (28) and (29). These
factors are given in Tables 1 and 2 for annular plates clamped at both edges for the ratios
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T 1

NAVMI factors for annular plates clamped at both edges; a=0·3

H/a2 n m=0 m=1 m=2 m=3

0·1 0 0·15565 0·092804 0·090770 0·087719
0·1 1 0·080650 0·079116 0·077554 0·075123
0·1 2 0·077591 0·065729 0·064639 0·062928
0·1 3 0·055006 0·054347 0·053631 0·052503
0·3 0 0·40656 0·20988 0·18572 0·15905
0·3 1 0·13010 0·12443 0·11716 0·10727
0·3 2 0·12616 0·089938 0·085451 0·079725
0·3 3 0·068821 0·066805 0·064695 0·061748
0·5 0 0·60887 0·27082 0·21840 0·17379
0·5 1 0·14583 0·13619 0·12491 0·11156
0·5 2 0·16088 0·099332 0·090826 0·082360
0·5 3 0·074506 0·070887 0·067302 0·063178
0·7 0 0·78031 0·30082 0·22865 0·17661
0·7 1 0·15504 0·14129 0·12712 0·11232
0·7 2 0·19099 0·10399 0·092532 0·082870
0·7 3 0·078120 0·072805 0·068096 0·063449
1 0 1·0011 0·31794 0·23224 0·17720
1 1 0·16318 0·14414 0·12787 0·11248
1 2 0·23066 0·10665 0·093130 0·082978
1 3 0·081376 0·073892 0·068372 0·063505
2 0 1·6419 0·32442 0·23289 0·17725
2 1 0·17598 0·14522 0·12801 0·11249
2 2 0·34846 0·10766 0·093239 0·082987
2 3 0·086640 0·074303 0·068422 0·063510

a=0·3 and 0·5, respectively. Different filling ratio H/a2 and modes having up to three
internal nodal diameters and circles are considered in these two tables. Obviously the
NAVMI factors increase with the filling ratio so that the natural frequencies decrease. A
comparison of the data presented in Tables 1 and 2 shows that the factors for plates with
a=0·3 are larger than those for plates with a=0·5. An interesting phenomenon is also
observed for axisymmetric modes of annular plates clamped at both edges: when the filling
ratio is high enough (not lower than 0·5 for a=0·3 and 0·3 for a=0·5) the NAVMI
factors do not decrease with the number of nodal circles, as they usually do for an
unbounded liquid domain [6]. In fact, axisymmetric modes having an even number of
nodal circles give a larger movement of the liquid mass centre than modes with an odd
number of nodal circles (asymmetric modes, mq 0, give no movement of the liquid mass
centre). Therefore, for these modes the liquid influence on the system is larger than for
other modes. This phenomenon is evident for the axisymmetric mode with two nodal
circles (m=0, n=2) that presents NAVMI factors higher with respect to those of the
axisymmetric mode with one or three nodal circles.

In Table 3, the NAVMI factors for annular plates simply supported at both edges, with
a=0·3 and n=0·3, are reported. The corresponding frequency parameters and mode
shape constants are given in Table 4. A comparison of Tables 1 and 3, that are both relative
to plates with the same ratio a=0·3, show that NAVMI factors are higher for clamped
plates than for simply supported plates. Finally, annular plates simply supported at the
outer edge and free at the inner edge, with a=0·3 and n=0·3, are considered in Tables 5
and 6. All these data are given because, due to their non-dimensional nature, they can be
used in design and research.
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T 2

NAVMI factors for annular plates clamped at both edges; a=0·5

H/a2 n m=0 m=1 m=2 m=3

0·1 0 0·14048 0·088467 0·087147 0·085063
0·1 1 0·069288 0·068732 0·067989 0·066804
0·1 2 0·063344 0·053443 0·053005 0·052302
0·1 3 0·042517 0·042306 0·042053 0·041644
0·3 0 0·34432 0·18409 0·16982 0·15169
0·3 1 0·097247 0·095241 0·092226 0·087904
0·3 2 0·099227 0·069121 0·066882 0·063897
0·3 3 0·050437 0·049713 0·048766 0·047433
0·5 0 0·49314 0·22303 0·19503 0·16530
0·5 1 0·10485 0·10136 0·096499 0·090478
0·5 2 0·12545 0·074882 0·070678 0·066005
0·5 3 0·053314 0·051996 0·050330 0·048353
0·7 0 0·61416 0·23659 0·20154 0·16769
0·7 1 0·10809 0·10341 0·097552 0·090906
0·7 2 0·14760 0·076893 0·071662 0·066377
0·7 3 0·054579 0·052778 0·050727 0·048511
1 0 0·77660 0·24176 0·20336 0·16813
1 1 0·11014 0·10418 0·097845 0·090986
1 2 0·17800 0·077661 0·071937 0·066446
1 3 0·055394 0·053077 0·050838 0·048541
2 0 1·2941 0·24282 0·20359 0·16817
2 1 0·11347 0·10434 0·097883 0·090992
2 2 0·27581 0·077818 0·071972 0·066451
2 3 0·056757 0·053138 0·050852 0·048543

5. RAYLEIGH–RITZ SOLUTION

5.1. 

The Rayleigh–Ritz method [55] is applied to eliminate the restrictive hypothesis that dry
and wet modes have the same shape. All other hypotheses, previously introduced, are

T 3

NAVMI factors for annular plates simply supported at both edges; a=0·3 and n=0·3

H/a2 n m=0 m=1 m=2 m=3

0·1 0 0·12053 0·047974 0·050027 0·052913
0·1 1 0·042013 0·040075 0·036746 0·032109
0·3 0 0·32579 0·10502 0·10271 0·099637
0·3 1 0·10178 0·094112 0·080196 0·063068
0·5 0 0·49968 0·12894 0·11936 0·10965
0·5 1 0·13211 0·11818 0·094850 0·070170
0·7 0 0·65694 0·13728 0·12367 0·11141
0·7 1 0·14497 0·12661 0·098663 0·071427
1 0 0·88138 0·14046 0·12488 0·11174
1 1 0·15218 0·12983 0·099728 0·071664
2 0 1·6152 0·14111 0·12503 0·11177
2 1 0·16106 0·13049 0·099866 0·071681
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T 4

Frequency parameters and mode shape constants for annular plates simply supported at both
edges; a=0·3 and n=0·3

m n lmn Amn Bmn Cmn Dmn

0 0 4·591207 0·880140 −1 0·00242160 −0·742943
0 1 9·040835 0·796941 0·363571 −8·18918×10−6 −1
1 0 4·828781 0·565809 1 −0·00167875 0·457191
1 1 9·199745 0·611594 −0·820965 −8·48430×10−6 −1
2 0 5·502127 1 0·431159 −0·00087463 0·187963
2 1 9·665253 0·325297 1 6·07719×10−6 0·665953
3 0 6·473757 1 0·135945 −0·000350001 0·0587031
3 1 10·40202 1 0·754967 4·02879×10−6 0·419376

retained. The wet mode shapes W, by using the unknown parameters qn and the admissible
functions Wmn , can be described by

W(r, u)= cos (mu) s
a

n=0

qn Wmn (r), (30)

where Wmn is given by equation (3). In equation (30) the eigenfunctions of the annular plate
vibrating in vacuo are assumed as admissible functions; in fact, dry mode shapes are quite
similar to wet mode shapes. The trial functions Wmn are linearly independent and constitute
a complete set.

Using the principle of superposition, and considering that the plate deflection is given
by the sum in equation (30), yields the deformation potential of the liquid, F, calculated
at the liquid-plate interface (x=0) as

F(0, r, u)= s
a

n=0

qn Fmn (0, r, u). (31)

T 5

NAVMI factors for annular plates simply supported at the outer edge and free at the inner
edge; a=0·3 and n=0·3

m n H/a2 =0·1 H/a2 =0·3 H/a2 =0·5 H/a2 =0·7 H/a2 =1

0 0 0·14725 0·37022 0·54997 0·70802 0·92056
0 1 0·084804 0·18269 0·25510 0·30983 0·37019
0 2 0·070207 0·11822 0·13943 0·15505 0·17381
1 0 0·088044 0·19223 0·24395 0·26919 0·28357
1 1 0·069559 0·12521 0·15313 0·16704 0·17499
2 0 0·089913 0·18654 0·22036 0·23100 0·23472
2 1 0·070538 0·11209 0·12378 0·12742 0·12869
3 0 0·088575 0·16695 0·18432 0·18768 0·18839
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T 6

Frequency parameters and mode shape constants for annular plates simply supported at the
outer edge and free at the inner edge; a=0·3 and n=0·3

m n lmn Amn Bmn Cmn Dmn

0 0 2·159647 2·82848 −0·109921 −0·154460 0·807153
0 1 6·086234 4·06457 2·95393 0·00118885 9·93240
0 2 10·36667 1·20098 −6·61921 0·0000147858 −56·0205
0 3 14·76906 8·01086 −1·10986 −1·49848×10−7 −267·844
0 4 19·21184 3·69607 8·47952 1·54588×10−9 −1198·73
1 0 3·579934 3·25667 −0·449711 −0·0251672 0·794987
1 1 6·770313 4·82793 −0·927146 0·000601226 9·48944
1 2 10·68826 5·69738 3·46801 −0·0000107666 53·2456
1 3 14·95956 0·691184 −8·03343 −1·26083×10−7 −255·069
1 4 19·34321 8·94154 −2·32103 1·37978×10−9 −1147·52
2 0 4·910799 3·96371 −0·547221 −0·00663620 −0·0855986
2 1 8·064606 4·85442 −1·49597 0·000180045 5·62635
3 0 6·226935 4·58626 −0·381816 −0·00215876 −0·249744

To perform numerical computations for each fixed m value, only a finite number N of
terms must be considered in the previous sum. For this purpose, a vector q of the unknown
parameters is introduced:

q0

q=g
G

G

F

f

q1 h
G

G

J

j

. (32)···
qN−1

To make the formulae more compact, the constant s= a2
2 cm is introduced. With this

notation, the reference kinetic energy of the liquid is given by

T*L =
1
2

srL a2 qTML q, (33)

where the N×N symmetric NAVMI matrix ML for asymmetric modes (me 1) is

MLij = s
a

k=0

bmik bmjk

amk emk
tanh (emk H/a2), i, j=0, 1, . . . , N−1, (34)

and for symmetric modes (m=0), it is defined by

MLij =
g0i0 g0j0

2
H
a2

+ s
a

k=0

b0ik b0jk

a0k e0k
tanh (e0k H/a2), i, j=0, 1, . . . , N−1. (35)

The acronym NAVMI matrix stands for the non-dimensionalized added virtual mass
incremental matrix which in fact describes the inertial effect of the liquid on modes.
Therefore, this is the extension of the NAVMI factors to the Rayleigh–Ritz approach.
Moreover, the NAVMI factors are the diagonal elements of the NAVMI matrix.

The reference kinetic energy of the plate, by using the normalization introduced in
equation (6) and the orthogonality of the dry mode shapes, is given by

T*P =
1
2

srP hqTIq, (36)
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where I is the N×N identity matrix. The maximum potential energy of the system,
considering an incompressible liquid having a zero dynamic pressure on the free surface,
coincides with that of the plate and can be computed as the sum of the reference kinetic
energies of the dry eigenfunctions

VP =
1
2

s(D/a4
2 )qTPq, (37)

where P is the N×N diagonal matrix given by

Pij = dij l
4
mi , (38)

and dij is the Kronecker delta. In order to find natural frequencies and wet mode shapes
of the plate vibrating in contact with the liquid, the Rayleigh quotient for coupled vibration
in an inviscid and imcompressible liquid [46] is used: VP /(T*P +T*L ). Minimizing the
Rayleigh quotient with respect to the unknown parameters qn , one obtains

(D/a4
2 )Pq−L2(rP hI+ rL a2 ML )q=0, (39)

where L is the circular frequency of the wet plate. Equation (39) is a Galerkin equation
and gives an eigenvalue problem. It is convenient to introduce the following
non-dimensional constants:

V2 =L2(a4
2 /D)rP h, m=(rL a2)/(rP h). (40, 41)

V and m are called the wet frequency parameter and the density-thickness correction factor,
respectively. Now equation (39) can be rewritten in the following non-dimensional form:

Pq−V2(I+ mML )q=0. (42)

It is interesting to see that, if the NAVMI matrix ML is diagonal, the system of equations
(42) is uncoupled. In this case, the approximate solutions given in section 4 become exact.

5.2.  

The eigenvalue problem given by equation (42) is solved by using the computer program
Mathematica [56]. Only five terms of the series were used, but they assure a good accuracy
for the first two or three modes. The NAVMI matrix ML for axisymmetric modes (m=0)
of annular plates clamped at both edges and with a=0·3 and H/a2 =1 is

1·0011 0·15950 −0·36653 0·10499 0·22974

0·15950 0·16318 −0·075464 0·046429 0·049505

G
G

G

G

G

K

k

−0·36653 −0·075464 0·23066 −0·050576 −0·10648 G
G

G

G

G

L

l

. (43)

0·10499 0·046429 −0·050576 0·081376 0·033570

0·22974 0·049505 −0·10648 0·033570 0·10953

The matrix is not diagonal, so that the system of equations giving the modes is not
uncoupled. Only in the first row of the matrix is there a large prevalence of one element
(the first) on the others, so, in this case, only the first (fundamental) axisymmetric mode
is accurately estimated by the NAVMI factor method. The wet frequency parameters V

are given for this case as a function of the density-thickness correction factor m in Figure 2.
Curves relative to the first three axisymmetric modes are given. The circular frequencies
of this plate are obtained by using equation (41) and Figure 2. The percentage of error
committed by using the NAVMI factors solution instead of the Rayleigh–Ritz solution
given by equation (42) is plotted in Figure 3 as a function of m for the same case. It is
clear that the fundamental mode is accurately estimated by the approximated (NAVMI
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Figure 2. Wet frequency parameters V of axisymmetric modes (m=0) of annular plates clamped at both edges
with a=0·3 and H/a2 =1, versus the density-thickness correction factor m. Curves relating to the first three
modes are given.

factor) solution and that the errors increase with m. Even the wet mode shapes have been
investigated by using equation (42). In Figure 4, the dry and wet mode shapes are plotted
along a radius for m=10, modes with up to two nodal circles being considered. It is clear
that, as well as natural frequency, the mode shape of the fundamental mode (m=0; n=0)
shows little changes.

The NAVMI matrix for axisymmetric modes (m=0) of annular plates simply supported
at the outer edge and free at the inner edge and with a a=0·3, n=0·3 and H/a2 =0·2
is

0·26737 −0·10363 −0·022879 0·043196 −0·018210

−0·10363 0·13860 0·051850 −0·0096054 0·027903

G
G

G

G

G

K

k

−0·022879 0·051850 0·10130 −0·030340 0·0081956 G
G

G

G

G

L

l

. (44)

0·043196 −0·0096054 −0·030340 0·074475 −0·019755

−0·018210 0·027903 0·0081956 −0·019755 0·057550

In this case, due to the lower value of the filling ratio H/a2, the NAVMI matrix is
diagonally dominant: that is, the elements on the diagonal are larger than the off-diagonal
ones. As a consequence, the NAVMI factors method estimates well the natural frequencies.

Figure 3. The percentage of error of the assumed modes solution with respect to the Rayleigh–Ritz result as
function of m for annular plates clamped at both edges; m=0, a=0·3 and H/a2 =1.
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Figure 4. Comparison of dry (dashed lines) and wet (solid lines) modes for annular plates clamped at both
edges; m=0, a=0·3, m=10 and H/a2 =1.

The NAVMI matrix for the same case, when the filling ratio is increased to H/a2 =1,
is

0·92056 −0·46459 −0·21390 0·18692 −0·12700

−0·46459 0·37019 0·17401 −0·098624 0·095634

G
G

G

G

G

K

k

−0·21390 0·17401 0·17381 −0·080158 0·046361 G
G

G

G

G

L

l

. (45)

0·18692 −0·098624 −0·080158 0·11119 −0·047180

−0·12700 0·095634 0·046361 −0·047180 0·078477

In this case, the matrix is no longer diagonally dominant. The wet frequency parameters
V are given as a function of the density-thickness correction factor m in Figure 5. For this
case also the first three axisymmetric modes are considered. The percentage of error
committed by using the NAVMI factors solution instead of the Rayleigh–Ritz solution is
plotted in Figure 6 as a function of m. It is easily verified that the fundamental mode
(m=0, n=0) is accurately estimated by the approximated (NAVMI factor) solution. In

Figure 5. Wet frequency parameters V of axisymmetric modes (m=0) of annular plates simply supported at
the outer edge and free at the inner edge with a=0·3, n=0·3 and H/a2 =1, versus the density-thickness
correction factor m. Curves relating to the first three modes are given.
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Figure 6. The percentage of error of the assumed modes solution with respect to the Rayleigh–Ritz result as
a function of m for annular plates simply supported at the outer edge and free at the inner edge; m=0, a=0·3,
n=0·3 and H/a2 =1.

Figure 7, the dry and wet mode shapes are plotted along a radius for m=10, modes having
up to two nodal circles being considered.

Natural frequencies obtained by using the NAVMI factors and the Rayleigh–Ritz
method are compared to the theoretical ones given by Chiba [38] for bulging modes of
a clamped circular bottom plate, where the effects of both the free surface waves on the
dynamic pressure and the in-plane stress of the plate were considered. Results of Chiba
[38] refer to a steel plate having radius a2 =0·144 m, thickness h=0·002 m, Young’s
modulus E=206 GPa, Poisson’s ratio n=0·25, mass density rP =7850 kg m−3 in contact
with water having rL =1000 kg m−3. In Table 7, the natural frequencies of the first three
axisymmetric modes of the plate are reported for three different filling ratios: H/a2 =0·1,
0·5 and 1. It is clear that the results of the Rayleigh–Ritz method always match well the
Chiba results (the Chiba results were obtained by the pesent authors by using a graph
reported in reference [38], so that small differences with the actual results computed by
Chiba could occur), confirming that the applied free surface condition (zero dynamic
pressure at x=H) is correct when studying bulging modes. This result confirms what was
found by Kondo [53] for circular shells: i.e., that the effect of free surface waves on bulging
modes is almost negligible. Moreover, the simple NAVMI factor approach gives quite

Figure 7. Comparison of dry (dashed lines) and wet (solid lines) modes for annular plates simply supported
at the outer edge and free at the inner edge; m=0, a=0·3, n=0·3, m=10 and H/a2 =1.
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T 7

Comparison of natural frequencies (Hz) of the first three axisymmetric modes of the circular
plate studied by Chiba [38] and obtained by using three different theories: the NAVMI
factors, the Rayleigh–Ritz method and the theory presented by Chiba in reference [38]

Natural frequencies (Hz)
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode H/a2 NAVMI Rayleigh–Ritz Chiba [38]

1st 0·1 176·6 176·8 177
1st 0·5 109·9 114·5 110
1st 1 85·1 91·7 92
2nd 0·1 698·1 700·7 694
2nd 0·5 530·2 547·3 540
2nd 1 485·9 519·8 520
3rd 0·1 1602 1609·7 1620
3rd 0·5 1377 1408·7 1410
3rd 1 1313 1385 1390

good results, especially for the fundamental mode and for small values of the ratio H/a2.
In fact, it was previously found that, when the ratio H/a2 increases, the accuracy of the
NAVMI factor approach decreases.

5.3.  : -    

By using the Rayleigh–Ritz method shown in section 5.1, it is possible to include in the
study some additional effects, such as the influence of a uniform in-plane load applied to
the annular plate and a Winkler elastic foundation under the plate, without significant
complication of the theory. The in-plane load gives an additional potential energy during
the plate vibration that must be added to the numerator of the Rayleigh quotient. The
maximum potential energy connected with this phenomenon is [57]

VL =
1
2

Lg
2p

0 g
a2

a1

{[1W/1r]2 + [(1/r) (1W/1u)]2}r dr du, (46)

where L is the uniform in-plane tensile load (N/m). It is to be noted that a compressive
load (LQ 0) gives a negative energy which decreases the natural frequencies. The elastic
foundation gives an additional potential energy of which the maximum value is

VF =
1
2

k1 g
2p

0 g
a2

a1

W2r dr du, (47)

where k1 is the stiffness of the foundation (N m−3). The matrices related to equations
(46, 47) used in the eigenvalue problem can be easily obtained by using the method shown
in section 5.1.

6. EXPERIMENTS

6.1.    

Two different tanks were constructed to perform the experimental tests. The first
specimen (see Figure 8) was designed in order to obtain an annular tank with cylindrical
walls that could be considered rigid and a bottom annular plate that could be considered
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simply supported on the outer border and free on the inner border. This specimen was
an annular tank with an annular bottom plate made of low carbon steel (UNI Fe P 11
MG according to the Italian standards) having thickness h=1·5 mm, inner radius
a1 =0·03 m and outer radius a2 =0·1 m. The material properties were Young’s modulus
206 GPa, mass density 7800 kg/m3 and Poisson’s ratio n=0·3. The tank was composed
of an external PVC (polyvinyl chloride) pipe glued to the bottom plate; the pipe edge at
the shell-plate joint was tapered in order to simulate a simple support and have a negligible
bending moment at the joint. To this pipe was glued a very stiff support made of steel that
constrains the movement of the tank; this constraint gave practically zero displacement
to the plate outer edge at low frequencies. An inner PVC pipe was rigidly connected to

Figure 8. Schematic diagram of the annular tank tested.
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the outer pipe by using a thick Plexiglas annular plate having two holes for the introduction
of liquids into the tank. A very thin film was then used to connect the inner pipe to the
inner edge of the annular plate to keep the water and to give no constraint at the inner
edge of the plate. The two pipes were chosen with a flexural stiffness different from that
of the plates in order to have a negligible dynamic coupling of the bottom plate and the
tank cylindrical walls. Moreover, the pipe material assured a quite high damping to the
pipe modes. Then, the tank was partially filled with water, having mass density rL =103 kg
m−3.

The second tested specimen was designed in order to obtain a circular tank with
cylindrical walls that could be considered rigid and a bottom circular plate that could be
considered simply supported. It was a tank similar to the previous one but having a circular
plate as the bottom, and therefore without the inner pipe and the Plexiglas cover. In this
case the plate, made of the same material as the previous annular plate, was 3 mm thick
and had an outer radius a2 =0·1 m (a1 =0).

The experimental modal tests were performed by using an impact excitation. A Brüel
& Kjær (B&K) 8202 hammer with mass of 284 g and a steel tip was used. The Frequency
Response Functions (FRFs) between 18 excitation points and two response points, located
at different radial and angular co-ordinates, were measured. The excitation was applied
on a grid with three equidistant points in the radial direction and six positions around the
circumference. Both the excitation force and the measured responses were in the axial
direction. Two B&K 4393 accelerometers of 2·4 g were employed to measure the plate
acceleration. The FRF measurements and the experimental modal parameter estimations
were conducted on a HP 9000 workstation with Difa Scadas front-end using the software
CADA-X by LMS [58]. The useful frequency ranges up to 3200 Hz with 2 Hz of frequency
resolution. The FRFs were estimated by using exponential windows, six averages and the
HV technique [59]; the modal parameters were evaluated by the frequency domain direct
parameter estimation method [59]. Due to the very high modal density of the test structure,
numerous analyses were performed in order to process together only very few peaks of
the FRFs.

Both tanks were tested empty and partially filled with water at five different levels. The
maximum filling ratio was H/a2 =1 for the annular tank and H/a2 =2 for the circular
tank.

6.2.        

Only the first two modes were accurately detected by experiments due to the flexibility
of the constraints: the first axisymmetric mode (fundamental mode, m=0 and n=0) and
the mode with one nodal diameter and no nodal circles (m=1 and n=0). In fact, it was
verified that for higher frequency modes the tank support cannot be considered rigid. The
second mode (m=1 and n=0) shows coupled peaks of the FRFs; this is a well-known
behaviour of circular and annular plates that is due to the polar symmetry. For each
asymmetric mode (mq 0) there is a second mode having the same frequency and mode
shape but rotated by p/(2m). In order to detect the coupled peaks, two references have
been used during the tests. The value of the density thickness correction factor is m=8·547
for the annular plate tested and m=4·245 for the circular plate.

A comparison of theoretical and experimental results is shown in Figure 9 for the
circular plate tested. The theoretical results have been computed by using the NAVMI
factors obtained for a simply supported circular plate. These results are practically the
same as those obtained by the Rayleigh–Ritz method; in fact the two modes considered
do not show internal nodal circles. The results presented in Figure 9 are given as the ratio
between the natural frequency with partial water filling and that in vacuo (and practically
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Figure 9. Ratio between the plate natural frequency of the partially water filled tank fL and of the empty tank
fV versus the filling ratio H/a2. Comparison of theoretical (solid lines) and experimental (symbols) results. Simply
supported circular plate with m=4·245.

in air). Figure 9 also shows that the larger inertial effect of the water is obtained for the
fundamental mode and that the slope of the curves decreases with the filling ratio H/a2.

In Figure 10, the annular plate tested is considered and the theoretical results have been
computed by using the NAVMI factors obtained for an annular plate simply supported
outside and free inside; these factors are given in Table 5.

Another interesting phenomenon was observed during the experiments. If the tanks
tested are disconnected from the steel support and supported on rubber bands, the natural
frequencies of the axisymmetric modes are significantly increased when the tank was filled
with water. On the contrary, asymmetric modes are less affected by this change in the
constraint. The dynamic behaviour is well justified by the present study. Axisymmetric
modes give a movement to the water centre of mass with respect to the tank, so that, if
rigid body modes of the tank are allowed, the inertial effect of water on the bottom plate
decreases (and frequencies increase). On the contrary, asymmetric modes give no
movement to the water center of mass so that rigid body modes do not affect the inertial
effect of water to any great extent.

Figure 10. Ratio between the plate natural frequency of the partially water filled tank fL and of the empty
tank fV versus the filling ratio H/a2. Comparison of theoretical (solid lines) and experimental (symbols) results.
Annular plate simply supported outside and free inside with a=0·3 and m=8·547.
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The good agreement between theoretical and experimental results confirms the small
influence of free surface waves (neglected in the theory) on bulging modes.

7. CONCLUSIONS

A good agreement has been found between theoretical and experimental results in spite
of the difficulty of practically realizing the hypothesized constraints. These results give a
validation of the hypotheses and the theory used in the present work. In fact, the
hypotheses of inviscid liquid and no cavitation are well verified in the cases tested, when
water has been used as liquid inside the tank and small amplitude vibrations have been
examined. The effect of the free surface waves is low on bulging modes, as already observed
in references [13, 53]. The theory is applicable to engineering problems and the NAVMI
factor approach, which estimates well modes without internal nodal circles, has the
advantage of presenting the results as tables of non-dimensional factors that can be quickly
employed in design. In the case that the entire tank must be considered flexible, however,
the approach used is still useful to study the whole structure if a substructuring method,
like the artificial spring method, is used [52].
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APPENDIX: ORTHOGONALITY OF FUNCTIONS Fm

The orthogonality of the functions Fm given in equation (18) is proved as follows. The
functions Fm are defined in equation (16). It is supposed that k$ h; for brevity, one denotes

Wk =Fm (emk r), Wh =Fm (emh r). (A1, A2)

The functions Wk and Wh are solutions of the Bessel equations

r2W0k + rW'k +(e2
mk r2 −m2)Wk =0, r2W0h + rW'h +(e2

mh
r2 −m2)Wh =0. (A3, A4)

If one multiplies equations (A3) and (A4) by Wh and Wk , respectively, and then sums up,
the result is

r2(Wh W0k −Wk W0h )+ r(Wh W'k −Wk W'h )= (e2
mh − e2

mk )r2Wh Wk . (A5)

Dividing equation (A5) by r, one obtains

(d/dr) [r(Wh W'k −Wk W'h )]= (e2
mh − e2

mk )rWh Wk . (A6)

Using equations (A1) and (A2), one obtains the proof:

(e2
mh − e2

mk ) g
1

a

rFm (emk r)Fm (emh r)dr= r[Fm (emh r)F'm (emk r)−Fm (emk r)F'm (emh r)] =1a =0,

(A7)

here the condition that emk and emh are different roots of equation (17) has been used.


