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FLEXURAL VIBRATIONS OF CIRCULAR BEAMS

I. K. S

1155 Ash Street, Denver, Colorado 80220, U.S.A.

(Received 28 February 1997, and in final form 26 September 1997)

For circular cylindrical beams, the Timoshenko theory, which includes shear and rotary
effects, can be applied by introducing a constant K'=0·9. The study presented here takes
into account the actual configuration and thus makes it an integral part of the analysis.
A variational approach previously used [7] is followed. A simplification of the
three-dimensional problem is obtained using the inverse method due to St. Venant. A
biquadratic equation yields numerical results for the natural frequencies of the first three
modes for the following cases: simply supported, fixed–fixed, free–free and fixed–free.
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1. INTRODUCTION

The flexural vibrations of long thin cylindrical rods are well described by the elementary
Bernoulli–Euler (B–E) theory. The effect of rotary inertia is included in the theory of the
so-called Rayleigh beam [1]. The Timoshenko beam model [10], which includes shear and
rotary effects, has been the object of study since its appearance in the literature [2]. The
simplifications introduced in the B–E, Rayleigh and Timoshenko theories reduced the
problem from three dimensions to a single dimension. In order to apply the Timoshenko
theory to various cross-sections, a shear correction factor K', which is an inherent part
of the theory, has been introduced. For a circular section, the value K' is generally taken
as 0·9.

The basis for the determination of the natural frequencies of a vibrating circular cylinder
has been the exact solution of the three-dimensional equations of elasticity by Pochhammer
and Chree [3]. Solutions for the free–free condition have been presented by Hutchinson
[4] and Pickett [5]. The Pochhammer–Chree solutions satisfied the traction free boundary
conditions on the curved surfaces but, when applied to a finite cylinder, carried with them
a requirement for the existence of stresses and displacements on the plane terminal faces
which seldom occur in practice. An exact solution satisfying all types of boundary
conditions at the terminal has as yet not been effected. Hutchinson satisfied the boundary
conditions on the terminals approximately by using a condition of orthogonality between
stresses and displacements. Pickett’s approximate solution specified that the total shear and
moment on the terminal faces be zero. Recently, Leissa and So [6] have presented a
three-dimensional solution based on a Rayleigh–Ritz procedure. Fourier series and
polynomials were employed to describe the displacement functions. Two cases were
covered: free–free and fixed–free boundary conditions. Solutions for the simply supported
and fixed–fixed conditions of the one-dimensional theories were not given.

A variational approach [7] is used herein by applying Hamilton’s principle of
least action. After simplification of the three-dimensional problem in accordance with
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the inverse method due to St. Venant, the present study involves the determination of the
transverse and longitudinal displacements of the vibrating body. The application of
the principle yields two Euler differential equations defining admissible displacement
functions along with associated natural boundary conditions.

2. SIMPLIFICATION OF THE THREE-DIMENSIONAL PROBLEM

The circular cylinder is shown with respect to the XYZ co-ordinate system in Figure 1.
The X-axis is taken as the central line of the beam and Y- and Z-axes lie in the principal
planes of the cross-sections at their centroid. The vibration is assumed to take place in
the principal X–Y plane with the displacements u and v as functions of (x, y, t). The
displacement w in the direction of the Z-axis leading to a distortion of the cross-sections
is neglected. The body forces are to be taken as zero. The curved surfaces are unloaded.

Uncer certain conditions, simplifying assumptions may be made as to the relative
importance of certain internal stresses during small vibrations about the central axis of
equilibrium. These assumptions are inherent in the one-dimensional theories. The process
of assigning zero values to certain stresses is closely connected to the inverse method used
by St. Venant in his solutions for the bending of prismatic beams. Their actual existence
can be of importance under certain conditions, and solutions based on their neglect may
be of limited application. Thus it is to be expected that such assumptions may not be
applied for deep beams or for high modes of vibration.

With flexure confined to that about the OZ axis, the normal stress sz and shear stress
tzy are both taken as zero. In the plane normal to the X-axis, the lines of shearing stress
have the component txy and txz . The txz stress exists due to the condition of a curved
surface. However, the resultant shear force in the OZ direction is zero. The magnitude of
txz is taken as zero. With these simplifications we have a stress system consisting of sx ,
sy and txy . Thus the cylinder is assumed to behave as if it were composed of an infinite
number of lamina of varying depth acting independently and vibrating in unison in a state
of plane stress.

3. DISPLACEMENT FUNCTIONS

The displacement functions u and v are considered to be unknown functions of the
spatial co-ordinates x and y along with the time t. The displacements call not only for
flexural strains but also include simultaneous shearing strains. The displacement functions
are taken as

u(x, y, t)= a'(x, t)y− 1
3 b'(x, t)y3; v(x, y, t)=−a(x, t)+R2b(x, t). (1, 2)

The symbol (') represents differentiation with respect to the variable x.

Figure 1. The co-ordinate system.
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The u displacement is composed of a linear term in y and a term varying as y3, thus
introducing a correction to the usual assumption that planes remain plane as expressed
by the term a'y. The v displacement is independent of y and so is assumed to be true for
all y. It follows from equations (1) and (2) that the strains are given by

ox = 1u/1x= a0y− 1
3 b0y2, oy = 1v/1y=0, (3a, b)

gxy =
1u
1y

+
1v
1x

= b'(R2 − y2). (4)

From Hooke’s law, the vertical component txy of the shear stress varies parabolically over
the depth of the section coinciding with the law of elementary strength of materials.

4. POTENTIAL ENERGY AND KINETIC ENERGY FUNCTIONALS

The potential strain energy per unit of volume consistent with the stress system sx , sy , txy

is taken as

V=
E

2(1− n2)
(o2

x + o2
y +2nox oy )+

G
2

g2
xy , (5a)

in which n is the Poisson ratio. Neglecting the effect of sy , oy is taken as oy =−nox :

V=
E
2

o2
x +

G
2

g2
xy . (5b)

The kinetic energy per unit of volume is

T=(r/2) [(1u/1t)2 + (1v/1t)2]. (6)

Integrating over the circular cross-section, the internal strain energy and kinetic energy per
unit of dimension are, respectively,

V=EI[1
2 (a0)− 1

6 a0b0R2 + 5
288 (b0)2R4]+ 5

4 AR4G(b')2, (7)

T= r1
2 {(axt )2 − 1

3 axt bxt R2 + 5
144 (bxt )2R4}+

Ar

2
{a2

t −2at bt R2 + b2
t R2}, (8)

where I=PR4/4 and A=PR2.

5. APPLICATION OF HAMILTON’S PRINCIPLE

A fundamental approach to the study of the flexure of the circular cylinder is the
Hamilton principle of least action:

dJ= d g
t2

t1

(T−V) dt=0,

which, when applied to the vibrating beam, becomes

d g
t2

t1

dt g
l

0

dx g
+R

−R

(T−V)b dy=0, (9)

where b=2zR2 − y2.
Using the values of T and V of equations (5) and (6), the statement from Hamilton’s

principle becomes
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g
t2

t1

dt g
l

0

{L1 (a)−R2L2 (b)}da dx+R2 g
t2

t1

dt g
l

0

{L3 (a)−R2L4 (b)}db dx

+$0EIaIV −
EI
6

R2b11da%
l

0

+$0−EIa0+
E
6

R2Ib01da'%
l

0

+$0 5
144 EIR4b1−EI

R2

6
a1− 5

8 GR4Ab'1db%
l

0

+$0E6 R2Ia0− 5
144 EIR4b01db'%

l

0

=0, (10)

where

L1 (a)=$EI
14

1x4 − rI
14

1x2 1t2 +Ar
12

1t2%a, (11a)

L2 (b)=$EI
6

14

1x4 −
rI
6

14

1x2 1t2 +Ar
12

1t2%b, (11b)

L3 (a)=$EI
6

14

1x4 −
rI
6

14

1x2 1t2 +Ar
12

1t2%a, (11c)

L4 (a)=$5EI
144

14

1x4 −
5rI
144

14

1x2 1t2 +Ar
12

1t2 −
5
8 AG

12

1x2%b. (11d)

The Euler equations are

L1 (a)−R2L2 (b)=0, L3 (a)−R2L4 (b)=0. (12, 13)

The terms at the limits of equation (10) furnish both forced and natural boundary
conditions.

6. BOUNDARY CONDITIONS

Boundary conditions play a prominent part in the determination of the natural
frequencies of vibrating beams [7]. Forced boundary conditions such as zero deflection and
zero slope at a support located at x=0, for example, require that for all values of y,

a(0)=0, b(0)=0, a'(0)=0, b'(0)=0. (14a–d)

Accordingly, da= da'= db= db'=0 and the terms at the limits of equation (10) vanish.
Natural boundary conditions result from the vanishing of the terms at the limits by

equating the coefficients of da, da', db and db' to zero. The hinged boundary condition
is

EIa0(0)−
E
6

R2Ib0(0)=0,
E
6

R2Ia0(0)− 5
144 EIR4b0(0)=0, (15a, b)

which leads to
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a0(0)= b0(0)=0. (16)

For a free–free condition,

EIa1(0)−
EI
6

R2b1(0)=0, (17a)

5
144 EIR4b1(0)−

EIR2

6
a1(0)− 5

8 GR4Ab'(0)=0, (17b)

EIa0(0)−
ER2

6
Ib0(0)=0, (17c)

ER2

6
Ia0(0)− 5

144 EIR4b0(0)=0, (17d)

which leads to

a0(0)=0, b0(0)=0, a1(0)=
R2

6
b1(0), (18a)

EIb1(0)−90AGb'(0)=0. (18b)

Since a free–free condition requires sx =0 and txy =0, for all values of y it follows from
equations (3) and (4) that equations (18a,b) reduce to the conditions

a0(0)= a1(0)= b'(0)= b0(0)= b1(0)=0. (19a–e)

7. THE EULER EQUATIONS

When the terms at the limits of equation (10) vanish as a result of the forced and natural
boundary conditions, all that remains is the integral term. The Euler equations are thus
obtained for arbitrary variations of da and db. These homogeneous linear equations,
together with the homogeneous boundary conditions (14)–(19), determine the eigenvalues
and eigenfunctions of a boundary value problem. However, except for the simply
supported case, formal solutions of the two Euler equations (12) and (13) with the associate
boundary conditions are difficult, if not impossible, to obtain. Recourse must be taken to
approximate methods of solution, such as the Galerkin [8] procedure, to obtain the
practically important natural frequencies.

8. THE SIMPLY SUPPORTED BEAM

The boundary conditions for a simply supported beam at x=0 and x= l are

a=0, b=0, a0=0, b0=0.

Assuming harmonic vibrations, a particular solution of equations (12) and (13) that
satisfies these boundary conditions is taken as

a=Cm sin Kx cos pm t, b=Dm sin Kx cos pm t,

where K=mP/l, m is an integer that expresses the mode number and pm is the vibration
frequency. The sin Kx are the eigenfunctions of the boundary value problem, provided that
the following characteristic determinant is zero:
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5 5
[EIK4 − p2(rIK2 +Ar)] $p20Ar+ r

I
6

K21−
EI
6

K4%5 5
5 5
5 5
5 5

D=

$E IK4

6
− p20r IK2

6
+Ar1% [p2( 5

144 rIK2 +Ar)− ( 5
144 EIK4 + 5

8 AGK2)]

=0.

5 5

This yields the characteristic bi-quadratic equation

ap4 + bp2 + c=0. (20)

The parameters to be used for finding the roots of equation (20) are

b
a

=−
(V1 /l2) (mP)2

101+K2r2 6101+2K2r2 +
90

101+K2r2

G
E

(1+K2r2)7,

c
a

=(V1 /l)4 (mP)4

101+K2r2 690
G
E

+K2r27,

where V1 =zE/r , r=zI/A=R/2 and Kl=mP.
Numerical results for G/E=3/8 are given in Table A.2 of Appendix A.

9. GALERKIN TYPE SOLUTIONS

The Galerkin procedure consists of choosing a class of admissible co-ordinate functions
so that the forced and/or natural boundary conditions are satisfied or that the terms at
the limits vanish. In general, these functions will not be the solutions of the differential
equations that define the eigenvalue problem. The weighted error obtained by substituting
these pseudo-eigenfunctions into the left side of the Euler equations is integrated over the
range (0, l) and equated to zero. The weighting functions are the pseudo-eigenfunctions.
A system of equations containing undetermined coefficients associated with the co-ordinate
functions is obtained. The determinant of this system is equated to zero and yields the
characteristic equation for the eigenvalues.

It is possible to choose the co-ordinate functions on the basis of knowledge of the
eigenfunctions of a system with slightly different characteristics, but which satisfy the same
boundary conditions. The choice of co-ordinate functions is considerably eased in the cases
of beams that are supported at the terminals, due to the fact that the b(x) function must
satisfy the same boundary conditions as the a(x) function. The a(x) functions pertain to
the one-dimensional B–E model and the eigenvalues for this case are known [9].

In contrast to the Rayleigh–Ritz method, in which the vibration mode is taken in the
form of a series of admissible functions, only one term with an undetermined coefficient
is taken here, thus leading to a considerable reduction in computation. This single term
is the B–E solution for the desired mode, and a meaningful frequency is obtained from
the solution of the bi-quadratic equation.

10. THE END SUPPORTED BEAM

In addition to the simply supported (SS) beam treated in section 8, classical cases treated
in engineering literature include the fixed–fixed (FF) and fixed supported (FS) beams.
Co-ordinate functions for the (FF) and (FS) cases are chosen to be

a=Cm fm (x) cos pm t, b=Dm fm (x) cos pm t,
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where the fm (x) are eigenfunctions of the B–E model and m represents the mode numbers
of the vibration mode. Since the terms at the limits vanish, we obtain, from equation (10),

g g {L1 (a)−R2L2 (b)}dCm fm (x) cos pm t dx dt=0, (21)

g g {L3 (a)−R2L4 (b)}dDm fm (x) cos pm t dx dt=0. (22)

A condition for a solution other than Cm =Dm =0 is provided by equating the
characteristic determinant to zero:

b a11

a21

a12

a22 b= a11 a22 − a12 a21 =0,

where

a11 =g
l

0

[EIfm f IV
m + rIp2

m fm f 0m −Arp2
m f 2

m ] dx,

a12 =R20g
l

0 $Arp2
m f 2

m −
r

6
Ip2

m fm f 0m −
r

6
Ifm f IV

m % dx1,

a21 =g
l

0

[EIfm f IV
m + rIp2

m fm f 0m −6Arp2
m f 2

m ] dx,

a22 =R20g
l

0

[− 5
144 EIfm f IV

m −( 5
144 rIp2

m − 5
8 AG)fm f 0m +Arp2

m f 2
m ] dx1.

The value of pm is obtained from the bi-quadratic equation

a11 a22 − a12 a21 = ap4
m + bp2

m + c=0.

11. THE FIXED–FIXED (FF) BEAM

The B–E eigenfunction for the FF case is [9]

fm (x)= (ch bm x−cos bm x)− am (sh bm x−sin bm x),

where bm l are eigenvalues and where

am =(−cos bm l+ch bm l)/(−sin bm l+sh bm l).

The orthogonality of the eigenfunctions leads to

g
l

0

f 2
m = l, g

l

0

fm f 0m dx= am bm (2− am bm l)=fm ,

g
l

0

fm f IV
m dx= b4

m g
l

0

f 2
m dx= b4

m l.
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Felgar [9] furnishes numerical values of bm together with formulas for the fm functions.
It follows that

a11 = p2
m [rIfm −Arl]+EIb4

m l,

a12 =
R2

6
[p2

m (6Arl− rIfm )]−EIb4
m l,

a21 = p2
m [rIfm −6Arl]+EIb4

m l,

a22 =R2[− 5
144 EIb4

m l+ p2
m (Arl− 5

144 rIfm + 5
8 AGfm )].

A meaningful value of pm is obtained from

a11 a22 − a12 a21 = ap4
m + bp2

m + c=0,

pm =$−b/a2z(b/a)2 −4(c/a)
2 %

1/2

,

b/a=(V1 /l)2(N1 /D), c/a=(V1 /l)4(r/l)2(bm l)4(N2 /D), V1 =zE/r ,

N1 =65
8 (r2f2

m −fm l)
G
E

− 139
144 0rl1

2

(bm l)4 + 38
144 0rl1

4

fm l(bm l)47
N2 = 5

8 fm l
G
E

+ 19
144 0rl1

2

(bm l)4,

D=5− 139
144 0rl1

2

(fm l)− 38
144 0rl1

4

(fm l)2.

For the first three modes the values of fm l and (bm l)4 are shown in Table A.1 and values
for the eigenvalues in Table A.3, both in Appendix A.

12. THE FIXED–FREE AND FREE–FREE BEAMS

The fixed–free condition is found in the case of the cantilevered beam. Pochhammer’s
[3] three-dimensional theory is used as the basis for the study of the free–free condition.

At a free end, x= l, the boundary conditions require that the shear and normal tractions
must vanish. The one-dimensional solutions require that the total moment and shear be
zero. If v(x) denotes the total transverse deflections, the B–E conditions are
v0(l)= v1(l)=0. Timoshenko’s theory requires that the curvature of the central axis at
x= l due to pure bending be zero and that the total shear also be zero. The Timoshenko
boundary conditions involve two independent functions of x. Pickett’s [5] boundary
conditions are expressed by two integrals, as do those of Hutchinson [4]. The boundary
conditions of the present study are given by equations (17) and, equivalently to the traction
free conditions, sx (l)= txy (l)=0. Thus

a0(l)= a1(l)= b'(l)= b0(l)= b1(l)=0. (23)

For the free–free case, these conditions must also be satisfied at x=0.
The pseudo-eigenfunctions fam (x) for the dominant a(x) which represents the pure

bending configuration are taken as identical with that of the B–E solution with identical
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v0(l)= v1(l)=0. Timoshenko’s theory requires that the curvature of the central axis at
x= l due to pure bending be zero and that the total shear also be zero. The Timoshenko
boundary conditions involve two independent functions of x. Pickett’s [5] boundary
conditions are expressed by two integrals, as do those of Hutchinson [4]. The boundary
conditions of the present study are given by equations (17) and, equivalently to the traction
free conditions, sx (l)= txy (l)=0. Thus

a0(l)= a1(l)= b'(l)= b0(l)= b1(l)=0. (23)

For the free–free case, these conditions must also be satisfied at x=0.
The pseudo-eigenfunctions fam (x) for the dominant a(x) which represents the pure

bending configuration are taken as identical with that of the B–E solution with identical
peaks and nodes. They satisfy the boundary conditions at a supported terminal x=0. At
a free end, x= l, they yield the following values: f 0am (l)= f 1am (l)=0.

The pseudo-eigenfunctions for b(x) denoted by fbm (x) must satisfy the forced boundary
conditions at a supported terminal, x=0. They must also furnish derivative values at x= l
so that the limit terms vanish.

Accordingly, we require that

f 'bm (l)= f 0bm (l)= f 1bm (l)=0.

To act as a correction to the dominant a(x) function they must additionally have the
same number and location of nodes.

12.1.  – 

The pseudo-eigenfunction fam (x) for the free–free beam are taken [9] as

fam (x)= ch bm x+cos bm x− am (sh bm x+sin bm x),

where bm l are eigenvalues and where am =(ch bm l−cos bm l)/(sh bm l−sin bm l). At the
free ends they satisfy the conditions f 0am (0)= f 1am (0)= f 0am (l)= f 1am (l)= (0). Proposed
pseudo-eigenfunctions for b(x) are trigonometrical polynomials. The first and third modes
are symmetrical with respect to the centreline. The second mode is anti-symmetrical. From
equation (23) they must satisfy the conditions f 'bm (0)= f 0bm (0)= f 1bm (0)= f 'bm (l) =
f 0bm (l)= f 1bm (l)= (0).

For the first and third modes fbm (x) are, respectively, taken as

fb1 (x)=1+12·8733 cos
2Px

l
+3·218325 cos

4Px
l

,

fb3 (x)=1−26·35976 cos
2Px

l
+30·831439 cos

4Px
l

−10·773999 cos
6Px

l
.

For the second mode,

fb2 (x)=0·319588501−2
x
l1−4·864362 sin

2P

l
x+3·9830453 sin

4Px
l

+sin
6Px

l
.

The pseudo-functions also furnish nodes that coincide with those of the B–E
solutions.

12.2.  – 

From Felgar [9] we obtain the pseudo-eigenfunctions for the cantilever beam,

fam (x)= (ch bm x−cos bm x)− am (sh bm x−sin bm x),
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together with the numerical values of the eigenvalues. Zero slope and deflection at x=0
are satisfied. Zero traction values at x= l are satisfied by f 0am (l)= f 1am (l)=0.
Pseudo-eigenfunctions for b(x) are as follows for the first three modes:

fb1 (x)=−1·25+cos
Px
l

+0·25 cos
2Px

l
,

fb2 (x)=1·5056291+cos
Px
l

−1·6577433 cos
2Px

l
−0·8478859 cos

3Px
l

.

fb3 (x)=−1·2356298+cos
Px
l

−0·728263 cos
2Px

l
+0·4603693 cos

3Px
l

+0·503352 cos
4Px

l
,

which satisfy f 'bm (l)= f 0bm (l)= f 1bm (l)=0 and furnish the required number and location of
nodes.

The same procedure for determining the natural frequencies is identical with that
outlined in section 10 for the end supported beams, with the values a11, a12, a21 and a22

determined from

a11 =g
l

0

[EIfam f IV
am + rIp2

m fam f 0am −Arp2
m f 2

m ] dx,

a12 =R20g
l

0 $Arp2
m fam fbm −

r

6
Ip2

m fam f 0bm −
r

6
Ifam f IV

bm % dx1,

a21 =g
l

0

[EIf IV
am fbm + rIp2

m f 0am fbm −6Arp2
m fam fbm ] dx,

a22 =R20g
l

0

[− 5
144 EIf IV

bm fbmm −( 5
144 rIp2

m − 5
8 AG)fbm f 0bm +Arp2

m f 2
bm ] dx1.

Numerical values for the frequencies are given in Tables A.4 and A.5 of Appendix A.
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APPENDIX A: TABLES

T A.1

Eigenvalues for a fixed–fixed B–E model beam

m=1 m=2 m=3

fml 12·302617 46·050117 98·838405
(bl

m )4 500·56388 3803·5369 14617·624

T A.2

Values of pl/V and p/p0 for a simply supported beam; p0 = (mP)2(r/l)(V/l)

mr/l l/Dm pl/mPV p/p0 pl/Vm

0·00625 40 0·01959 0·9978 0·06154
0·0125 20 0·03918 0·9978 0·12309
0·025 10 0·07760 0·9880 0·23479
0·05 5 0·15004 0·9552 0·47136
0·075 3·33 0·21400 0·9083 0·67230
0·1 2·5 0·26847 0·8546 0·84342

T A.3

Values for pl/V and p/p0 for a fixed–fixed beam; p0 = (Kl)2(r/l)(V/l), where Kl are the
classical values [10] (4·370, 7·853, 10·996)

First mode Second mode Third mode
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

r/l l/D pl/V p/p0 pl/V p/p0 pl/V p/p0

0·00625 40 0·1379 0·9863 0·3749 0·9777 0·7212 0·9542
0·0125 20 0·2663 0·9523 0·7055 0·9152 1·3184 0·8723
0·025 10 0·4849 0·8671 1·2318 0·7990 2·2200 0·7345
0·05 5 0·8163 0·7298 1·9931 0·6464 3·4325 0·5678
0·075 3·33 1·0728 0·6394 2·5732 0·5563 4·2650 0·4764
0·1 2·5 1·2870 0·5731 3·0365 0·5202 4·6203 0·3821
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T A.4

Values for pl/V and p/p0 for a free–free beam; p0 = (Kl)2(r/l)(V/l), where Kl are the classical
values [10] (4·370, 7·853, 10·996)

First mode Second mode Third mode
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

r/l l/D pl/V p/p0 pl/V p/p0 pl/V p/p0

0·00625 40 0·13966 0·9988 0·3828 0·9931 0·73511 0·9728
0·0125 20 0·27853 0·9960 0·75063 0·9737 1·3902 0·9198
0·025 10 0·5536 0·9843 0·4089 0·9138 2·4557 0·8124
0·05 5 1·06878 0·9554 2·4134 0·7827 4·0624 0·6720
0·075 3·33 1·53989 0·9177 3·1369 0·6782 5·3441 0·5893
0·1 2·5 1·98276 0·8862 3·6962 0·6092 6·4312 0·5319

T A.5

Values for pl/V and p/p0 for a fixed–free beam; p0 = (Kl)2(r/l)(V/l), where Kl are the classical
values (1·875, 4·694, 7·855)

First mode Second mode Third mode
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

r/l l/D pl/V p/p0 pl/V p/p0 pl/V p/p0

0·00625 40 0·02197 0·9999 0·1356 0·9848 0·3778 0·9785
0·0125 20 0·04366 0·9934 0·2632 0·9557 0·71426 0·9261
0·025 10 0·0881 0·9774 0·4835 0·8797 1·2476 0·8088
0·050 5 0·1763 0·9471 0·8162 0·7409 1·9719 0·6392
0·075 3·33 0·2570 0·8967 1·0769 0·6517 2·4875 0·5376
0·1 2·5 0·3382 0·8700 1·3109 0·5949 2·9043 0·4707


