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1. 

Random vibration theory of discrete and continuous systems in a linear setting is well
established. The non-linear random vibration problem still poses a challenge, since there
is no universal analytical method available to solve them exactly. Under these
circumstances, the role of approximate, analytical or numerical methods becomes central.
The method of stochastic linearization is a widely popular technique amongst
investigators. The reason for such a popularity likely lies in the fact that the method was
suggested, apparently independently, by Booton [1] in 1953, in the United States; and by
Kazakov [2], in 1954, in the former Soviet Union, and had a chance of widespread use
both in the West and in the East. By our estimate, by now there are over 400 papers
devoted to the stochastic linearization technique, with attendant numerous reviews (for the
most recent ones the reader may consult the papers by Socha and Soong [3], Elishakoff
and Zhang [4], Elishakoff [5] and Prandlwarter and Schuëller [6]), and apparently a single
monograph, by Roberts and Spanos [7], whose central theme is the stochastic linearization
technique.

This study revisits the pioneering contribution by Booton [1] and demonstrates that the
paper contains a subtle error. This error is corrected and, hopefully, error-free results are
reported.

2. ’  

In order to maintain maximum closeness to the analysis by Booton [1] his notation will
be adopted. One first considers a memoryless non-linear system. In such a system an output
xAR depends upon the instantaneous value of the input xAI :

xAR = f(xAI ). (1)

One is interested in finding probabilistic characteristics of the response xAR provided that
those of the input xAI are known. Booton suggested linearizing the relationship (1), by
replacing it by a linear expression Keq xAI . In order to determine the value of the coefficient
Keq , Booton demanded that the mean-square difference

M=E[XAR −Keq XAI ]2 (2)

† Dedicated to the memory of Professor Dr. Ir Warner Tjrdus Koifer.
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must attain a minimal value. In equation (2), E[ ] means mathematical expectation. The
value of Keq that minimizes equation (2) was referred to by Booton as equivalent gain. Since

M=E[X2
AR ]−2Keq E[XAI XAR ]+K2

eq E[X2
AI ], (3)

the minimization requirement

dM/dKeq =0, (4)

taking into account that xAR = f(xAI ), results in

Keq =E[XAI XAR ]/E[X2
AI ]=E[XAI f(XAI )]/E[X2

AI ]. (5)

With p(x) denoting the probability density of the input,

Keq =g
a

−a

xf(x)p(x) dx>g
a

−a

x2p(x) dx. (6)

Booton [1] considered a specific case of a non-linear ‘‘sharp’’ limiter. If fmax denotes the
limiting level and xLI denotes the input, the non-linear function f was specified as

f(xLI )= 8−fmax

xLI

fmax

for
for
for

xLI Q−fmax

−fmaxQxLI Q fmax

fmax Q xLI
. (7)

For the Gaussian probability density for xLI ,

p(xLI )=
1

sLI z2p
exp $− x2

LI

2s2
LI%, (8)

with sLI denoting the standard deviation, the equivalent gain is obtained as

Keq =E[xLI f(xLI )/E[x2
LI ]=C0 fmax

sLI z21 (9)

where C(z) is an error function

C(z)=
2

zp g
z

0

e−t2 dt. (10)

Equations (1)–(10) are recapitulated from Booton’s paper for the convenience of the
reader. Booton made a subtle error, however, when he extended the stochastic linearization
analysis to a system with memory.

3. ’ 

A simple non-linear dynamic system (feedback control system) is considered, governed
by the equation

dx/dt+ kf(x)= k dz/dt. (11)
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In equation (11), k is a positive coefficient, and z(t) is a stationary Gaussian random
excitation with spectral density, for an assigned value of the constant F0, given by

Fz =F0 = (iv)2/v2
I +2zI iv/vI +1=−2. (12)

Booton utilized the same non-linear function f(x) as given by equation (7). He replaced
the non-linear system by a linear one

dx/dt+ kKeq x= k dz/dt, (13)

where the value of equivalent gain Keq in equation (13) was postulated as one given by
equation (9). However, when deriving equation (9), the input density with its parameter
sLI was known. Here, the probability density of x, which serves as an input to the non-linear
transformation defined as y= f(x), is unknown at this stage. Rather, the standard
deviation sx of the effective system is evaluated on the basis of the response of the entire
linear system. Let Keq therefore be left as an unknown in equation (13) and evaluate the
mean square value of the response x:

s2
x =g

a

−a

Fx (v) dv=g
a

−a b kiv
iv+ kKeqb

2

Fz (v) dv, (14)

where Fx (v) is the spectral density of the response x. Now one wants to find Keq from
the criterion postulated by Booton, i.e., through minimization of mean-square difference
between the non-linear restoring force and its linear counterpart:

E[( f(x)−Keq x)2]=min. (15)

This is achieved by requiring that the derivative of the left side of equation (15) vanishes:

(d/dKeq )E[( f(x)−Keq x)2]=0 (16)

or

(d/dKeq ){E[ f 2(x)]−2Keq E[xf(x)]+K2
eq E[x2]}=0. (17)

Since in the new circumstances the probabilistic characteristics E[ f 2(x)], E[xf(x)], and
E [x2 ] depend on Keq , the result of the differentiation should reflect this fact. Therefore,
equation (17) is equivalent to

dE[ f 2(x)]
dKeq

−2Keq
dE[xf(x)]

dKeq
+K2

eq
dE[x2]
dKeq

−2E[xf(x)]+2Keq E[x2]=0 (18)

As one has seen, s2
x depends upon Keq . To stress this dependence, one denotes the

mean-square value as s2
x (Keq ). Analogously, the probabilistic characteristics of f 2(x), xf(x)

depend upon Keq . Therefore, in the correct setting, all terms in equation (18) are
non-vanishing.

4. ’    

If the first three terms are neglected, the Booton’s equation for the equivalent gain,
namely, equation (5), that he also used for the system with memory is obtained. For the
dynamic system with memory governed by equation (11), the standard deviation of the
response, appearing in equation (9), has to be evaluated on the basis of equation (14). It
yields the following expression for the mean square value of the response:

E[x2]= s2
x (Keq )=

k2I2

[1+2zI kKeq /vI +(kKeq /vI )2]
, (19)
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where I is the intensity of the input of the system, and is equal to

I2 =g
a

−a

Fz (v) dv. (20)

Therefore, Booton’s results are obtained by numerical solution of equation (9) in
conjunction with equation (19).

Generally, however, the derivatives in the first three terms in equation (18) do not vanish
and therefore, are not negligible. The derivative of mean square value of the response
(equation 19) reads

dE[x2]/dKeq =−2(s4
x /k 2I 2)0zI k

vI
+

k2Keq

v2
I 1. (21)

The mean square value of the force provided by the ‘‘sharp’’ limiter defined by equation
(7), taking into account equations (8)–(10) is

E[f 2(x)]=2$g
fmax

0

x2p(x) dx+ f 2
max g

a

fmax

p(x) dx%
= s2

x C0 fmax

sx z21−
z2

zp
sx fmax exp $−f 2

max

2s2
x%+ f 2

max $1−C0 fmax

sx z21%. (22)

Therefore, one gets

dE[f 2(x)]
dKeq

=
2s4

x

k2I2 0zI k
vI

+
k2Keq

v2
I 16X2

p

fmax

sx 01−
f 2

max

s2
x 1 exp 0−f 2

max

2s2
x1−17. (23)

Moreover, in perfect analogy with equation (9),

E[xf(x)]= s2
x C0 fmax

sx z21. (24)

The derivative of equation (24), appearing in equation (16), reads

dE[xf(x)]
dKeq

=
s4

x

k2I2 0zI k
vI

+
k2Keq

v2
I 16−2C0 fmax

sx z21+X2
p

fmax

sx
exp $−f 2

max

2s2
x%7. (25)

Finally, the equation for the correct value of the equivalent gain Keq is obtained by
substituting of equations (21)–(25) into equation (17):

0zI k
vI

+
k2Keq

v2
I 16sx

kI WX2
p

fmax

kI
exp $−f 2

max

2s2
x%01−

f 2
max

2s2
x1−

sx

kIw−2z2Keq
sx

kI $z2
sx

kI
C

×0 fmax

sx zp1+
1

zp

fmax

kI
exp $−f 2

max

kI %−
2K2

eq s2
x

k2I2 %7−C0f 2
max

sx 1+2Keq =0. (26)

The results descending from numerical solution of equation (9) (Booton’s solution) and
equation (26) (the one suggested by the authors) are discussed in the next section.
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5.  

In Figure 1 the value of the mean square difference between the force of the sharp limiter
and its equivalent counterpart, normalized with respect to (IvI )2, versus the gain of the
equivalent linear system Keq is depicted for z=0·7, the normalized limiter level
fmax /(vII )=0·6 and k/vI fixed at the unity. The results stemming from Booton solution
(equation (9)) and from equation (26) are indicated by stars. It can be recognized that the
Booton technique does not lead to a minimization of the mean square difference, while
equation (26) allows this aim to be attained, as expected.

In Figures 2(a–c) the curves of the normalized mean square force difference versus the
normalized coefficient k/vI are compared for equivalent gain obtained via the Booton
solution (solid line) or present equation (26) (broken line). The values of the normalized
limiter level fmax /(vI I) are assumed equal to 0·2 or 0·4 (Figure 2(a)), equal 0·6 (Figure 2(b))
or equal to 0·8 or 1 (Figure 2(c)), respectively. Figure 2(a) shows that for small values of
fmax /(vI I) (0·2 and 0·4) the two procedures result in almost the same value of the mean
square force difference; the curves relating to the Booton solution and the one stemming
from equation (26) are superimposed. When fmax /(vI I)=0·6 (Figure 2(b)), a slight
difference between the two curves can be recognized. As expected, equation (26) leads to
values of mean square force difference that are smaller than the counterpart obtained by
Booton, for all the values of the coefficient k. This behavior is confirmed by the curves
obtained for fmax /(vI I)=0·8 and 1 (Figure 2(c)). The greater is the influence of the sharp
limiter on the response x, i.e., the greater fmax /(vI I) and k/vI are, the greater is the gap
between the mean square force difference stemming from Booton’s solution and the
equation (26) solution.

Figures 3(a–c) depict the normalized standard deviation value sx /(kI) of the response
of Booton’s dynamic system defined as [2]

sx /(kI)= [1+2zI Keq k/vI +(kKeq /vI )2]−1/2 (27)

versus the normalized coefficient k/vI with the normalized limiter level fmax /(vI I) as a
parameter. The results of stochastic linearization technique, developed according to
Booton’s formulation (broken line – – – –) and by equation (26) (dotted line · · · · ·) are
compared with the responses of the original non-linear system (solid line) obtained by the

Figure 1. Variation of normalized mean-square force difference versus the gain of the equivalent linear system;
k/vI =1; fmax /(vI I)=0·6.
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Figure 2. Normalized mean-square force difference for the equivalent gain given by Booton’s linearization
(——); proposed linearization (· · ·). (a) fmax /(vI I)=0·2 and 0·4; (b) 0·6, (c) 0·8 and 1.

Monte Carlo simulation. The latter is performed by considering 1000 samples of the input
process characterized by the power spectral density given in equation (12). The generation
of the samples is conducted by harmonic wave superposition, namely, by the procedure
proposed by Shinozuka and Jan in reference [8]. By utilization of the ergodicity property
of the response, 500 values of the stationary phase of the response of each sample are
considered. Therefore, each point of the curves in the figure are obtaining by averaging
of 500 000 values. The step-by-step integration of the non-linear equation (equation (11))
is carried out by the Newmark numerical integration method [9].

In Figure 3(a) values of the normalized limiter level fmax /(vI I) equal to 0·2 or 0·4 are
considered. The curves show that stochastic linearization leads to an underestimation of
the response of the original non-linear system. Moreover, the correct minimization of the
mean square force difference leads to the values of the response parameter that are below
the ones given by the Booton technique, and therefore farther from the exact solution, even
if the mean square force difference is smaller.

Such an interesting behaviour is confirmed by the curves portrayed in Figure 3(b) and
Figure 3(c), where the value of the normalized limit level, 0·6, 0·8, or 1, are considered,
respectively. However, when the normalized limit level approaches infinity (Figure 3(c)),
the behavior of the sharp limiter tends to that of the linear elastic system. Therefore, both
Booton’s procedure and equation (26), leading to k=1, allow the response of the original
(linear) system to be obtained.
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Remark: A natural question arises: does Booton’s erroneous linearization procedure
yield results that are closer to correct solution than those obtained by correct linearization
for all mechanical systems? The desire to answer this question led the authors to consider
another simple dynamic system, namely, the following half-degree-of-freedom system,
governed by the equation [4, 10]

dx/dt+ o sign (x)=Z(t), (28)

where o is a positive constant and Z(t) is a Gaussian white noise with zero mean and
intensity I0. The exact solution for the probability density function of the response, given
by Caughey and Dienes [11], and by Bolotin [10] reads

px (x)=
o

I0
exp 0−2o =x =

I0 1. (29)

Therefore, the exact value of mean square response is

E[x2]=g
a

−a

x2px (x) dx=
I2

0

2o2. (30)

Figure 3. Comparison of normalized standard deviation of the response for original non-linear and linearized
systems: – – – – Booton; · · · · equation (26); —w— Monte Carlo. (a) fmax /(vI I)=0·2 and 0·4, (b) 0·6 and 0·8,
(c) 1 and a.



   690

According to linearization technique, the non-linear system is replaced by the equivalent
linear one:

dx/dt+Keq x=Z(t). (31)

The coefficient Keq is evaluated requiring that

(d/dKeq ) E[(o sign (x)−Keq x)2]=0. (32)

According to the procedure proposed by Booton (see equation (6)), i.e., neglecting the
dependence of statistical moment of the response upon Keq , equation (32) is reduced to

Keq = oE[=x =]/E[x2]. (33)

The mean square value of the response, for the system governed by equation (31) reads

E[x2]=
1
2p g

a

−a

I0

=iv+Keq =2 dv=
I0

2Keq
. (34)

Taking into account that the input is Gaussian and the replacing system is linear, the
response is Gaussian, too. Therefore the numerator of equation (33) becomes

oE[=x =]= o

z2pE[x2] g
a

−a

=x = exp 0 −x2

2E[x2]1 dx= oX I0

Keq p
. (35)

By substitution of equations (34) and (35) in equation (33), one gets

Keq =4o2/(pI0) (36)

and the attendant value of mean square displacement is

E[x2]= pI2
0 /(8o2). (37)

The procedure suggested in this study requires that equations (34) and (35) are substituted
in equation (32), before that the derivatives are evaluated. Thus, one gets

(d/dKeq ) [o2 + I0 Keq /2−2ozI0 Keq /p]=0, (38)

which leads to the same value of Keq obtained in equation (36). This implies that sometimes
the erroneous realization of the linearization technique may result in the correct answer.

6. 

The application of the stochastic linearization technique to the specific problem analyzed
by Booton is re-examined. It is shown that Booton has made a subtle error in the procedure
for minimization of the mean square force difference between the sharp limiter and its
linear equivalent counterpart. When he extended the procedure derived for a simple
memoryless sharp limiter to a dynamic control system with memory he erroneously
neglected the dependence of the statistical moments of the response upon the variable with
respect to which minimization was conducted, namely, the gain of the equivalent linear
system.

A new procedure, correcting the above error, is elucidated. It allows one to obtain the
true minimal value of the mean square force difference. It must be stressed that the new
procedure leads to results that are farther from the response of the original non-linear
system than those obtained by Booton. This suggests that the stochastic linearization
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technique, based on minimization of mean square force difference of the non-linear system
and its linear counterpart, has less accuracy than it has been previously stated in the
literature.
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