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The problem of transmission of sound in a narrow pipe carrying a mean flow has been
dealt with in recent papers by solving the convected acoustic equations simplified in the
manner of the Zwikker and Kosten theory. A significant difference between these studies
appertains to the form of the axial mean flow velocity profile assumed in the analysis.
Results have been presented previously for uniform and parabolic profiles. This paper
presents a comparative study of these for pipes having circular and rectangular
cross-sections. The solution of the governing equations for these cases has been presented
in previous papers, except for the case of a rectangular pipe carrying a uniform mean flow,
which is presented in this paper for the first time. The results indicate that the assumption
of a uniform mean profile closely predicts the results based on a parabolic profile. An area
in which the theories considered in this paper find application is the acoustical modelling
of the honeycomb structure of a monolithic catalytic converter. Previous acoustic models
proposed for the honecomb structure assume that the honeycomb pores to be circular. In
the present paper a new model is presented for honeycomb structures with rectangular
pores.
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1. INTRODUCTION

The widespread use of automobile catalytic converters in recent years has stimulated a
growing interest in the propagation of sound in a narrow pipe carrying a mean flow. Three
independent papers [1–3], which appeared about the same time, have dealt with the
problem by using the convected viscothermal acoustic equations simplified in the manner
of the Zwikker and Kosten theory [4]. A significant difference between these studies
appertains to the form of the mean flow velocity profile assumed in the analysis: Peat [1]
and Astley and Cummings [3] assumed a steady Poiseuille type mean flow with a parabolic
velocity distribution over the pipe cross-section, whereas in reference [2] a uniform velocity
profile, which makes the problem amenable to a simple exact analytical solution, was
assumed. The mean flow in the honeycomb pipes of a catalytic converter is expected to
be laminar and, therefore, the assumption of a parabolic mean velocity profile appears to
be the more realistic one. However, it was also expected that the assumption of a uniform
mean flow velocity profile, with the man flow velocity taken equal to the average velocity
over the pipe cross-sectional area, should give results that are not very much different from
those one would get by using a parabolic mean velocity profile. Now that some results
are available for the case of a parabolic mean velocity profile [1, 3], these can be compared
with the corresponding results of reference [2] for the case of a uniform mean flow velocity
profile. The present paper, as a sequel to reference [2], will present first this comparative
study for narrow pipes with circular and rectangular cross-sections. The interest in the
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latter arises from the fact that the honeycomb pores in most catalytic converters are square
rather than circular. For the case of a parabolic mean flow velocity profile, results are
available in references [1] and [3] for a circular pipe, and in reference [3] for a square pipe.
These will be compared with the corresponding results for the case of a uniform mean flow
velocity profile having the same average velocity over the pipe cross-sectional area as the
parabolic profile. The solution of the governing equations for this case has been presented
in reference [2] for a circular pipe and will be presented in this paper, for the first time,
for a rectangular pipe. The solution for the case of a narrow rectangular pipe with no mean
flow has been presented previously by Roh et al. [4].

A typical catalytic converter consists of an inlet expansion, an outlet contraction, a
honeycomb structure which may be one or two pieces and connecting pipe sections. The
acoustic model of the whole catalytic converter is obtained by combining the acoustic
two-port models of its constituent elements in series. Acoustical two-port models of all
these elements except the honeyomb structure are well known in the literature. For the
honeycomb structure, Glav, Boden and Abom [5] proposed an acoustic two-port which
assumes the effect of mean flow on plane wave propagation in the honecomb pipes to be
the same as in a wide pipe. Another two-port model for the honeycomb structure has been
developed in reference [2] by using the proposed extension of the Zwikker and Kosten
theory for the effect of a uniform mean flow. This model takes into account the
viscothermal effects at inlet and outlet discontinuities of the honeycomb structure. Jeong
and Ih [6] have fomulated an impedance matrix, which is based on a numerical solution
of the governing narrow duct equations, for the wave transfer across a stack of narrow
pipes carrying a Poiseuille type mean flow. These models assume that the honeycomb pores
are circular. The present paper will present an extension of the two-port model of reference
[2] for a honeycomb structure with rectangular pores.

2. ACOUSTIC EQUATIONS WITH UNIFORM MEAN FLOW

The basic equations employed in references [1–3] for acoustic wave propagation in a
homogeneous narrow pipe come from the simplification, in the manner of the Zwikker and
Kosten theory, of the linearized forms of the fluid dynamic continuity momentum and
energy equations for a perfect gas. A recent examination, and its extension to pipes with
arbitrary cross-sections, of the Zwikker and Kosten theory has been presented by Stinson
[7] for the case of zero mean flow velocity. When an axial mean flow exists in the pipe,
the formulation given in reference [7] is modified by the appearance of convective terms.
Upon assuming the mean flow velocity profile to be uniform across the pipe cross-sectional
area and neglecting axial temperature and pressure gradients, the convective equations can
be expressed, with exp(−ivt) time dependence assumed for the fluctuating quantities,
where v is the radian frequency, t is the time and i denotes the unit imaginary number,
as follows.

The momentum equation is

r0 (−iv+ v0 1/1x)vx =−1p/1x+ m92
S vx , p= p(x). (1)

The continuity equation is

(−iv+ v0 1/1x)r+ r0 9 · v=0. (2)

The energy equation is (a perfect gas being assumed)

r0 cp (−iv+ v0 1/1x)T=(−iv+ v0 1/1x)p+ k92
S T. (3)
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The state equation is

r=(p/RT0)− (r0 T/T0). (4)

Here, x denotes the pipe axis, vx is the axial component of the acoustic particle velocity
v; p, T and r are the acoustic pressure, temperature and density respectively, m is the shear
viscosity coefficient, k is the thermal conductivity of the fluid, R is the gas constant, cp is
the specific heat coefficient at constant pressure, T0 and r0 denote the ambient temperature
and density, respectively, v0 denotes the axial mean flow velocity and 92

S denotes the
Laplacian on the pipe cross-section. The boundary conditions relevant to equations (1)–(3)
are that v and T have finite values on the pipe centre line and vanish on the pipe periphery.
The solution of the boundary value problem thus formed is considered in the following
sections for pipes having circular and rectangular cross-sections.

3. PIPES WITH A CIRCULAR CROSS-SECTIONAL AREA

In the case of a pipe with a circular cross-section, one has

92
S = 12/1r2 + 1/r 1r, 9 · v= 1vx /x+ 1vr /1r+ vr /r, (5)

where r denotes the radial co-ordinate and vr is the radial component of the particle
velocity. For this case, the solution of equations (1)–(3) for the acoustic pressure can be
expressed as [2]

p(x)= p+(0)exp(iK+kx)+ p−(0)exp(iK−kx), (6)

where the propagation constants K3 are given by the roots of

g+(g−1)J(sba)+ (K/(1−KM))2I(ba)=0, (7)

where

I(j)= J(j)= J2 (j)/J0 (j), (ba)2 = i(1−KM)s2. (8, 9)

Here, a is the pipe radius, M= v0 /c0 is the mean flow Mach number, c0 =z(gRT0) is the
speed of sound, g is the ratio of specific heat coefficients, k=v/c0 is the wavenumber,
s= az(r0 v/m) is the shear wavenumber, s2 = mcp /k is the Prandtl number and Jn denotes
a Bessel function of order n. Propagation constants K3, which can be determined by simple
iteration from equation (7), are given in reference [2], as a function of the shear
wavenumber, for mean flow Mach numbers up to 0·3.

Peat [1] has presented several approximate analytical solutions for the same problem by
assuming a parabolic mean flow velocity profile. The above formulation of the problem
can be compared with the most general case considered in reference [1], namely, the
non-isentropic solution, which is derived by assuming that the radial component of the
acoustic velocity is zero and yields, for the wavenumbers, a cubic equation that can be
expressed in the form of equation (7), with

J(sba)= [4−1/(1−MK)]2/6f(sba), I(ba)= (3/2) f(ba), (10)

where

f(j)= (12/j2)+1/(1−MK)−3. (11)

Here, M is to be interpreted as the average Mach number over the pipe cross-section.
The same problem with a parabolic mean flow velocity profile has also been solved by

Astley and Cummings [3] by using a finite element discretization over the pipe
cross-section. This solution is in principle similar to the variational approach of Peat [1],



5000

1.2

Frequency (Hz)

P
h

as
e 

ve
lo

ci
ty

 r
at

io

0.2
50

(b)

100

A
tt

en
u

at
io

n
 (

dB
/m

)

5

(a)

. 378

but it is more accurate because a nine-noded isoparametric finite element mesh is used to
approximate the variation of the axial component of acoustic particle velocity and acoustic
temperature over the pipe cross-section, instead of a simple parabolic shape function
assumed in reference [1].

Shown in Figures 1 and 2 are the attenuation and phase velocity ratio characteristics,
of the waves propagating in a circular pipe with 2a=1 mm, T0 =1000 K, g=1·4,
s2 =0·7, m=4·15×10−5 Ns/m2, r0 =0·35 kg/m3 and M=0·2, which is the pipe
considered by Astley and Cummings [3] as being typical of the pipes in a honeycomb
structure of a catalytic converter. The attenuation and the phase speed ratio of the pressure
waves travelling in the 3 x directions have been computed by using the expressions
A3 =38·686kK3

I dB/m and f3 =31/K3
R , respectively, were the subscripts R and I refer

to the real and imaginary parts of a complex quantity, respectively. The finite element
results of reference [3] are reproduced to the accuracy attainable from the published curves,
and the corresponding results of Peat’s non-isentropic formulation [1] were computed by
the present author from equations (7) and (10). The present results, for which a uniform
mean flow velocity profile is assumed, have been computed from equations (7) and (8),
by using, as the mean flow Mach number, the average mean flow Mach numbers of
references [1–3]. As can be seen from Figure 1, the attenuation which the present
formulation yields for the waves travelling in the +x direction is not distinguishable from
the finite element results of reference [3], while Peat’s formula yields increasingly inaccurate
results for frequencies greater than 1000 Hz. For the phase velocity, however, Peat’s
formula gives better agreement with the finite element results, but the maximum deviation
of the present results is less than 5%. For the waves travelling in the −x direction

Figure 1. Transmission characteristics of the sound wave travelling with the mean flow (M=0·2) in a circular
pipe of diameter 1 mm. (a) Attenuation, dB/m; (b) phase velocity ratio. ——, Uniform mean flow profile; – –,
parabolic profile [1]; – - –, parabolic profile [3].
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Figure 2. Transmission characteristics of the sound wave travelling against the mean flow (M=0·2) in a
circular pipe of diameter 1 mm. (a) Attenuation, dB/m; (b) phase velocity ratio. ——, Uniform mean flow profile;
– –, parabolic profile [1]; – - –, parabolic profile [3].

(Figure 2), the present formulation underestimates the finite element results for attenuation
with an error less than 10%, and the phase velocity by less than 5%. Peat’s formula yields
increasingly inaccurate results for frequencies greater than 500 Hz, say, for both the
attenuation and phase velocity ratio.

4. PIPES WITH A RECTANGULAR CROSS-SECTIONAL AREA

The pores in a honeycomb structure of an automobile catalytic converter are
approximately square in cross-section. Therefore, a more realistic acoustic model of a
catalytic converter requires the knowledge of propagation constants for a rectangular pipe.
For a rectangular pipe, the Laplacian on the cross-section and the divergence of the particle
velocity v are given by

92
S = 12/1y2 + 12/1z2, 9 · v= 1vx /1x+ 1vy /1y+ 1vz /1z, (12)

respectively, where y and z denote the transverse co-ordinates, with the pipe cross-sectional
area lying in 0E yE 2a, 0E zE 2b, and vy and vz are the components of the particle
velocity in the y and z directions. Solution of equations (1)–(3) can then be sought in the
form

p=A exp(iKkx), vx =H(y, z)p, T=F(y, z)p, (13)
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where A denotes a constant. Substituting these in equations (1)–(3) and using equation (4)
to express the acoustic density in terms of the acoustic temperature and the particle
velocity, the following equations result:

12H/1y2 + 12H/1z2 + b2H=iKk/m, (14)

12F/1y2 + 12F/1z2 + b2s2 = i(1−KM)v/k, (15)

1vy /1y+ 1vz /1z=(iv(1/p0 −F/T0) (1−MK)− iKkH)p. (16)

Here b is as defined by equation (9) with a representing now that side of the pipe
cross-section with respect to which the shear wavenumber s is defined. The solution of
equation (14) can be expressed in the form of a double Fourier series [4]:

H(y, z)= s
m,n

amn sin (mpy/2a) sin (npz/2b), m, n=1, 3, 5, . . . . (17)

The coefficients amn can be determined by substituting equation (17) in equation (14) and
averaging the resulting equation over the pipe cross-sectional area. This process gives

amn =i(16Kk/p2m)/mnb2amn (ba), (18)

where

amn (j)=1− p2(m2 + n2a2/b2)/4j2. (19)

The solution of equation (15) can be expressed similarly as

F(y, z)= s
m,n

bmn sin (mpy/2a) sin (npz/2b), m, n=1, 3, 5, . . . , (20)

where

bmn =i(16v(1−KM)/p2k)/mns2b2amn (sba). (21)

An eigen-equation for K can now be derived by substituting equations (17) and (21) into
equation (16) and applying the boundary conditions on vy and vz after integration. The
resulting eigen-equation comes out in the form of equation (7) with

I(j)= J(j)=−(64/p4) s
m,n

1/m2n2amn (j), m, n=1, 3, 5, . . . . (22)

The propagation constants, K+ and K−, for the waves travelling in the +x and −x
directions, respectively, can then be determined from equation (7) by simple iteration.

Astley and Cummings [3] have presented, assuming a parabolic mean flow velocity
profile, the attenuation and phase velocity ratio characteristics of a square duct of side
2a=1 mm, the other salient properties of the pipe being the same as those of the circular
duct considered in section 3. A nine-noded isoparametric finite element mesh was used to
model the variation of the acoustic temperature and axial component of particle velocity
over the pipe cross-section. The results of reference [3] are reproduced in Figure 3, to the
accuracy obtainable from the published curves, together with the results of the present
formulation. As can be seen, the deviation of the latter from the finite element results is
less than 10% for the attenuation and less than 5% for the phase speed ratio in the
frequency range considered.
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In the case of zero mean flow velocity, the foregoing rectangular pipe formulation
reduces to that by Roh et al. [4], who presented numerical results only for square pipes.
The aspect ratio, a/b, may have considerable effect on the acoustic propogation constants.
In Figure 4 are given the real and imaginary parts of the wavenumbers K3 as functions
of the shear wavenumber for aspect ratios of 0·1 to 10. For aspect ratios less than 0·1,
the characteristics lie close to the a/b=0·1 curve. The presence of mean flow may modify
these characteristics considerably. As an example which is also relevant to the present
study, shown in Figures 5 and 6 are the propagation constants of a square pipe carrying
a uniform mean flow of Mach numbers M=0·1, 0·2 and 0·3. For other aspect ratios, the
non-zero mean flow characteristics display similar deviations from the corresponding zero
mean flow characteristics.

5. ACOUSTIC MODELLING OF A HONEYCOMB STRUCTURE

For the honeycomb structure of a catalytic converter, an acoustic two-port embodying
the transmitted waves in the honeycomb pipes as well as the sudden area discontinuities
at the inlet and outlet of the honeycomb structure, has been presented in reference [2] for
a honeycomb structure with circular pores and uniform mean flow. Now that the validity
of approximating the mean flow velocity profile in the honeycomb pipes by a uniform
profile has been established, it appears to be worthwhile to extend this model to the more
realistic case of a honeycomb structure with rectangular pores.

Figure 3. Transmission characteristics of the sound waves in a square pipe of side 1 mm with M=0·2. (a)
Attenuation, dB/m; (b) phase velocity ratio. ——, Uniform mean flow profile; – - –, parabolic profile [3] (+x
and −x refer to waves travelling with and against the mean flow, respectively).
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Figure 4. The effect of the aspect ratio on the real and imaginary parts of the propagation constant K3 for
a rectangular pipe with zero mean flow.

In the context of the theory described in the previous section, the wave transfer
relationship across a rectangular pipe of length L is conveniently expressed in the form
of a scattering matrix, namely,

$p+(L)
p−(L)%=$eiK+kL

0
0

eiK−kL%$p+(0)
p−(0)%, (23)

where the wavenumbers K3 are computed from equations (7) and (22). The honeycomb
pipes will be assumed to be all identical. Then, equation (23) determines the wave transfer
in the honeycomb structure.

The inlet (outlet) of the honeycomb structure can be modelled as a sudden area
contraction (expansion) and applying the mass and energy equations to a control volume
enclosing the discontinuity. First, consider the contraction discontinuity at the inlet to the
honeycomb structure. Upon assuming quasi-static conditions, the mass and energy
equations can be expressed, respectively, as

gS1

(r01 vx1 + r1 v01) dS1 =gS3

(r03 vx3 + r3 v03) dS3, (24)

gS1
0T01 s1 +

p1

r01

+ v01 vx11r01 v01 dS1 =gS3
0p3

r03

+ v03 vx31r03 v03 dS3, (25)
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where s denotes entropy, S cross-sectional area, and the subscripts 1 and 3 refer to the
downstream and upstream sections of the discontinuity, respectively. Note that S1 =4nab,
where n denotes the number of the honeycomb pipes. Conditions upstream of the
discontinuity are assumed to be plane and isentropic. The axial component of the particle
velocity, vx , can be expressed as

r0 cvx (x, y, z)= h+(y, z)p+(x)+ h−(y, z)p−(x), (26)

where, for isentropic propagation h3(y, z)=31 and, from the second of equations (13),
for viscothermal propagation,

h2(y, z)=
K2

1−MK2

16
p2 s

m,n

sin (mpy/2a) sin (npz/2b)
mnamn (b2a)

, m, n=1, 3, . . . . (27)

Here, b3 denote the values of b evaluated for K3. Similarly, by using the state equations
for a perfect gas it can be shown that the density and entropy fluctuations can be expressed
as

c2
0 r(x, y, z)= g+(y, z)p+(x)+ g−(y, z)p−(x), (28)

r0 T0 s(x, y, z)= e+(y, z)p+(x)+ e−(y, z)p−(x), (29)

Figure 5. The effect of the mean flow Mach number on the propagation constant K+ for a square pipe.
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Figure 6. The effect of the mean flow Mach number on the propagation constant K− for a square pipe.

where, for isentropic propagation g2(y, z)=1 and e2(y, z)=0, and, for viscothermal
propagation,

g2(y, z)= g−(g−1)
16
p2 s

m,n

sin (mpy/2a) sin (npz/2b)
mnamn (sb2a)

, m, n=1, 3, . . . , (30)

e2(y, z)=−1+
16
p2 s

m,n

sin (mpy/2a) sin (npz/2b)
mnamn (sb2a)

, m, n=1, 3, . . . . (31)

Upon assuming plane sound waves upstream of the contraction discontinuity, and
substituting equations (26), (28) and (29) for the downstream acoustic quantities, the mass
and energy equations, equations (24) and (25), can be integrated to obtain, respectively,
the following relationships between the upstream and downstream sound pressure
components:

S1 [(h+
m1

+M1 g+
m1

)p+
1 + (h−

m1
+M1 g−

m1
)p−

1 ]=S3 [(1+M3)p+
3 − (1−M3)p−

3 ], (32)

(1+ e+
m1

+M1 h+
m1

)p+
1 + (1+ e−

m1
+M1h−

m1
)p−

1 = (1+M3)p+
3 + (1−M3)p−

3 . (33)

Here

h2
m =−K2J(b2a)/(1−K2M), g2

m =1−(g−1)e2
m ,

e2
m =−1−J(sb2a). (34)



2000

20

Frequency (Hz)

P
ow

er
 t

ra
n

sm
is

si
on

 lo
ss

 (
dB

)

0

     385

Subscript m is used here to indicate a cross-sectionally averaged value. In matrix notation,
equations (32) and (33) yield the following scattering matrix for the wave transfer at the
inlet of the honeycomb structure:

$S(h+
m +Mg+

m )
1+ e+

m +Mh+
m

S(h−
m +Mg−

m )
1+ e−

m +Mh−
m%1 $p

+

p−%1

=$S(1+M)
1+M

−S(1−M)
1−M %3 $p

+

p−%3

. (35)

The wave transfer at the outlet of the honeycomb structure can be determined similarly.
By again using the subscripts 1 and 3 to refer to the downstream and upstream sections
of the discontinuity, respectively, and assuming plane wave propagation and isentropic
conditions downstream, it can be shown that the wave transfer at the discontinuity is
described by equations (32) and (33), or equation (35), but with the subscript 1 replaced
by 3 and 3 replaced by 1 (the effect of jet formation at the outlet is neglected in the present
study).

The acoustic two-port for the whole catalytic converter can now be obtained by
combining the inlet expansion, outlet contraction and straight pipe sections with the
honeycomb structure in series by using the usual transfer matrix scheme. This process is
capable of modelling commercial monolithic catalytic converters. To demonstrate the
effect of the pore geometry, however, it suffices to consider the simple catalyst considered
in reference [2]. This consists of a 200 mm long honeycomb structure consisting of 2000
square cross-section pipes of side 1 mm, placed in a uniform pipe of 80 mm diameter,
giving a frontal porosity of 40%. Temperature is assumed to be 600°C throughout, with
g=1·4, R=287 J/kg K and p0 =105 Pa. A uniform mean flow of Mach number
M=0·025 is assumed to exist in the 80 mm diameter pipe and the transmission loss of
the honeycomb is calculated assuming an anechoic termination.

Presented in Figure 7 is the transmission loss characteristics of this simple catalyst as
computed by using the theory presented in section 4. Also shown are the transmission loss
characteristics which have been computed, for 1 mm2 circular pores, by using the two-port
formulations presented in references [2] and [5]. It is seen that, in this case, the use of

Figure 7. The transmission loss of the simple catalyst. — —, No overlapping acoustic boundary layers [5];
——, present theory, square pores; – - –, present theory, circular pores.
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Figure 8. The transmission loss of the simple catalyst test in reference [6]. - - -, Reference [6], circular pores;
——, present theory, square pores (upper curve); ——, present theory, circular pores with an equivalent hydraulic
radius (lower curve).

circular geometry with the present theory underestimates the transmission loss of the
honeycomb structure with square pores with less than 0·5 dB deviation in the frequency
range considered. The theory of reference [5], on the other hand, predicts a relatively higher
transmission loss than the present theory for circular pipes. Unfortunately, the data plotted
in Figures 4, 5 and 6 of reference [2] were not relevant to the case under consideration
and this mistake went unnoticed in the manuscript. The curve given in Figure 7 of the
present paper for the case of circular pores, is the correct form of the corresponding curve
given in Figure 4 of reference [2] (the correct forms of Figures 5 and 6 of reference [2] are
given in the Appendix as Figures A1 and A2, respectively).

A similar simple catalyst has been investigated recently by Jeong and Ih [6], who have
shown that the measured transmission loss of the catalyst can be predicted reasonably
closely by using the theory based on a parabolic mean flow velocity profile. The test
catalyst consisted of a 610 mm long honeycomb structure with square pores of side
0·91 mm and of porosity 68%, placed in a uniform pipe of 80 mm diameter. The test was
carried out at room temperature (17°C) and the average mean flow Mach number was
0·068. In Figure 8 is shown, to the accuracy attainable from the published characteristic,
the predicted transmission loss of reference [6] for this simple catalyst model. A
Runge–Kutta based numerical integration was used for solving the governing viscothermal
equations, with the radial component of the particle velocity included in the continuity
equation, for a circular pipe. The square pores of the test catalyst were modelled as circular
ones by invoking the concept of hydraulic radius. Also shown in Figure 8 are the
transmission loss characteristics computed for this simple catalyst by using the present
theory for two cases of a honeycomb structure, namely, one with square pores of side
0·91 mm and one with circular pores of an equivalent hydraulic radius, 0·513 mm. It is
seen that, while there is a deviation ranging from 0·5 dB to 3 dB in the frequency range
considered between the square pipe and circular pipe models of the catalyst based on the
present theory, the present circular pipe model underestimates the prediction of reference
[6], which is based on a parabolic mean flow velocity profile, by only about 0·5 dB in the
frequency range considered.
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6. CONCLUSIONS

The data presented in this paper for sound transmission in a narrow pipe indicates that
the assumption of a uniform mean flow velocity profile yields results that are not
significantly far from those based on a parabolic mean velocity profile. Mean flow in a
rectangular duct with a parabolic velocity profile does not satisfy the associated ambient
energy and state equations and the actual mean flow velocity profiles which prevail in the
honeycomb pores of a catalytic converter may in fact be different from a parabolic one;
however, with the adoption of a uniform mean flow velocity profile, the sound transmission
characteristics can still be modelled with reasonable accuracy by using the simple analytical
solutions presented in this paper.

Strictly speaking, of the modes of propagation reported in references [1, 3], only the least
attenuated ones have been considered in this paper. Peat [1] has reported one higher order
mode, which is predicted from the cubic equation that results when equations (10) and
(11) are substituted in equation (7), and Astley and Cummings [3] have reported as many
higher order modes as there are number of degrees of freedom in the finite element model.
These higher order modes were found to exist only when there is mean flow, propagate
with the mean flow and attenuate much more rapidly than the least attenuated modes
considered in the present study. In the numerical solution presented in reference [6], the
higher order modes were also extracted by assuming a distribution for the axial particle
velocity. In the present theory, all acoustic variables are determined analytically by the
governing equations and the present author’s attempts to extract such higher order modes
from the present circular or rectangular pipe solutions have been abortive. However, if the
variational procedure of reference [1] is applied to the present basic acoustic equations with
uniform mean flow, equations (1)–(3), the resulting eigen-equation for the approximate
wavenumbers becomes of the form of equation (7), with

I(j)= J(j)=1/4[(2/j2)−1/3]. (23)

Equation (7) then yields a cubic equation for the wavenumber K, the two roots of which
are approximations to the exact wavenumbers predicted by equations (7) and (8), and the
third has the character of the higher order modes described in references [1, 3]. This
indicates that, in the context of the present theory, the higher order modes are peculiar
to the approximate discrete model of the system and are superfluous as far as the exact
nature of the fundamental mode propagation is concerned. Similarly, Ih, Park and Kim
[8], who have recently derived, by neglecting the radial component of the particle velocity,
an exact analytical solution for a circular pipe with a parabolic mean velocity profile, have
reported no higher order modes, although their basic acoustic modes with and against the
mean flow agreed with those of reference [1].

Most authors who have dealt with the case of a parabolic mean flow velocity profile
have neglected the radial component or, in the case of a rectangular cross-section pipe,
the in-plane components, of the particle velocity in the continuity equation. In reference
[3], the in-plane velocity component(s) was removed by integrating the continuity equation
over the pipe cross-sectional area. The numerical solution presented in reference [6] shows
that the effect of this term is small but not imperceivable. The present theory retains the
in-plane velocity terms in the acoustic continuity equation. In fact, it is the inclusion of
these terms that enables the problem to be solved as a well-posed boundary value problem.
If the in-plane component of the acoustic velocity is assumed to be zero, then the acoustic
continuity equation can be satisfied only in the its cross-sectionally averaged form. In this
case, however, it may be of interest to note that cross-sectional averaging of the continuity
equation happens to be mathematically equivalent to the application of the boundary
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conditions on the in-plane component of the particle velocity and, therefore, gives the same
eigen-equation for the wavenumbers as the solution in which the in-plane component of
the particle velocity is taken into account.
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APPENDIX: ERRATA

Figures A1 and A2 of this appendix are the correct forms of Figures 5 and 6 of reference
[2], respectively. Figure A1 shows the effect of increasing the porosity of the honeycomb
for zero mean flow, the porosity being increased by increasing the number of the circular
honeycomb pipes while their cross-sectional area is kept constant at the value of 1 mm2.

Figure A1. The effect of the honeycomb porosity on the transmission loss of the simple catalyst with circular
pores (correction to Figure 5 of reference [2]). ——, 40% – – – 60%; – - –, 80%.
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Figure A2. The effect of the mean flow Mach number on the transmission loss of the simple catalyst with
circular pores (correction to Figure 6 of reference [2]). ——, M=0; – – –, M=0·1; – - –, M=0·2.

These characteristics are modified slightly when flow is present. The effect of the mean flow
on the transmission loss of the most porous (80%) honeycomb is shown in Figure A2.


