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An alternative feedback structure, inspired from a speech coding structure, is introduced
for the adaptive active control of periodic and time-varying periodic disturbances. The new
structure is an Internal Model Control (IMC) structure. It separates the information and
the processing pertaining to the plant from the information and the processing pertaining
to the disturbance signal. A non-causal filter modelling the inverse of the secondary path
is used, and the future samples of the disturbance signal are estimated by linear prediction
(using an LMS algorithm). No filtering of a reference signal with the model of the secondary
path is required to compute a filtered reference signal. In consequence, for the cases
presented in the paper, the new feedback structure has a much faster convergence behavior
and a better transient response than the classical FX-LMS algorithm with a feedback IMC
structure, or the more recent and usually faster ANC-LMS algorithm with the same IMC
structure. Simulation results with experimentally measured primary and secondary paths
of a beam are presented, showing that either for multi-harmonic disturbance signals or
sweeping sine wave disturbances, the structure presented in this paper greatly improves the
convergence behavior of an adaptive feedback controller.
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1. INTRODUCTION

There has been a lot of previous work on feedback active control. Some of this work was
on non-adaptive feedback controllers [1–6]. This paper is concerned with the control of
periodic and time-varying periodic disturbance signals, and in this case, fixed feedback
controllers are not appropriate. For example, fixed broadband feedback controllers are
adjusted to provide a medium attenuation over a broad frequency range. They often can
not do much better than to ‘‘flatten’’ sharp resonances in the transfer function of the
primary path, so they can’t produce a large attenuation (say 25–30 dB) of one or more
sine waves sweeping over a large frequency band. On the contrary, an adaptive ‘‘tonal’’
controller (with very few coefficients) can achieve a good reduction of several sine waves
sweeping over the whole frequency range. It does so by creating and sliding ‘‘notches’’ in
the frequency response of the sensitivity function. The most popular adaptive feedback
structure used in active control today is probably the Internal Model Control structure
(IMC) [7], combined with a stochastic gradient descent algorithm such as the FX-LMS
[8]. Figure 1 illustrates this structure. More recently, a modification to the FX-LMS
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Figure 1. Block diagram of the FX-LMS algorithm using the feedback IMC structure.

algorithm was proposed to eliminate the dependency of the step size used in the algorithm,
to the delay of the secondary path [9]. The resulting structure is illustrated in Figure 2,
and the algorithm will be called ANC-LMS in this paper.

For feedback control using an IMC structure, both the FX-LMS and the ANC-LMS
require the filtering of the estimated disturbance signal with a model of the secondary path,
to generate the filtered reference signal. This leads to two problems. First, the statistics
of the filtered reference signal may be very different from the statistics of the original
disturbance signal. This is true in particular for secondary paths with large spectral
dynamics. For example, in the case of a multi-harmonic disturbance, it is possible that
some energetic tones in the disturbance signal are not well represented (energetic) in the
filtered reference signal. As a result, adaptation for those tones is slow, and a slow global
convergence is observed. Secondly, for secondary paths with low damping, the impulse
response is long and it causes a large delay in the generation of the filtered reference signal.
This leads to a slow convergence or a bad transient response (overshoot), in particular in
the case of time-varying disturbance signals, as it will also be shown in this paper.

Feedback approaches that do not require the filtering with the secondary path have been
developed for adaptive active controllers. A feedback waveform synthesis method was
introduced in reference [10]. This approach requires synchronous sampling with a
fundamental disturbance frequency, which is not always practical. Another adaptive
method called the output whitening feedback was proposed in references [11, 12]. This
method performs well if the secondary path is minimum phase, but it is often not the case

Figure 2. Block diagram of the ANC-LMS algorithm using the feedback IMC structure.
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Figure 3. Block diagram of a prediction structure in low-bit rate speech coding.

in many situations, like in the secondary path used in this paper. Another method was
developed by Oppenheim et al. [13], which uses Kalman filtering and assumes that the
secondary path is a pure delay. However, secondary paths are rarely pure delays, such as
the secondary path considered in this paper.

A new adaptive feedback active control structure is introduced, which also uses the IMC
structure to estimate the disturbance signal. However, the new feedback structure does not
require the filtering of the reference signal (the estimated disturbance signal in this case)
with the model of the secondary path. For the practical control problem considered in this
paper (the active control of the vibrations of a beam), this greatly improves the
convergence of the new feedback structure, compared to the FX-LMS and ANC-LMS
algorithms using IMC structures. The applicability of the new structure is mainly for
periodic or time-varying periodic disturbances.

In the next section, the new adaptive feedback control structure is developed. It will be
called the ‘‘inverse feedback structure’’. In section 3, simulation results are presented,
comparing the behavior of the FX-LMS and ANC-LMS algorithms with the IMC
feedback structure, and the inverse feedback structure with an LMS algorithm as the
predictor. Section 4 briefly comments on the computational loads of the three different
structures and algorithms discussed in this paper.

2. DEVELOPMENT OF THE INVERSE FEEDBACK STRUCTURE

In most low bit-rate coding schemes for speech coding, a separate long-term and
short-term prediction is used to reduce the redundancy (predictability and coherence) of
the ‘‘voiced’’ speech signal to be coded (Figure 3). The short term prediction is used to
model the vocal track of the speaker, and the long term prediction is used to predict the
‘‘pitch’’ (fundamental period) of the physiological signal that excites the vocal track [14].
The concept of separating the information and the processing pertaining to the vocal track
(the plant), from the information and the processing pertaining to the excitation signal,
can also be brought to the field of active control of noise and vibration.

An approach has already been published [1], in which a feedback controller is
conceptualized in two parts : a compensator and a regulator (Figure 4). In that paper, the
feedback controller is not using an IMC structure. The compensator filter is the inverse

Figure 4. Block diagram of a feedback controller with two parts: a regulator and a compensator.



Secondary
path

Secondary
path model

+

+

Error

+

–

Disturbance

–1
Inverse
model of

secondary
path

Prediction of
the disturbance

Estimated
disturbance

.   . 520

Figure 5. Block diagram of an IMC feedback controller with two parts: a predictor and a compensator (inverse
model).

of the secondary path, and the regulator is a filter which has a high gain over the frequency
band in which reduction is sought. The cascade of the compensator and the regulator is
assumed to be causal in reference [1]. In the case of the IMC feedback structure, it is
similarly possible to conceptualize the feedback controller in two parts : one part is the
(non-causal) inverse of the secondary path, and the other part is the predictor of the
disturbance (Figure 5). With the IMC control structures of Figures 1 and 2, for a
time-varying periodic disturbance signal, the control filter takes into account both the
inverse of the secondary path and the prediction of the disturbance. On the contrary, with
the structure of Figure 5, the inverse of the secondary path and the prediction of the
disturbance are separately performed. The time constants of the variations of the
secondary path are usually much longer than the time constants of the disturbance
fluctuations. The adaptation effort can then be put on the prediction of the disturbance,
and the inverse of the secondary path can be considered constant over a certain amount
of time.

In feedback control, only the causal inverse of the secondary path is usually considered
[15]. This is because non-causal control filters require the knowledge of the future samples
of the disturbance signal or the error signal, which are usually unknown. However, since
this paper is concerned with the control of periodic or time-varying periodic disturbance
signals, the future samples of the disturbance signal can be predicted, and the non-causality
of the inverse filter of the secondary path is not a problem. In this paper, the inverse filters
that will be used will be non-causal if the secondary path is non minimum phase or has
a delay. To predict the future samples of the disturbance signal, a simple LMS predictor
can be used. Figure 6 shows a block diagram of the resulting feedback control structure;
hereafter, this structure will be referred to as the ‘‘inverse feedback structure’’.

The approach of predicting the future components of the disturbance signal could also
be applied for narrowband disturbance signals. However, in the structure of Figure 6, the
signal that is sent to the model of the inverse secondary path (d
 (k+L)) is built from an
L steps-ahead forward prediction. L is the number of non-causal coefficients in the inverse
model of the secondary path, and it should not be confused with the number of coefficients
used in the predictor. In the case of a narrowband disturbance signal, if L is large, then
the prediction of the disturbance signal is poor. So the inverse feedback structure is not
limited to the attenuation of pure tones, but its efficiency is limited by the L steps-ahead
predictability of the disturbance signal.

The transfer functions (primary and secondary paths) that are used in the simulations
of the next section have been measured on a simply supported beam. This is a physical
system with low damping, so it has large spectral dynamics and a long impulse response.
For this physical system, two problems are observed when using the filtered-X approaches
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(FX-LMS and ANC-LMS). As mentioned in the introduction, with the filtered-X
approaches, the statistics of the filtered reference signal may be very different from the
statistics of the original disturbance signal. For the case of the feedback control of a
multi-harmonic disturbance (presented in the next section), this leads to a situation where
some energetic tones in the disturbance signal are not well represented (energetic) in the
filtered reference signal. Consequently, convergence is slow on those components, and
global convergence is slow. The inverse feedback structure does not have this problem.

Secondly, since the impulse response of the secondary path is long for the considered
physical system, it causes a large delay in the generation of the filtered reference signal.
This leads to a slow convergence and a bad transient response (overshoot) in the case of
the feedback control of a sweeping sine disturbance, as presented in the next section. The
inverse feedback structure performs better in this case because the impulse response of the
inverse of the secondary path is much shorter than the impulse response of the secondary
path itself.

There are also some other advantages of using the inverse feedback structure. There is
the availability of an advanced error criterion (the prediction error in Figure 6), that could
eventually be used to temporarily turn off the controller in time, for situations where it
can’t perform well. This advanced error criterion is not used in this paper. Also, if the
disturbance signal is composed of broadband components as well as periodic (tonal)
components, then the inverse feedback structure still performs well on the tonal
components, since only the predictable (tonal) components of the disturbance signal are
filtered by the model of the inverse secondary path. The broadband ‘‘noisy’’ components
are thus implicitly eliminated from the signal sent to the control actuator.

There is, however, a disadvantage in using the inverse feedback structure. Indeed, any
imprecision in the modelling of the secondary path (for the IMC structure) and the
modelling of the inverse of the secondary path, may reduce the control attenuation
produced by the controller. In other words, the information from the error signal
(Figure 6) is not used by the structure to adapt the controller. On the contrary, the

Figure 6. Detailed block diagram of the inverse feedback structure (‘‘L’’ is the number of non-causal
components in the model of the inverse secondary path).
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T 1

Computational loads of the different algorithms and structures

Structure and Computational load
algorithm (no. multiplications/additions)

IMC structure with FX-LMS 2M+2N
IMC structure with ANC-LMS 3M+2N
Inverse feedback structure with N+P+3R
LMS predictor

FX-LMS and ANC-LMS algorithms can compensate up to a certain point for the
imprecision on the model of the secondary path, because those algorithms use the feedback
information from the error signal. It is well known for feedforward controllers that if slow
convergence is acceptable, a tonal FX-LMS controller can compensate for a phase error
up to 90° in the model of the secondary path [16]. This is certainly not the case for the
inverse feedback structure.

In Table 1, the computational loads (number of multiplications/additions) of the
FX-LMS with the IMC structure, the ANC-LMS with the IMC structure, and the inverse
feedback structure with a LMS predictor are presented. In the table, M is the number of
coefficients for the adaptive control filter of the FX-LMS and the ANC-LMS, N is the
number of coefficients for the model of the secondary path, P is the number of coefficients
for the model of the inverse of the secondary path, and R is the number of coefficients
for the LMS predictor in the inverse feedback structure. Typically, if the number of
coefficients in the model of the secondary path is larger than the number of coefficients
in the model of the inverse secondary path, then the inverse feedback structure has a lower
computational load (neglecting M and R that are usually small for tonal controllers). If
it is not the case, then the inverse feedback structure has a higher computational load. But
in all cases, the computational loads are usually of the same order of magnitude.

3. SIMULATIONS OF FEEDBACK CONTROL

In this section, simulations compare the convergence behavior of the FX-LMS and
ANC-LMS algorithms using feedback IMC structures with the inverse feedback structure
using a LMS predictor. Normalized versions of the algorithms are used, so the algorithms
could also be called FX-NLMS controller, ANC-NLMS controller and inverse feedback
with NLMS predictor. The simulated control structures are identical to those illustrated
in Figures 1, 2 and 6, with the addition of a primary path between the disturbance source
and the disturbance signal. Care was taken so that all the transients related to the start
of the simulating process were completely propagated in the system, before turning on a
controller. In all cases, the optimal step size for each algorithm was found by trial and
error. As mentioned earlier, primary and secondary paths were experimentally measured
as the vibration response of a beam (with PZT actuators and a PVDF sensor), and the
impulse response and frequency response of those paths are illustrated in Figures 7 and 8.

The inverse feedback structure needs a model of the inverse of the secondary path. That
inverse model can be identified directly from actuator and error sensor signals, or it can
be computed using the (direct) measured model of the secondary path. The latter approach
was used in this paper. Figure 9 shows an inverse model of the secondary path that uses
only 128 coefficients (64 non-causal coefficients and 64 causal coefficients). A better
precision could be obtained by using more coefficients, but this 128-coefficient inverse
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Figure 7. (a) Impulse response and (b) frequency response of the primary path.

model will be used for two reasons. First, it provides enough precision to obtain 25–30 dB
of reduction on most periodic or time-varying periodic disturbance signals. Second, the
fact that the inverse model is shorter than the model of the secondary path (Figure 8)
improves the convergence of the inverse feedback structure with time-varying disturbance
signals.

Two disturbance sources have been simulated: a fixed multi-harmonic source, and a
sweeping sine wave source. The multi-harmonic case is considered first. In this case, the
fundamental frequency was chosen so that one of the harmonics is close to a resonance
frequency of the secondary path. Figures 10 and 11 show the power spectrum of the

Figure 8. (a) Impulse response and (b) frequency response of the secondary path.
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Figure 9. (a) Impulse response and (b) frequency response of the 128-coefficient model of the inverse secondary
path.

disturbance source and the disturbance signal, respectively. The FX-LMS and ANC-LMS
algorithms produce a filtered reference signal, in this case computed by filtering the
disturbance signal with the model of the secondary path. The power spectrum of that
filtered reference signal is shown in Figure 12, where it can be observed that the highest
frequency harmonic is much more energetic than the other harmonics in the filtered
reference signal. It can thus be predicted that a fast convergence will only be observed for
that highest frequency harmonic with the FX-LMS and ANC-LMS algorithms.

Figure 13 shows the convergence behavior of the three approaches considered. Twelve
coefficients were used for the control filter with the FX-LMS and ANC-LMS algorithms,
and 12 coefficients were also used for the LMS predictor in the inverse feedback structure.
Normalized step sizes were 1·0 (0 dB) for the ANC-LMS algorithm and the inverse

Figure 10. Power spectrum of the disturbance source.
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Figure 11. Power spectrum of the disturbance signal.

Figure 12. Power spectrum of the filtered reference signal.

feedback LMS predictor, and 0·00398 (−24 dB) for the FX-LMS algorithm. It can be seen
in Figure 13 that both the FX-LMS and the ANC-LMS algorithms exhibit a slow global
convergence behavior in this case. The convergence speed of the inverse feedback structure
is much faster. The performance of the inverse feedback structure is, however, limited to
a 30-dB attenuation because of the limited precision (small number of coefficients used)
in the model of the inverse secondary path. Eventually, after many iterations, the FX-LMS
and the ANC-LMS will also produce over 30 dB of attenuation, and even more since they
do not have the limitation on the precision of the inverse model. Figure 14 shows the power
spectrum of the error signal in the case of the ANC-LMS algorithm, after more than 5000
iterations of convergence. It clearly appears that only the highest frequency harmonic is
quickly reduced with a filtered-X approach.

Simulation results with a sweeping sine wave disturbance source are now presented. The
sine wave sweeps from a normalized frequency of 0·1 cycle/sample to a normalized
frequency of 0·2 cycle/sample, at a rate of 0·0002 (cycle/sample)/sample. The sweeping
process thus lasts 500 samples. For example, this would correspond to a 1-s transition from

Figure 13. Convergence behavior of the FX-LMS algorithm, q; the ANC-LMS algorithm, w; and the inverse
feedback structure with an LMS predictor, e.
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Figure 14. Power spectrum of the error signal after more than 5000 iterations, ANC-LMS algorithm.

a 50 Hz (3000 r.p.m.) pure tone to 100 Hz (6000 r.p.m.) pure tone at a rate of 50 Hz/s
(3000 r.p.m/s), for a 500-Hz sampling frequency. It should be noted that the frequency
of the sweeping sine wave will pass through a resonance frequency in both the primary
path and the secondary path (Figures 7 and 8). In the simulation, the disturbance source
waits 4500 samples after the 500 samples of sweeping, before sweeping back from the
normalized frequency of 0·2 cycle/sample to the 0·1 cycle/sample frequency. The whole
process lasts 10 000 samples, and Figure 15 presents the convergence behavior of the
different control structures and algorithms over this period of 10 000 samples. Four
coefficients were used for the control filter with the FX-LMS and ANC-LMS algorithms,
and four coefficients were also used for the LMS predictor in the inverse feedback
structure. Normalized step sizes were 0·0158 (−18 dB) for the FX-LMS, the ANC-LMS
and the LMS (predictor) algorithms. This was the optimal step size for all algorithms.
Using a higher step size was causing a larger overshoot and did not accelerate the
convergence speed. It is clear from Figure 15 that the inverse feedback structure with an
LMS predictor exhibits a faster convergence behavior and produces less overshoot than
the other two approaches. The attenuation of the inverse feedback structure is limited to
about 25 dB, again because of the small number of coefficients used in the model of the
inverse secondary path. The steady-state attenuation produced by the other algorithms is
however better than 25 dB.

4. CONCLUSION

A new adaptive feedback structure suited for the active control of periodic or
time-varying periodic disturbance signals is presented. The new approach does not require
the filtering of the disturbance signal with the model of the secondary path. Simulations
from experimentally measured transfer functions showed that this can improve the

Figure 15. Convergence behavior of the FX-LMS algorithm, q; the ANC-LMS algorithm, w; and the inverse
feedback structure with a LMS predictor, e.
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convergence behavior of the proposed structure, over the convergence behavior of the IMC
structure combined with the FX-LMS algorithm, or the usually faster ANC-LMS
algorithm. The computational load of the proposed structure is often similar or lower to
the computational load of the FX-LMS (or the ANC-LMS) using a feedback IMC
structure.
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