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In this paper, a modified approach for obtaining normal forms of non-linear dynamical
systems is described. This approach provides a number of significant advantages over the
existing normal form theory, and improves the associated calculations. A brief discussion
concerning the application of the new approach to high-dimensional systems is also
presented. To illustrate the new approach, three examples are presented.
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1. INTRODUCTION

Researchers in various fields of science and engineering are becoming increasingly
interested in non-linear dynamical systems which are liable to exhibit very complex
motions. Thus, bifurcations and chaos are under intense study in a number of contexts.
Studies concerning non-linear behavior can be classified into two major categories: local
and global behavior. For example, saddle-node, Hopf bifurcation and other post-critical
behavior of non-linear systems can be analyzed locally in the vicinity of a critical point.
On the other hand, homoclinic and heteroclinic orbits and chaos are essentially global and
require different approaches.

Local studies usually involve an appropriate simplification of the governing non-linear
equations in the vicinity of a point of interest, so as to facilitate the analysis. Various
methods can serve the simplification purpose, such as the averaging method [1, 2, 9, 12],
normal forms [2, 3, 10], the Lyapunov–Schmidt method [4, 5], the method of succession
functions [6] and the intrinsic harmonic balancing technique [7]. Most of these methods
are not easy to use and require a great deal of work. For example, normal form theory
aims at simplifying the governing equations of the system and thus simplifying the analysis;
but generating a complete normal form is not that simple. As discussed in reference [8],
many researchers, such as V. I. Arnold [3] and F. Takens [11], have contributed to the
development of normal forms. A detailed discussion and summary about this can be found
in reference [10]. Some researchers have tried to employ the averaging methods to obtain
the normal forms [9], but the calculation of coefficients of normal forms in reference [9]
appears to be even harder than the current normal form theory. It is noted that the basic
terms of a normal form is not difficult to determine. Normal forms are composed of
resonant monomials which are easy to obtain for a given non-linear system. However,
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obtaining the coefficients associated with each term of the normal forms may be quite
cumbersome. In spite of the efforts, the existing methods are not very convenient to apply,
requiring a great deal of labor. Some modern but abstract mathematical theories, such as
representation theory [10], have to be employed to obtain the coefficients of normal forms.
However, representation theory requires the solution of a matrix equation of size
nCn−1

n+ k−1 × nCn−1
n+ k−1 (where Cn−1

n+ k−1 = (n+ k−1)!/(n−1)!k!), which becomes increasingly
difficult as k increases [10]. Recent developments on symbolic computations are expected
to facilitate both the determination of basic terms as well as the associated coefficients.
However, the existing methodology concerning normal forms does not always lend itself
to such symbolic calculations [13]. It is observed that the full calculation of the normal
forms of order 6 for a particular example, using MACSYMA, ‘‘strained the memory
capacity of a modern minicomputer’’ [15]. It seems that the methodology itself has to be
modified if symbolic computations are to be utilized efficiently. Indeed, this is one of the
underlying motivations for developing a modified approach to determine normal forms,
which is introduced in this paper for the first time.

In comparison to the existing normal form theory and the approaches by averaging
methods [9], the new approach presented here has some notable differences and
advantages: (1) it is simple to apply to specific problems—the calculations of both basic
terms of normal forms and the associated coefficients are easy, and symbolic calculations
become possible; (2) it is conveniently applicable to higher-dimensional systems as
well—here, it is recognized that applying the existing methodology to systems with higher
than two dimensions can be extremely involved; (3) the new approach is also applicable
to non-autonomous non-linear systems. It is important to note that the results of the new
approach have been shown to be equivalent to those obtained by the existing normal form
theory.

In this introductory paper, only some aspects of the approach are discussed. A more
complete discussion will be given in subsequent papers.

Three examples are presented to illustrate some of the advantages of the new approach.
Only two dimensional examples are analyzed here. The results clearly show the equivalence
of the new approach to other normal form methods. In the first example, the coefficients
of normal forms of order 3 for a general quadratic and cubic system are obtained in 1 s
using MAPLE with the aid of a PC (CPU 200) computer. In the second example, the
coefficients of normal forms of order 7 in a multiple parameter system are obtained in 2 s.
In the third example, the coefficients of normal forms of order 5 in the Duffing equation
are obtained in 1 s. The authors are not aware of any existing method that is capable of
yielding the coefficients of normal form as conveniently and as fast as the approach
presented in this paper.

2. BASIC CONCEPTS OF NORMAL FORM THEORY

First, some basic concepts, which will be used in this paper, are presented. Consider the
following equation

ẋ= f(x)=Ax+ f 2(x)+ · · ·+ f r(x)+O(=x=r+1), (1)

where A is a matrix, f k$Hk
n , and Hk

n is a vector space of homogeneous polynomials of order
k in n variables, with values in Cn, k=2, 3, . . . , r.

Suppose that A can be transformed into diagonal form. Consider a series of near identity
transformations

x= y+ hk(y), ke 2, (2)
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where hk$Hk
n are undefined functions that will be determined such that the terms of order

k in the transformed form will be simplified as resonant polynomial of order k. Substituting
equation (2) into equation (1) results in

d
dt

[y+ hk(y)]=A[y+ hk(y)]+ f 2(y+ hk(y))+ · · ·+ f k(y+ hk(y))+O(=y=k+1) (3)

and using Taylor expansion (about point y), gives

ẏ=Ay+ f 2(y)+ · · ·+ f k−1(y)+ (f k(y)− adk
Ahk(y))+O(=y=k+1), (4)

where adk
A is the linear operator adk

A : Hk
n:Hk

n , defined by

(adk
Ahk)(y)=Dhk(y)Ay−Ahk(y) (5)

and Dhk(y) is the Jacobian matrix of hk(y).
Equation (4) indicates that the terms with the order less than k do not change in form:

only those terms with the order equal to or more than k change in their forms. This is
the simplest form for a polynomial of order k if

f k(y)− adk
Ahk(y)=0, ke 2. (6)

Let us denote Mk as the range of the operator adk
A in Hk

n and let Nk be any complementary
subspace to Mk in Hk

n . Then,

Hk
n =Mk

n$Nk
n , ke 2. (7)

If fk(y)$Mk, there exists hk(y)$Hk
n such that

adk
Ahk(y)= f k(y), ke 2. (8)

This means that the polynomial of order k in equation (4) can be transformed to zero.
Otherwise, we can only find hk$Hk

n , which leads to f k(y)− adk
Ahk(y)$Nk. Suppose that

f k(y)= jk(y)+ gk(y), where jk(y)$Mk, gk(y)$Nk. If we choose hk, which leads to
adk

A (hk(y))= jk(y), then equation (4) can be transformed into the form

ẏ=Ay+ f 2(y)+ · · ·+ f k−1(y)+ gk(y)+O(=y=k+1). (9)

One can now state the following theorem [2, 10].

Theorem 2.1. Let f: Cn:Cn be a Cr+1 vector field with f(0)=0 and Df(0)=A. Let the
decomposition (7) of Hk

n be given for k=2, . . . , r. Then there exists a sequence of near
identity transformations x= y+ hk(y), y$Vk , where hk$Hk

n and Vk is a neighborhood of
the origin, Vk+1UVk , k=2, . . . , r, such that equation (1) is transformed into

ẏ=Ay+ g2(y)+ · · ·+ gk(y)+O(=y=k+1), (10)

where gk(y)$Nk for k=2, 3, . . . , r.
The following truncated equation of equation (10),

ẏ=Ay+ g2(y)+ · · ·+ gk(y), (11)

is called a normal form of equation (1).
The normal form is not unique for a fixed matrix A. In fact, it depends on the choices

of complementary subspace Nk. Usually, a standard basis is chosen the basis element of
which is ej =(0, . . . , 1, . . . , 0)T, in which only the jth component is 1 and all other
components are zero.
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Suppose that l1, l2, . . . , ln are eigenvalues of A. Then the following relations are called
resonant conditions:

ls − s
n

i=1

mili =0, (12)

where

m̄= s
n

i=1

mi e 2.

Let (x1, . . . , xn ) be co-ordinates with respect to the standard basis {e1, . . . , en} of Cn in
which the matrix A is in diagonal form the elements of which are (l1, . . . , ln ). Then a
monomial xmes (m̄ = ke 2 and 1E sE n) is called a resonant monomial of order k if and
only if equation (12) holds for mi and s, and one can state the following result [10].

Theorem 2.2. xmes $Nk, if and only if

lms =(m, l)− ls =0, (13)

where

(m, l)= s
n

i=1

mili .

3. A NEW APPROACH FOR OBTAINING NORMAL FORMS

In this section, some new ideas will be introduced into existing normal form theory,
which make the calculation of normal forms relatively simple. First, the procedures of the
existing normal form theory are discussed briefly.

Consider the equation

ż=Az+F2(z)+F3(z)+h.o.t., (14)

where z$C2; Fk$Hk
2 , k=2, 3, . . .; ‘‘h.o.t.’’ means higher order terms; and Hk

2 is the
bi-variate polynomial space of order k. They are defined by

z=0z1

z21, A=0l1

0
0
l21, Fk(z)=G

G

G

F

f

s
i+ j= k

aijzi
1zj

2

s
i+ j= k

bijzi
1zj

2

G
G

G

J

j

, i, j=0, . . . , k, k=2, 3,

where aij and bij are constants and l1 and l2 are the eigenvalues.
Suppose that

z= y+P2(y), P2$H2
2 , (15)

where P2(y) is an undefined function, which will be determined such that the terms of order
2 in the transformed form will be simplified as resonant polynomial of order 2.

Substituting equation (15) into equation (14) results in

ẏ=Ay+F2
1 (y)+F3

1 (y)+h.o.t., (16)
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where F2
1 =F2 +AP2 −DP2Ay and F3

1 =F3 +DF2P2 −DP2F2
1 .

Suppose that F2
1 (y)=G2(y) in equation (16), where G2(y) is the resonant polynomial of

order 2. Solving this equation for P2(y), then, the coefficients in G2(y) can be obtained.
Substituting P2(y) into F3

1 (y) defines F3
1 as F3

1 (y). Then, suppose that

y= x+P3(x), P3$H3
2 , (17)

where P3(y) is an undefined function, which will be determined such that the terms of order
3 in the transformed form will be simplified as resonant polynomial of order 3.

Substituting equation (17) into equation (16) results in

ẋ=Ax+G2(x)+F3
2 (x)+h.o.t. (18)

where F3
2 (x)=F3

1 (x)+AP3 −DP3Ax.
Suppose that F3

2 (x)=G3(x), where G3(x) is the resonant polynomial of order 3. Solving
for P3(x), then, the coefficients in G3(x) can be obtained. Thus the normal form of equation
(14) is given by

ẋ=Ax+G2(x)+G3(x)+h.o.t., (19)

Transforming the above equation into polar co-ordinates, one has

ṙ= a1r2 + a2r3 +O(r4), u� =v+ b1r+ b2r2 +O(r3), (20)

where a1, a2, b1 and b2 are related to the coefficients in functions F2 and F3.
It is generally agreed that it is not difficult to obtain the form of the normal form of

equation (14), but it is not easy to determine the coefficients of the normal form; i.e., the
coefficients of the resonant monomials. Some researchers have employed modern
mathematical theories to obtain the functions Pk(x), and this needs a lot of work. For
example, in order to obtain the function Pk(x), a lot of matrix calculations, with the size
of matrix nCn−1

n+ k−1 × nCn−1
n+ k−1, where n is the dimension, are required. It is stated in

reference [10] that, ‘‘as k increases, the calculations become generally more and more
difficult’’. To overcome this disadvantage, a new approach is presented.

Next, the new approach for obtaining normal forms is introduced. Consider a series of
near identity transformations, which are similar to equations (15) and (17) in C2, given
by

z= y+Pk(y), k=2, 3, . . . ,

where Pk(y) are undefined functions, which will be determined such that the terms of order
k in the transformed form will be simplified as a resonant polynomial of order k.

Substituting the above transformations into equation (14) results in

ẏ=Ay+F2
1 (y)+F3

1 (y)+h.o.t. when k=2,

ẏ=Ay+F2
1 (y)+F3

2 (y)+h.o.t. when k=2 and k=3. (21)

Suppose that Fk
k−1(y)=Gk(y) in equation (21), where Gk(y) are the resonant polynomials

of order k. Then, solving the above equation for Pk(y), the coefficients in Pk(y) and Gk(y)
can be obtained by the following steps.

Introducing the transformation

y=eAtz (22)

into equations (21), one has

ż=e−At[F2
1 (eAtz)+F3

2 (eAtz)]+h.o.t., (23)
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where

eAtz=0el1tz1

el2tz21.
Suppose that

Fk
k−1(y)=0Fk

k−1(1)(y)
Fk

k−1(2)(y)1=G
G

G

F

f

s
m+ n= k

ak−1
mn(1)ym

1 yn
2

s
m+ n= k

ak−1
mn(2)ym

1 ym
2

G
G

G

J

j

.

Then e−AtFk
k−1(q)(eAtz) can be expressed as

e−AtFk
k−1(q)(eAtz)= s

m+ n= k

e−lq tak−1
mn(q) eml1tzm

1 enl2tzn
2 = s

m+ n= k

ak−1
mn(q) e(ml1 + nl2 − lq )tzm

1 zn
2 , (24)

where lq = l1, l2; q=1, 2.
According to the assumption Fk

k−1(y)=Gk(y), functions Fk
k−1(y) are composed of

resonant monomials, in which

ml1 + nl2 = lq . (25)

According to equations (23)–(25), one has

e−AtFk
k−1(eAtz)=Fk

k−1(z)=M
t

{e−AtFk
k−1(eAtz)} (26)

and

ż=M
t

{e−AtF2
1 (eAtz)}+M

t
{e−AtF3

2 (eAtz)}+h.o.t.

=F2
1 (z)+F3

2 (z)+h.o.t.,

where M
t

{f(z, t)}=(1/T) fT
0 f(z, t) dt denotes explicit time averaging of function f(z, t); T

is the period. Similarly, one has

eAtFk
k−1(e−Atz)=Fk

k−1(z). (27)

Thus, equation (23) can be expressed as

ż=G2(z)+G3(z)+h.o.t. (28)

Carrying out the inverse transformation z=e−Atx in equation (28), according to equation
(27), one has

ẋ=Ax+G2(x)+G3(x)+h.o.t. (29)

This is the normal form of equation (14).
From the procedures leading to Fk

m (y) and Pk(y) (mE k−1), one can see that functions
Fk

m (y) and Pk(y) obtained from existing normal form theory and those from the new
approach are identical to each other. Then, one can obtain the following conclusion,
evidently: The results of existing normal form theory are identical to those of the new
approach.
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In order to obtain the normal forms and the related coefficients more conveniently,
consider the relations

e−At(DPk(eAtz)A eAtz−APk(eAtz))=
1

1t
[e−AtPk(eAtz)], k$Z; (30)

Fk
k−1(x)=Fk

k−2(x)+APk(x)−DPk(x)Ax. (31)

According to equations (30) and (31), one has

e−AtFk
k−1(eAtz)+

1

1t
[e−AtPk(eAtz)]= e−AtFk

k−2(eAtz). (32)

Suppose that

Pk(x)=G
G

G

F

f

s
m+ n= k

amnxm
1 xn

2

s
m+ n= k

bmnxm
1 xn

2

G
G

G

J

j

;

then, using

x=eAtz=0el1tz1

el2tz21,
one has

e−AtPk(eAtz)=G
G

G

F

f

s
m+ n= k

amn e(−l1 +ml1 + nl2)tzm
1 zn

2

s
m+ n= k

bmn e(−l2 +ml1 + nl2)tzm
1 zn

2

G
G

G

J

j

.

Thus,

1

1t
[e−AtPk(eAtz)]=G

G

G

G

G

F

f

s
m+ n= k

−l1 +ml1 + nl2 $ 0

amn (−l1 +ml1 + nl2) e(−l1 +ml1 + nl2)tzm
1 zn

2

s
m+ n= k

−l2 +ml1 + nl2 $ 0

bmn (−l2 +ml1 + nl2) e(−l2 +ml1 + nl2)tzm
1 zn

2

G
G

G

G

G

J

j

, (33)

According to equations (25), (32) and (33), one reaches the following conclusion:

M
t
{e−At[Fk

k−2(eAtz)−Fk
k−1(eAtz)}=M

t 6 1

1t
[e−AtPk(eAtz)]7=0. (34)

Thus, one has

M
t
{e−At[Fk

k−1(eAtz)}=M
t
{[e−AtFk

k−2(eAtz)}. (35)



. .   .616

From equations (26) and (35), one has

Fk
k−1(z)=Gk(z)=M

t
{e−AtFk

k−1(eAtz)}=M
t

{e−AtFk
k−2(eAtz)}. (36)

From equation (32), one has

Pk(z)= e−AtPk(eAtz)=t=0 =g {e−At[Fk
k−2(eAtz)−Fk

k−1(eAtz)]} dt=t=0

=g {e−AtFk
k−2(eAtz)−Gk(z)} dt=t=0. (37)

According to equations (36) and (37), Fk
k−1(z) and Pk(z) can be obtained directly from the

(k−2)th transformed functions Fk
k−2(z), where ke 2. From equation (37), Pk(z) can be

expressed as polynomials of order k easily. Then Fk
k−1(z) and Pk(z) can be obtained

conveniently as follows:

F2(z)c 6G2(z)
P2(z)

--------#
z= y+P2(y) 6Fk

1 (y)
F3

1 (y)
c 6G3(y)

P3(y)
--------#

y= x+P3(x) 6Fk
2 (x)

F4
2 (x)

· · · .

In the above calculations, one does not have to solve any equations; only simple iterations,
like z= y+Pk(y), are involved. This makes the calculations of normal forms very
convenient. The above results can be obtained rather easily using symbolic computation.
The convenience comes from the transformation y=eAtz. It seems that this transformation
is usually employed in averaging methods, but actually there are some major differences
between the methods. Averaging methods (such as those used in reference [9]), may lead
to correct resonant polynomials, giving the right form, but this is of course not enough
for a complete normal form; the coefficients must also be determined correctly.

Consider the function

F(x)= oF2(x)+ o2F3(x)+ o3F4(x)+ o4F5(x)+ o5F6(x), (38)

the transformations

x= y+ of2(y)+ o2f3(y)+ o3f4(y)+ o4f5(y)+ · · · , (39)

and

x= u+ of2(u)

u= v+ o2f3(v)

v=w+ o3f4(w)

w= y+ o4f5(y)

. . . . (40)

It is evident that the two sets of transformations (39) and (40) are not identical to each
other. Actually, the averaging methods, such as the KB averaging method, the KBM
averaging method, and the multiple time scales method [9] basically use transformations
similar to equation (39), but the normal form theory uses transformations similar to
equation (40). Before comparing all the coefficients of related terms (not just up to order
3), one cannot compare the results of two approaches properly. The results of averaging
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may be identical to those of normal form theory up to order 3 (as in reference [9]), but
may not be so at higher orders. To see this, we note that substituting transformation (39)
into function F(x) results in

FA (y)= o2F2
A + o3F3

A + o4F4
A + o5F5

A + o6F6
A . (41)

Substituting transformation (40) into function F(x) results in

FN (y)= o2F2
N + o3F3

N + o4F4
N + o5F5

N + o6F6
N , (42)

where Fk
A and Fk

N are the transformed functions with o-order k.
Comparing the coefficients of same-ordered terms in equations (41) and (42) produces

F2
A −F2

N =0, F3
A −F3

N =0, F4
A −F4

N =DF2DP2P3,

F5
A −F5

N =DF3DP2P3 +DF2DP2P4 +D2F2DP2P2P3. (43)

Clearly, the two approaches give identical results up to order 3, but the right sides of the
last two equations have to be zero in order to have identical results up to order 5.

4. GENERAL SOLUTION

Consider the equation

ẋ=Bx+ s
k

s=2

Es(x), (44)

where x$R2, Es$Hs
2; Hs

2 is the bi-variate polynomial space of order s. They are defined
by

x=0x1

x21, B=00
v

−v

0 1, Es(x)=G
G

G

F

f

s
i+ j= s

aijxi
1xj

2

s
i+ j= s

bijxi
1xj

2

G
G

G

J

j

,

i, j=0, . . . , s, se 2,

where aij and bij are constants and 2v are the eigenvalues.
First of all, transforming equation (44) into complex co-ordinates using

x1 = 1
2(z1 + z2), x2 =

1
2i

(z1 − z2)

yields

ż=Az+ s
k

s=2

Fs(z), (45)

where

A=0iv0 0
−iv1, z=0z1

z21, z2 = z̄1.
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Suppose that z= x+Ps(x), s=2, . . . , k, P5$Hs
2. Substituting these equations into

equation (45) and truncating the kth term of the Taylor series leads to

ẋ=Ax+ s
k

i=2

F i
n (x), n=1, 2, . . . , i−1, (46)

where

F2
1 =F2 +AP2 −DP2Ax,

F3
1 =F3 +DF2P2 −DP2F2

1 ,

F4
1 =F4 + 1

2D
2F2(P2)2 +DF3P2 −DP2F3

1 ,

F5
1 =F5 + 1

2D
2F3(P2)2 +DF4P2 −DP2F4

1 ,

F3
2 =F3

1 +AP3 −DP3Ax,

F4
2 =F4

1 +DF2
1P3 −DP3F2

1 ,

F5
2 =F5

1 +DF3
1P3 −DP3F3

2 ,

F4
3 =F4

2 +AP4 −DP4Ax,

F5
3 =F5

2 +DF2
1P4 −DP4F2

1 ,

F5
4 =F5

3 +AP5 −DP5Ax,

· · ·.

Fn
m (x) can easily be obtained by symbolic calculation.
Note that the kth equation is given by

ẋ=Ax+ s
k

i=2

F i
i−1(x). (47)

Suppose that x=eAty. Substituting this equation into equation (47) results in

ẏ= s
k

i=2

e−AtFi
i−1(eAty). (48)

According to equation (28), above equation can be expressed as

ẏ= s
k

s=2

e−AtFs
s−1(eAty)= s

k

s=2

Gs(y). (49)

According to equation (36), Gs(y) can be obtained as

Gs(y)=G
G

G

G

G

F

f

s
m+ n= s

m− n−1=0

as−2
mn ym

1 yn
2

s
m+ n= s

m− n+1=0

bs−2
mn ym

1 yn
2

G
G

G

G

G

J

j

, G2q =0,

in which as−2
ij and bs−2

ij are the coefficients in functions Fs
s−2, 2qE k.
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According to equation (37), Pk(y) can be obtained as follows:

P2(y)= e−AtP2(eAty)=t=0 =
1
iv 0a20y2

1 − a11y1y2 − 1
3a02y2

2
1
3b20y2

1 + b11y1y2 − b02y2
21,

P3(y)= e−AtP3(eAty)=t=0 =
1

2iv 0a1
30y3

1 − a1
12y1y2

2 − 1
2a

1
03y3

2
1
2b

1
30y3

1 + b1
21y2

1y2 − b1
03y3

21,
P4(y)= e−AtP4(eAty)=t=0 =

1
iv 01

3a
2
40y4

1 + a2
31y3

1y2 − a2
22y2

1y2
2 − 1

3a
2
13y1y3

2 − 1
5a

2
04y4

2
1
5b

2
40y4

1 + 1
3b

2
31y3

1y2 + b2
22y2

1y2
2 − b2

13y1y3
2 − 1

3b
2
04y4

21,
P5(y)= e−AtP5(eAty)=t=0 =

1
2iv 01

2a
3
50y5

1 + a3
41y4

1y2 − a3
23y2

1y3
2 − 1

2a
3
14y1y4

2 − 1
3a

3
05y5

2
1
3b

3
50y5

1 + 1
2b

3
41y4

1y2 + b3
23y2

1y3
2 − b3

14y1y4
2 − 1

2b
3
05y5

21,
. . . .

Pk(y)= e−AtPk(eAty)=t=0 =g [e−AtFk
k−2(eAty)−Gk(y)] dt=t=0

=
1
iv

G
G

G

G

G

F

f

s
k

s=0

k−2s−1$ 0

1
k−2s−1

ei(k−2s−1)vtak−2
(k− s)syk− s

1 ys
2

G
G

G

G

G

J

j

G
G

G

G

G

G

Gt=0

s
k

s=0

k−2s+1$ 0

1
k−2s+1

ei(k−2s+1)vtbk−2
(k− s)syk− s

1 ys
2

=
1
iv

G
G

G

G

G

F

f

s
k

s=0

k−2s−1$ 0

1
k−2s−1

ak−2
(k− s)syk− s

1 ys
2

G
G

G

G

G

J

j

,

s
k

s=0

k−2s+1$ 0

1
k−2s+1

bk−2
(k− s)syk− s

1 ys
2

where ak−2
(k− s)s and bk−2

(k− s)s are coefficients in function Fk
k−2.

It is evident that there are no resonant monomials in function Pk(y).
An inverse transformation y=e−Atz is carried out and substituted into equation (49).

One has the normal form of equation (45) as follows:

ż=Az+ s
m

i=1

G2i+1(z). (50)

Transforming equation (50) into polar co-ordinates using

z1 = r eiu, z2 = r e−iu,
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one has

ṙ= s
m

i=1

a1r2i+1, u� =v+ s
m

i=1

b1r2i, (51)

where 2m+1E k.
One can see from the above analysis that the kth order normal form can be obtained

from the (k−2)th order transformed functions. Thus, using the new approach, it is very
convenient to employ symbolic calculation.

5. HIGH-DIMENSIONAL SYSTEMS

The above analysis is valid for high-dimensional systems as well. Consider the equation

ẏ=Ay+ s
M

s=1

Fs(y), (52)

where y$Cn, Fk$Hk
n and Hk

n is a vector space of homogeneous polynomials of degree k and
is described by n variables. A is an n× n matrix, y=(y1 y2 . . . yn )T, Fk =(Fk

(1) Fk
(2) . . . Fk

(n))T

and

F2
(m) = s

s1 + s2 + · · ·+ sn =2

as1s2 . . . sn(m)ys1
1 ys2

2 . . . ysn
n ,

F3
(m) = s

s1 + s2 + · · ·+ sn =3

as1s2 . . . sn(m)ys1
1 ys2

2 . . . ysn
n ,

. . .

Fk
(m) = s

s1 + s2 + · · ·+ sn = k

as1s2 . . .sn(m)ys1
1 ys2

2 . . . ysn
n .

Suppose that A=diag (l1, l2, . . . , ln ), where l1, l2, . . . , ln are the eigenvalues; all
eigenvalues are pure imaginary pairs, where 2r= n, li+ r = l�i , i=1, 2, . . . , r.

Similarly, consider a series of transformations, which are similar to equations (15) and
(17) in Cn, given by

z= y+Pk(y), k=2, 3, . . . , M, Pk$Hk
n ,

where Pk(y) are undefined functions, which will be determined such that the terms of order
k in the transformed form will be simplified as resonant polynomial of order k.

Substituting the above transformations into equation (52) results in

ẏ=Ay+ s
M

s=2

Fs
s−1(y). (53)

Suppose that Fk
k−1(y)=Gk(y) in equation (53), where Gk(y) are the resonant polynomials

of order k. Introducing the transformation y=eAtz into equation (53), one has

ż=e−At s
M

s=2

Fs
s−1(eAtz). (54)
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Similarly, according to relation (32), one has

Gk(z)=M
t
{e−AtFk

k−2(eAtz)}, Pk(z)=g {e−AtFk
k−2(eAtz)−Zk(z)} dt=t=0.

Solving the above equation for Pk(z), the coefficients in Pk(z) and Gk(z) can be obtained
as follows:

s
s̄= k

d− l1 =0

ak−2
s1s2 . . . sn(1)zs1

1 zs2
2 . . . zsn

n

s
s̄= k

d− l2 =0

ak−2
s1s2 . . . sn(2)zs1

1 zs2
2 . . . zsn

n

Gk(z)=G
G

G

G

G

G

G

G

G

F

f

· · ·

G
G

G

G

G

G

G

G

G

J

j

, (55)

s
s̄= k

d− ln =0

ak−2
s1s2 . . . sn(n)zs1

1 zs2
2 . . . zsn

n

where s̄= s1 + s2 + · · ·+ sn , d= s1l1 + s2l2 + · · ·+ snln , ke 2, ak−2
s1s2 . . . sn(m) are the

coefficients of transformed function Fk
k−2(z); and

s
s̄= k

d− l2 $ 0

1
d− l1

ak−2
s1s2 . . . sn(1)zs1

1 zs2
2 . . . zsn

n

s
s̄= k

d− l2 $ 0

1
d− l2

ak−2
s1s2 . . . sn(2)zs1

1 zs2
2 . . . zsn

n

Pk(z)=G
G

G

G

G

G

G

G

G

F

f

· · ·

G
G

G

G

G

G

G

G

G

J

j

, (56)

s
s̄= k

d− ln $ 0

1
d− ln

ak−2
s1s2 . . . sn(1)zs1

1 zs2
2 . . . zsn

n

Introducing the inverse transformation z=e−Aty into equation (54), one has

ẏ=Ay+ s
M

s=2

Gs(y). (57)

This is the normal form of equation (52).

6. EXAMPLES

Example 1. Determine the normal form of the following two-dimensional system:

ẋ=Bx+E2(x)+E3(x), (58)
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where

B=001 −1
0 1, E2(x)=0a20x2

1 + a11x1x2 + a02x2
2

b20x2
1 + b11x1x2 + b02x2

21,
E3(x)=0a30x3

1 + a21x2
1x2 + a12x1

1 x2
2 + a03x3

2

b30x3
1 + b21x2

1x2 + b12x1
1x2

2 + b03x3
21.

First of all, transforming equation (58) into the complex form by using

x1 = 1
2(z1 + z2), x2 =

1
2i

(z1 − z2)

yields

ż=Az+F2(z)+F3(z), (59)

where

A=0 i
0

0
−i1, z=0z1

z21, z2 = z̄1.

Suppose that z= u+P2(u), P2$H2
2 . Substituting this equation into equation (59) leads to

u̇=Au+F2
1 (u)+F3

1 (u).

Suppose that u= x+P3(x), P3$H3
2 . Substituting this equation into the above equation

leads to

ẋ=Ax+F2
1 (x)+F3

2 (x).

Suppose that Fk
k−1(y)=Gk(y), where k=1, 2; Gk(y) are the resonant polynomials of order

k. Introducing the transformation x=eAty and substituting it into above equation
procedures

ẏ=e−AtF2
1 (eAty)+ e−AtF3

1 (eAty).

Suppose

Fk
k−1(y)=0Fk

k−1(1)(y)
Fk

k−1(2)(y)1=G
G

G

F

f

s
m+ n= k

ak−1
mn(1)ym

1 yn
2

s
m+ n= k

ak−1
mn(2)ym

1 yn
2

G
G

G

J

j

,

where k=1, 2. According to equation (26), one has

e−AtF2
1 (eAty)+ e−AtF3

1 (eAty)=F2
1 (y)+F3

2 (y).

Then, one has

ẏ=M
t
{e−AtF2

1 (eAty)+ e−AtF3
1 (eAty)}=G2(y)+G3(y).

Introducing the inverse transformation y=e−Atx in the above equation, according to
equation (27), one has

ẋ=Ax+G2(x)+G3(x)+h.o.t.
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This is the normal form of equation (59). Transforming to polar co-ordinates, one has

ṙ= a1r3, u� =v+ b1r2.

According to equations (36) and (37), P2 and G2 can be obtained from function F2; F3
1 can

be obtained from P2 and F3; G3 can be obtained from F3
1 . Then, G2 =M

t
{e−AtF2(eAty)},

G3 =M
t
{e−AtF3

1 (eAty)}. The coefficients a1 and b1 can be obtained as follows using MAPLE.
The calculation time on a PC (CPU 200) computer is very short (0·1 s).

a1 = 1
8(b21 +3a30 +3b03 + a12 − b02b11 +2a02b02 + a11a02 + a11a20 − b20b11 −2b20a20),

b1 = 1
24(−3a21 +9b30 −9a03 +3b12 −4b2

02 +5b02a11 −10b02b20 − a2
11 + a11b20 −10b2

20

−10a2
02 + a02b11 −10a02a20 − b2

11 +5b11a20 −4a2
20), (60)

where aij and bij are the coefficients of functions E2 and E3.

Example 2. Determine the normal forms and related coefficients of the two-dimensional
system with six parameters, given by

ẋ=−y+ l1x− l3x2 + (2l2 + l5)xy+ l6y2,

ẏ= x+ l1y+ l2x2 + (2l3 + l4)xy− l2y2. (61)

This is a popular model to study Hilbert’s 16th problem. It was studied originally by Bautin
[14] in 1954. However, he obtained a wrong result by using the method of successive
functions. Thirty years later, Farr et al. [15] studied this problem again using the
Lyapunov–Schmidt method, and corrected Bautin’s mistake in 1989. Now we use the
proposed new approach to study this problem. Transforming the above equation into
complex co-ordinate form, one has

ż=Az+F2(z), (62)

where

A=0 i
0

0
−i1, F2(x)=0a20z2

1 + a11z1z2 + a02z2
2

b20z2
1 + b11z1z2 + b02z2

21, amn = amn (l1, l2, l3, l4, l5, l6).

Following the same procedures as introduced above, introduce a set of transformations
z= y+Pk(y), k=2, . . . ,7 into equation (62) to obtain

ẏ=iy+F2
1 (y)+F3

2 (y)+F4
3 (y)+F5

4 (y)+F6
5 (y)+F7

6 (y), (63)

where Fk
k−1(y) can be calculated similar to equation (46).

It is easy to obtain the normal form in polar co-ordinates as follows:

ṙ= a1r3 + a2r5 + a3r7, u� =1+O(=r=2). (64)

According to the analysis in section 3, after introducing the transformation y=eAtx in
equation (63), the calculation of coefficients of normal forms can be simplified as

F3
2 =M

t
{e−AtF3

1 (eAtx)}, F5
4 =M

t
{e−AtF5

3 (eAtx)}=M
t
{e−AtF5

2 (eAtx)},

F7
6 =M

t
{e−ArtF7

5 (eAtx)}=M
t
{e−ArtF7

3 (eAtx)}, F2
1 =F4

3 =F6
5 =0.
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Then the coefficients of the normal form in equation (64) can be obtained as follows:

a1 =−1
8l5(l3 − l6), for l1 =0,

a2 = 1
48l2l4(l3 − l6)[l4 +5(l3 − l6)], for l1 = l5 =0,

a3 = 25
64l2(l3 − l6)3(l3l6 − l2

2 −2l2
6 ), for l1 = l5 =0, l4 =−5(l3 − l6). (65)

These are identical to the results of Farr et al. [15], who employed L–S theory, and the
same as the conclusion Yu and Huseyin [16], who used the intrinsic harmonic balancing
technique and multiple time scales method. As stated in reference [15], using the L–S
method to solve this example requires ‘‘a long calculation’’. The normal form method
introduced here gives the results readily and conveniently. Indeed, using MAPLE, the
coefficients in equation (64) are obtained within 2 s on a PC (CPU 200) computer (to be
exact in 1·4 s).

Example 3. Determine the normal forms and related coefficients of the following
Duffing equation:

ẋ= y, ẏ=−x+ ax3. (66)

First of all, transforming equation (66) into complex form by using

x= 1
2(z+ z̄), y=

1
2i

(z− z̄)

yields

ż=−iz+
ia
8

(z+ z̄)3. (67)

Following the same procedures as in Example 1, introduce a set of transformations
z= y+Pk(y), k=2, . . . , 5, into equation (67), to obtain

ẏ=−iy+F 2
1 (y)+F 3

2 (y)+F 4
3 (y)+F 5

4 (y), (68)

where Pk(y) are undefined functions, which will be determined such that the terms of order
k in the transformed form will be simplified as a resonant polynomial of order k; Fk

k−1(y)
are transformed functions that have been calculated in equation (46). According to the
above analysis, Pk(y) can be solved from Fk

k−1(y)=Gk(y). Transforming equation (68) to
polar co-ordinates, one has

ṙ= a1r3 + a2r5, u� =v+ b1r2 + b2r4. (69)

In this example, F2 =0. According to the analysis in section 3, after introducing the
transformation y=eAtx into equation (68), the calculation of coefficients of normal form
can be simplified as

F3
2 =M

t
{e−ArtF3

1 (eAtx)}=M
t

{e−ArtF3(eAtx)},

F5
4 =M

t
{e−AtF5

3 (eAtx)}=M
t

{e−AtF5
2 (eAtx)}.

Following the same procedures as introduced above, the coefficients of the above equation
are obtained as follows:

a1 =
3a

8
, b1 =0; a2 =0, b2 =

27a2

256
.
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Using MAPLE, the coefficients in equation (69) are obtained within 1 s on a PC (CPU 200)
computer (to be exact in 0·1 s).
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