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The implications of spatially varying structural properties for flexural vibrations have
been addressed for one-dimensional waveguides. A solution of the governing differential
equation, based on Bessel functions, enables closed form expressions to be obtained for the
point and transfer dynamic characteristics of finite length, tapered beams. Also, under the
assumption of pure bending, a closed form expression has been derived for the semi-infinite
wedge, which is valid under the same conditions as the finite case solution and which can
be simply extended to encompass spatial variations obeying non-integer power laws. The
influence of tapering on the energy flow is analysed for the flexural wave counterpart to
the acoustic horn, constituted by a finite length taper attached to a semi-infinite, uniform
beam. It is found that the main distinction to the uniform case is a comparatively
broad-banded transition from flexural vibrations governed by the properties of the deep
part of the system to vibrations governed by those of the slender part. The transition region
is featured by a stiffness controlled initial part, followed by a resonant one. It is also found
that the transition in itself involves a global resonance on which is superimposed the
constructive and destructive interferences due to reflections from the discontinuity between
the two structural members. On the basis of the complete expressions for the configurations
studied, an estimation procedure for the mobility is proposed, which is experimentally
confirmed to describe correctly the parameter influence.
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1. INTRODUCTION

Over time, with an increased emphasis on lightweight and cost efficient designs, spatially
varying material properties or geometry have become important aspects for many
engineering applications. This trend has particular implications for the structural acoustic
performance, which often is directly governed by the dynamic characteristics of a
wave-carrying structure and where, for example, mass reductions imply enhanced
vibrations.

Owing to the comparatively strong coupling between the bending wave motion and an
ambient fluid, this wave type is especially significant for the structural acoustic
performance. Accordingly, much attention has been paid the analysis of the flexural
characteristics of structural elements, and theoretical frameworks for sound and vibration
transmission and propagation have been developed, see e.g. references [1–3]. Rigorous
analysis and calculation of the flexural characteristics, conventionally interpreted in terms
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of mobilities, is usually extremely difficult and numerical methods such as FE techniques
must be employed. In turn, this means that detailed specifications are required of the
structural system to provide the necessary input data, something which is hard to fulfil
at an early stage of design. As a consequence, the computational results will be uncertain
from a physical point of view [4]. Moreover, the computational effort will be overwhelming
for most cases if, as is generally required, the audible frequency range is to be comprised.

At a planning or design stage, however, the numerical precision is frequently of
subordinate importance. It is far more important to be able to assess the adequacy, in the
physical sense, of design and noise control strategies to reach the aims specified. A
physically correct description of the structural acoustic behaviour of built-up systems can
often be obtained by using wave theoretical models involving elementary systems [5–7],
which are combined in such a way that the governing physical phenomena of the real
system are represented [8, 9]. At present, such models offer the analyst and designer
versatile tools as long as structural elements with constant parameters can be assumed.
For optimization purposes, however, spatially varying structural parameters are attractive,
but the structural acoustic significance and influence of such variations are insufficiently
clarified.

The flexural vibration of beams and plates with varying cross-sections has received
substantial attention from the work of Kirchhoff and onwards (see e.g. references [10–13])
but the structural acoustic aspects have not been considered correspondingly. On the basis
of a wave theoretical consideration for structures having spatially varying parameters,
some of the implications are exemplified herein for the practically important case of a
linearly tapered beam. The implications are viewed in terms of mobilities owing to their
close relation to energy flow. From the theoretical and numerical analysis, also, an
estimation procedure is proposed for this structural element, which conforms to those
presented in reference [6].

2. THEORY

2.1.    

According to Euler–Bernoulli beam theory, the equation of motion of a beam in bending
is

12

1x2 0B 12V
1x21+m'

12V
1t2 =0, (1)

where V is the transverse velocity, B is the bending stiffness and m' the mass per unit of
length (a list of symbols and notations is given in Appendix V). By substituting into it a
solution with harmonic time dependence,

V(x, t)= v(x) eivt, (2)

the differential equation is transformed into (henceforth the eivt term will be suppressed
for brevity),

d2

dx2 0B d2v
dx21−m'v2v=0 (3)

If B and m' are variable along the beam, exact solutions exist provided that B and m' can
be expressed by suitable functions of x. An exhaustive overview of exact solutions of
equation (3) has been presented by Cranch and Adler [14]. Here focus is put on solutions
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in terms of Bessel functions, as they allow for a large assortment of shape and material
property variations.

It can be shown [14] that equation (3) has exact solutions in terms of Bessel functions
if

m'= t1 xn B= t2 xn+2, (4a,b)

where t1 and t2 are arbitrary constants. If the conditions in equations (4) are fulfilled, the
solution of equation (3) may be expressed as

v(x)= x−n/2(c1 Jn (2kzx)+ c2 J−n (2kzx)+ c3 In (2kzx)+ c4 I−n (2kzx)) (5a)

if n is not an integer, whereas for integer values of n the solution is,

v(x)= x−n/2(c1 Jn (2kzx)+ c2 Yn (2kzx)+ c3 In (2kzx)+ c4 Kn (2kzx) (5b)

with, for both cases, k4 = t1 v2/t2. Beams that comply with the conditions given by
equations (4) all display a velocity field according to equations (5).

The requirements expressed by equations (4) may be met in many different ways; for
instance, by keeping the material properties constant and varying the cross section along
the beam. For rectangular cross sections this results in beams which must in any case have
a linear depth taper, but where the width variation may take on any power of x. Other
possibilities are to fix the beam shape and vary the material properties along the beam or
else to vary both material properties and cross-section dimensions. In the case of a beam
with a rectangular cross-section and a linear depth variation but a non-homogeneous beam
material, it may easily be verified that the density, r, and Young’s modulus, E, must vary
with the same power of x, e.g., extruded material. Bessel function solutions similar to those
of equation (5) can also be found for quadratic depth and any power of width variation
and for cubic depth and any power of width variation [14].

In the following, the focus is on beams with constant width and a linear depth taper,
as they are prominent from a practical point of view. Furthermore, they are expected to
exhibit all the basic features related to bending vibrations of variable section beams.
Although not treated here, the extension of the theory to beams with linear depth taper,
and any (integer) power width taper (e.g., pyramids) may be achieved in an analogous way.

2.2.    

Consider a finite beam with a rectangular cross-section of constant width b and a depth
that varies linearly between h0 at x=0 and h1 at x=L, see Figure 1. It is further assumed
that the beam is made of an homogeneous linear elastic material.

Figure 1. A finite tapered beam with the adopted notation.
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Figure 2. A semi-infinite prismatic beam with a tapered tip.

The depth X of the beam is a function of the longitudinal co-ordinate x and may be
expressed as,

X(x)= h0 + ax, (6a)

with

a=(h1 − h0)/L. (6b)

The mass per unit of length and the bending stiffness are consequently given by

m'= rbX and B=EI=EbX3/12, (7a, b)

respectively. By using equation (6), equation (3) may be rewritten as

d2

dX2 0B d2v
dX21−(m'/a4)v2v=0. (8)

The beam depth has now become the independent variable. According to the previous
section, equation (8) has a general solution equivalent to equation (5b): that is,

v(X)= (1/zX) (c1 J1 (2kzX)+ c2 Y1 (2kzX)+ c3 I1 (2kzX)+ c4 K1 (2kzX)), (9a)

with

k4 =12rv2/Ea4. (9b)

The four unknown (frequency dependent) coefficients c1, c2, c3 and c4 can be determined
from the four boundary conditions at the beam ends. Closed form expressions can
therefore be derived for every single element of the finite tapered beam impedance matrix.
This impedance matrix can be formally written as

F0 ZFv
00 ZFw

00 ZFv
01 ZFw

01 v0

M0 ZMv
00 ZMw

00 ZMv
01 ZMw

01 w0g
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ZFv

10 ZFw
10 ZFv

11 ZFw
11 v1

, (10)

M1 ZMv
10 ZMw

10 ZMv
11 ZMw

11 w1

in which the subscripts refer to the junctions, whereas the superscripts refer to the
components of excitation and motion respectively. The elements of the impedance matrix
(symmetric, because of reciprocity), obtained after lengthy manipulations, are given in
Appendix I. For a very small taper angle, a, the impedance elements of Appendix I
approximate, as expected, the so-called Kolousek beam functions [15]. This is shown in
Appendix II for the driving point impedance ZEv

00 .

2.3.  -     :    

The semi-infinite beam with a uniform cross-section, equipped with a tapered tip, is
shown in Figure 2. The cross-sections at the beam–tip interface are identical. This
configuration represents the bending wave equivalent of the horn, because of the gradual
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transition between the tip impedance and that of the semi-infinite beam. Henceforth this
system will be referred to as the ‘‘bending wave horn’’. The impedance matrix describing
the bending wave horn is obtained by adding

0 0 0 0

0 0 0 0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

Za =
0 0

Ba k3
a

v
(1+ i)

Ba k2
a

v

(11)

0 0
Ba k2

a

v

Ba ka

v
(1− i)

to the impedance matrix in equation (10), where ka and Ba are the bending wavenumber
and the bending stiffness, respectively, of the prismatic semi-infinite beam. Note that the
characteristic beam impedances in the matrix of equation (11) consist of the classical
Euler–Bernoulli expressions, which neither account for shear deformation nor rotatory
inertia, implying that the theory developed herein applies only to slender beams. The
driving point mobility of the bending wave horn (at the free end) is obtained from a matrix
inversion. The numerical results are shown in Figure 3, which includes two normalized
driving point mobilities (magnitudes), as functions of the Helmholtz number based on the
wavenumber ka of the uniform member and the tapered tip length L. The normalization
is introduced to obtain results that are independent of both material properties and beam

Figure 3. The normalized magnitude (top) and phase (bottom) of force mobility for two bending wave horns
with normalized tip heights of h0 /L=10−2 (— —) and h0 /L=10−3 (– · –), with h1 /L=10−1. The normalized
force mobilities of uniform prismatic, semi-infinite beams with normalized heights of h/L=10−1 (——),
h/L=10−2 (-----) and h/L=10−3 ( · · · · · · ).
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Figure 4. The ‘‘inverted’’ bending wave horn.

width. The two curves refer to bending wave horns which differ only by their depth at the
free end, h0 /L=10−2 and h0 /L=10−3 respectively, whereas the depth of the semi-infinite
member remains unchanged, at h1 /L=10−1 in both cases. Also included, for reference,
are the corresponding mobilities for uniform, semi-infinite prismatic beams.

At low Helmholtz numbers, the bending wave horn driving point mobility coincides with
that of the semi-infinite beam as the bending wavelength abundantly exceeds the tip length.
At approximately unit Helmholtz number, the curves start to deviate from the infinite
beam behaviour, and at high Helmholtz numbers they asymptotically approach the
mobilities of semi-infinite beams of depths corresponding to those at their respective free
ends. Almost no reflection occurs at the discontinuity, resulting in a very efficient energy
transfer from the tapered tip into the semi-infinite member. The modes, the first of which
one can be observed in the range of Helmholtz numbers between 2 and 3, consequently
appear highly damped, rendering only a slight and smooth ripple. Further analysis shows
that the reflection coefficient at the discontinuity is independent of the tapering angle and
is a function solely dependent on the ratio h0 /h1.

For a system that can be termed the ‘‘inverted’’ horn, as depicted in Figure 4, the point
force mobility has a somewhat different signature. In Figure 5 is shown the normalized
point force mobility for the end position. In this case as well, the normalization is based
on the dynamic characteristics of the semi-infinite member. It is observed that, for this
configuration, the mobility is essentially mass-governed for small Helmholtz numbers,
again based on the height of the semi-infinite part. At Helmholtz numbers just below 0·1,
the system exhibits a transition to a second, almost purely mass controlled region. This
region prevails up to the point at which roughly half a wavelength for a uniform beam
of height h1 corresponds to the length of the taper and the reflections from the discontinuity
begin to interfere with the outgoing waves. The first mass-controlled region is associated
with a translational motion of a beam with a tip mass: i.e., the inverted horn can be seen
lumped as a mass. In the second, the rotational inertia of the horn, supported by the
rotational stiffness of the semi-infinite beam member, realizes the mass character. In the
transition from translation to rotation, the point and point–cross mobilities of the beam
member are all involved.

2.4.  - :    

The semi-infinite wedge discussed in this section is made of a homogeneous isotropic
linear elastic material and has a rectangular cross-section with constant width. The depth
of the cross section is h0 at x=0 and it increases in proportion to the longitudinal
co-ordinate, as illustrated in Figure 6.

If the beam is excited by a transverse force at the free end, a bending wave will propagate
along the beam towards infinity. Since there are no discontinuities, no reflections will
occur. While the bending wave propagates along the beam, the phase speed and
consequently the wavelength increase proportionally to the square root of the
cross-sectional depth. Thus, the greater the distance from the excitation position is, the
larger is the ratio of beam depth to wavelength. At large distances from the free end
therefore, the bending wave will gradually convert to a shear wave with a constant,
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Figure 5. The normalized magnitude (top) and phase (bottom) of force mobility for an ‘‘inverted’’ bending wave
horn with normalized height of h1 /L=10−1 (——) at the excited end and h0 /L=10−3. The normalized force
mobilities of uniform prismatic, semi-infinite beam with normalized height of h/L=10−3 ( · · · · · ).

cross-section independent, phase speed; see, e.g., reference [16]. The amplitude of the wave
motion, on the other hand, decreases continuously as the wave advances due to the
progressively increasing mass and bending stiffness. In the theoretical analysis presented
herein, however, pure bending waves are assumed and shear deformation effects are
omitted. The phase speed of the pure bending waves is thus theoretically allowed to
increase without bound as the wave propagates along the beam.

In order to find a mathematical description for the pure bending wave field in a
semi-infinite wedge the general solution, equation (9), can be rewritten using the
relationships between Bessel and Hankel functions:

J1 (2kzX)= 1
2 [H(1)

1 (2kzX)+H(2)
1 (2kzX)], (12a)

Y1 (2kzX)=−(i/2) [H(1)
1 (2kzX)−H(2)

1 (2kzX)]. (12b)

Figure 6. The semi-infinite wedge.
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With the time base chosen, the Hankel functions of the first and second kind represent
the spatial propagation functions, H(2)

1 being associated with the waves travelling in the
positive x-direction and H(1)

1 with waves travelling in the opposite direction. The modified
Bessel functions K1 and I1, moreover, represent fields with constant phase and can be
interpreted as near-field contributions which decrease exponentially in the positive and the
negative x-directions respectively. For the semi-infinite wedge, the backwards propagating
parts must be discarded under the postulate of no reflections from infinity and
consequently the following general solution may be assumed for the velocity field:

v(X)= "1/zX) (AH(2)
1 (2kzX)+BK1 (2kzX)). (13)

Substitution into equation (8) shows that such a field satisfies the general differential
equation for tapered beams. A and B are the unknown (frequency dependent) coefficients
to be determined from the boundary conditions at the free end. For the transversally
force-excited semi-infinite wedge, the remaining boundary conditions are,

M0 =0, F0 =F. (14)

From the theory of linear elasticity, compatibility yields

M=−
EI
iv

12v
1x2 =−

Eba2

12iv
X3 12v

1X2, F=−
1M
1x

=
Eba3

12iv
1

1X 0X3 12v
1X21. (15)

The unknown coefficients A and B in equation (13) can be formally written as

A=
i12vF
Eba3

2kzh0 K0 (2kzh0)+ (k2h0 +2)K1 (2kzh0)
D

,

B=
i12vF
Eba3

2kzh0 H(2)
0 (2kzh0)+ (k2h0 −2)H(2)

0 (2kzh0)
D

, (16)

where

D=4k2zh0 K1 (2kzh0)H(2)
1 (2kzh0)

+4k3h0 (K0 (2kzh0)H(2)
1 (2kzh0)−K1 (2kzh0)H(2)

0 (2kzh0))

−4k4h0 zh0 K0 (2kzh0)H(2)
0 (2kzh0)

−k5h2
0 (K0 (2kzh0)H(2)

1 (2kzh0)+K1 (2kzh0)H(2)
0 (2kzh0)). (17)

Together, equations (13), (16) and (17) constitute the closed form expression for the point
and transfer mobilities of a semi-infinite wedge subject to transverse force excitation at the
free end. In Figure 7 is presented the numerically evaluated normalized point mobility as
a function of Helmholtz number kzh0.

For small Helmholtz numbers, the mobility is dominated by the imaginary part, and
it is observed that this is stiffness controlled. This can be explained by the fact that for
sufficiently small Helmholtz numbers the depth at the free end becomes very small in
comparison with the beam depth at, for instance, a quarter wavelength from the end,
establishing a cantilever type of behaviour of the tip.

The point mobility magnitude exhibits a broad maximum centred at kzh0 1 1·184 (the
estimate is obtained from close inspection of the imaginary part) where the imaginary part



     103

Figure 7. The normalized real and imaginary parts of force mobility at the tip of a semi-infinite wedge. The
normalized real and imaginary parts of force mobility of a uniform, semi-infinite prismatic beam of height equal
to that of the tip of the semi-infinite wedge ( · · · · · ).

changes sign. This means that the system is resonant at

f1 (1·4/2p) (a2/h0)zE/12r, (18a)
reaching a maximum of

Yres 1 (1/2bah0)z12/Er. (18b)

At high Helmholtz numbers the mobility of the semi-infinite wedge asymptotically
approaches the mass-governed mobility of a semi-infinite prismatic beam with depth h0,
i.e., the depth at the free end.

In Figure 8, the normalized (characteristic) mobility of the semi-infinite wedge is
compared with the mobilities of three bending wave horns, again as functions of
the Helmholtz number kzh0. The curves for the bending wave horns turn out to
be dependent only on the ratio h1 /h0 and not on the taper angle or tip length. The
importance of the derived characteristic mobility lies in the fact that it predicts
the global dynamic behaviour of any finite tapered beam in the modal frequency
range by providing the mean line through the resonance maxima and the
anti-resonance minima. This feature is confirmed in Figure 8 where, above the first
tip mode, the characteristic mobility approximates the bending wave horn mobility
curves.

In order to gain more insight into the rather involved expression for the characteristic,
mobility, it is useful to study the asymptotic behaviour for small and large Helmholtz
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numbers. Upon expanding the Bessel functions for small arguments, the asymptotic
transfer mobility can be found to be given by

YvF (X):X12
Er

k2

ba $p2−2i0ln (kzX)+ gE − 1
2 +

h0

4X1%. (19)

Specifically, for the point mobility at the end of the beam, one finds that

YvF:
1

bah0X12
Er

(kzh0)2$p2−2i0ln (kzh0 )+ gE − 1
41%. (19a)

Note that the real part of the mobility, and therefore the power fed into the beam by force
excitation, is independent of h0 at low Helmholtz numbers, whereas the imaginary part has
a logarithmic dependence. Reduction of the tip height, for a constant tapering angle, may
therefore result in arbitrarily high driving point mobilities while the power remains finite.
This may again be explained by the fact that at these low Helmholtz numbers the beam
depth ‘‘seen’’ by the propagating wave is much larger than the tip depth; the latter
consequently has no significance for the energy but governs the deformation.

The asymptotes for the real and imaginary parts are displayed versus Helmholtz number
in Figure 9 together with the numerically evaluated, normalized mobility. It is seen that
the expression in equation (19) acceptably depicts the behaviour for Helmholtz numbers
below 0·4, at which the real and imaginary parts also are about equal.

Figure 8. The normalized force mobility of three different bending wave horns: h1 /h0 =3 (——), h1 /h0=10
(----) and h1 /h0 =50 (– · –). The normalized force mobility of a semi-infinite wedge ( · · · · · ).
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Figure 9. A comparison of first order approximations and numerically evaluated results for the point force
mobility at the end of a semi-infinite wedge. ——, Real part; – –, imaginary part. Asymptotic behaviour for small
arguments; real ( · · · · · ) real and imaginary (-----) parts.

For the other extreme, i.e., when the argument becomes large as, for instance, at high
frequencies, the asymptotic behaviour of the transfer mobility is obtained as

YvF (X):X12
Er

1
ba

(1− i)
2kz4 (h0 X)3

(ei2k(zh0 −zX) + e2k(zh0 −zX))

=
(1− i)

2
4X 12
Er3

1
b 4z(h0 X)3

1
zv

(ei2k(zh0 −zX) + e2k(zh0 −zX). (20)

This result suggests that the mobility essentially decreases with distance from the tip with
a power 3/4 and that it involves an ‘‘equivalent’’ height equal to the geometric mean of
the beam heights at the excitation and response positions.

In Figure 10 is shown the variation in transfer mobility magnitude with non-dimensional
distance; the positions here correspond to those used in the experimental work.

Specializing on the point force mobility at the end of the beam one finds that, as
expected, it approaches that of the corresponding semi-infinite beam of height equal to
that at the beam end i.e.,

YvF (x=0):(v/B(h0)k3
B(h0))(1− i) (20a)

Figure 10. The magnitude of the normalized transfer mobility for some values of X/h0 and a=0·08. ——,
X/h0 =1; · · · · ·, X/h0 =2·32; ----, X/h0 =3·64; – · – · –, X/h0 =4·96.
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Figure 11. The log–log diagram of the estimated magnitude and real part of the point force mobility at the
end of a tapered semi-infinite beam.

Expressions (18), (19) and (20) together with the recognized cantilever type behaviour (cf.
Appendix III) allow the development of an estimation procedure for the point mobility
of the bending wave horn by using five straight lines (on a log–log scale). The procedure
is detailed in Appendix IV and the resulting graph is presented in Figure 11. As is seen,
the signatures are almost the same for the magnitude and the real part although the
numerical values will differ.

In region B1, the mobility is fully governed by the semi-infinite beam member. For
region S, the magnitude is estimated from a cantilevered, tapered finite beam, while the
real part has a slightly steeper increase. For small enough depth ratios h1 /h0, this region
will vanish and the mobility follows the real-valued cross-mobility from moment to
translatory velocity of the semi-infinite beam member whereby the tapered part is
considered as a massless rigid lever. The mobility in the region denoted R is either set to
the real-valued maximum established at resonance for the accelerator in cases of large
depth ratios or remains constant at the cross-mobility level in cases of small ratios. In
region B2, finally, the mobility is that of a uniform beam with a height equal to that at
the excited end of the tapered part. Thus, physically acceptable approximations are
introduced for the transition region between deep and thin beam behaviour to circumvent
the evaluation of the extensive products of Bessel functions.

3. EXPERIMENTS

3.1.  

To examine the theoretical model established and assess the applicability of the
design procedure developed, three series of experiments have been undertaken on a
tapered, Perspex beam. In order to gain a clear picture of the interesting transition
region between the behaviour of the main beam and that of the corresponding semi-infinite
wedge, the 7·1 m long Perspex beam was tapered at both ends with different taper angles,
see Figure 12. The small slope of the neutral layer for these non-symmetric tapers is
neglected.

The beam was fabricated from four pieces which were glued and tapped together, with
the intent to establish a monolithic system. Initially, the material properties of the Perspex
used were estimated and the Young’s modulus revealed from axial pulse measurements was
found to be 5·9 GPa. The density was estimated to be 1200 kg/m3.
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Only bending motion in the plane of the beam length and height has been considered
although the cross-mobility to the out-of-plane, translatory response component was
assessed to warrant a negligible interference from coupling to torsional motion. For the
excitation, a small shaker was attached, via a force transducer, at the end of the beam on
the tapered edge. In order to minimize the mass between the force transducer and the
measurement object, the pin-screw of the force transducer was fastened directly to the
beam by means of wax. Careful adjustment was also undertaken to obtain an excitation
perpendicular to the main axis of the beam. The response was registered by means of a
miniature accelerometer, also attached with wax but on the opposite, flat edge. Subsequent
to conditioning, the excitation and response signals were fed to a multi-channel signal
analyzer.

The measurement range was divided into a lower and an upper range with an overlap
at about 800 Hz whereby a coherence larger than 0.95 could be achieved overall.
Accordingly, the results presented are composed of two sets of measured data joined at
the crossover frequency. In the mobility measurements, additional damping was
introduced by placing the beam on its side letting approximately two thirds of its length
rest on a felt-like carpet. The remaining part of the beam was supported by a few rubber
band cradles.

The first series of measurements comprised the point force mobility at the end of the
short taper and the second the corresponding quantity at the end of the long taper. In the
third series, attempts were made to verify the dependence on distance for the transfer
mobility at high frequencies.

3.2.  

In Figure 13 are shown the magnitude and phase of the point force mobility at the end
of the short taper. As is seen from the diagrams, the main beam fully governs the mobility
up to about 100 Hz above which there is a smooth transition towards a mobility initially
governed by that of the semi-infinite wedge and subsequently by that of a semi-infinite
beam with a beam height corresponding to that at the actual tip. By applying the
‘‘accelerator’’ resonance criterion, equation (18a), the maximum of the transition region
for the object considered is obtained at 507 Hz, which is close to that observed in the
measured results.

One may note that the phase, which according to the theoretical model should converge
to −p/4 in the upper range, actually exhibits a continuous decrease.

The behaviour of the mobility in the upper part of the frequency range considered and
the presumed convergence to the mobility of the semi-infinite wedge is more clearly
displayed in Figure 14, where the point force mobility at the end of the long taper is
presented. With this taper angle, the maximum of the transition region would be at 45 Hz
based on the ‘‘accelerator’’ resonance criterion, an effect which, however, is only weakly
indicated in the experimental results. Above the maximum (for this taper) the mobility
principally has the slope of that of a semi-infinite wedge in most of the experimental range.
In the uppermost part of the frequency range, the measured results starts to deviate from

Figure 12. A sketch showing the dimensions (in mm) of the tapered Perspex beam used in the experiments.
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Figure 13. The magnitude and phase of the point mobility of a tapered beam at the end of the short taper.
The calculated frequency for the maximum of the transition region and the phase alternation is indicated.

those of the model and an increased slope of the magnitude is indicated. The deviation
is evident from the phase curve where the tendency is towards that of a mass controlled
mobility for frequencies above 2 kHz. This is to be expected, since for very high frequencies
at which the wavelength becomes comparable with the height of the beam—in this case
the height of the main beam—Euler–Bernoulli theory is no longer applicable, but shear
deformation comes into play. A closer scrutiny of the real and imaginary parts shown in
Figures 15 and 16 for the two tapers, respectively, reveals the marked decrease of the real
part, while the imaginary slowly approaches that of the purely bending, semi-infinite beam.
This also explains the trend of the phase towards that of a mass.

It is seen that while the real part is consistently below the asymptote developed (i.e.,
the real part of the mobility of a semi-infinite beam of height equal to that of the end
of the actual beam), the imaginary part tends towards its asymptote. The same
behaviour is exhibited for the long taper, where the additional feature of a staircase-shaped
decrease of the real part is less pronounced. A careful comparison reveals, however, that
although the real parts are slightly different, the overall signature and the periodicity are
the same.

The observed discrepancies between the theoretical and experimental results mean that
a model based upon Euler–Bernoulli theory will have an upper limit of validity, which in
accordance with that of a uniform beam can be set to lB q 6h or, equivalently,
fQ (p/18h)zE/12r. For the experimental configuration, the limit is approximately
1100 Hz as set by the main beam. It is worth noting that the corresponding limit for a
beam of height equal to that of the tip is about 5600 Hz. Accordingly, a taper implies that
as well as a temporally governed transition to shear there is also a spatial one.
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For a system such as the one considered experimentally, consisting of a linearly tapered
beam and a finite uniform part, the asymptotic behaviour of the real part can be
understood by considering a model of a finite undamped beam attached to a
one-dimensional shear wave guide. The real part of the mobility of such a model
asymptotically will be inversely proportional to the frequency, which is in agreement with
the experimental results at high frequencies. Naturally, the transition to the ‘‘mass-loaded
shear waveguide’’ behaviour will be gradual.

Yet another aspect that also affects the comparisons at high frequencies is the practical
difficulty in realizing an excitation precisely at the beam end, as well as registering the
response there. As a consequence, the fraction of the tip that is beyond the cross-sectional
plane of the transducers forms an end mass. This mass, although small, will add to the
inevitable mass-loading caused by the instrumentation; the latter, however, being taken
into account and corrected for.

Upon introducing a rigid indenter in the excitation arrangement to examine a possible
influence of the stress distribution and local deformation, the real part of the mobility at
the end of the long taper, corrected for the mass of the indenter, is slightly altered as shown
in Figure 17. In this diagram, the signature is less regular than that in Figure 16 and
pronounced troughs can be seen. Above 1 kHz, the deviation from slender beam theory
is evident. The overall trend, however, is in agreement with that of the real part measured
with the pin-screw of the force transducer directly attached to the beam.

It is also worthwhile to compare the numerical results obtained from the model with
the experimental ones. In Figures 18 and 19 are shown the real and imaginary parts for
the short and long tapers respectively. It can be observed that while the model gives results

Figure 14. The magnitude and phase of the point mobility of a tapered beam at the end of the long taper.
The calculated maximum of the transition region and the phase alternation is indicated.
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Figure 15. The real and imaginary parts of the point mobility of a tapered beam at the end of the short taper.
Assumed asymptotic behaviour indicated.

that are in agreement with measurements in the range in which Euler–Bernoulli theory is
valid, the deviations are marked in the region above. Furthermore, upon comparing the
results for the short and long taper, it appears that the modulation due to the interference
from reflections at the discontinuity between the tapered and the uniform parts in the case
of a short taper realizes a phase shift that is different from that of the model. Since the
taper angle is larger at this end than at the end with the long taper, the sensitivity to the
exact response position is enhanced and a small shift in the experiments may explain the
discrepancies.

In Figure 20 are shown the magnitudes of the point and two transfer mobilities,
measured at the long taper. The transfer mobilities were obtained with the response
positions at x=0·33 m and x=0·66 m respectively. Also included are the associated
transfer mobilities estimated from the semi-infinite wedge model in equation (20).

It is seen that while both the asymptotic behaviour of the semi-infinite wedge and
the experimental results for the uniform beam with a tapered end demonstrate marked
and the same decreases with distance, calculated results are consistently overestimating
the magnitudes. In an attempt to explain this difference, one may compare with
calculated results using the complete expressions. Such a comparison is presented in
Figure 21, where it is confirmed that the numerical results from the complete model
gradually deviate from the experimental ones the further away the response position
and the same overestimation as obtained with the high frequency asymptote is
established numerically in the upper frequency range. This means that calculations
based on the approximate expressions developed herein from slender beam theory will
yield conservative results.
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Figure 16. The real and imaginary parts of the point mobility of a tapered beam at the end of the long taper.
Assumed asymptotic behaviour indicated.

The applicability of the estimation procedure proposed is explored in Figure 22. The
top diagram shows the measured magnitude of the mobility overlaid on the results
obtained by using the estimation procedure and the bottom diagram the corresponding
data for the real part. It is observed that with the exception of region B2 (see Figure 11),
the estimation procedure captures the signatures of the magnitude as well as the real part.
This corroborates its applicability within the range of validity of Euler–Bernoulli theory.

Figure 17. The real part of point mobility of a tapered beam measured with a rigid indenter of length equal
to the width of the beam at the end of the long taper. Assumed asymptotic behaviour indicated.
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Figure 18. A comparison of measured (——) and numerically evaluated ( · · · · · ) point force mobilities at the
end of the short taper.

4. CONCLUDING REMARKS

The study shows that spatially varying properties of a one-dimensional waveguide can
markedly alter its vibration as well as transmission characteristics. It is further evident that,
for the theoretically important semi-infinite case also, resonant behaviour is realized. From
the analysis of the influence of tapering on the dynamic characteristics of the flexural wave
counterpart to the acoustic horn, it is found that the main distinction to the uniform case
is the comparatively broad-banded transition from flexural vibrations governed by the
properties of the deep part of the system to flexural vibrations governed by those of the
slender part. Here, it should be noted that a structural transformation from a deep to a
slender section is phenomenologically different from that of slender to deep. This means
that, for small Helmholtz numbers, the one-dimensional horn configuration can be treated
as a uniform beam of dimensions corresponding to those at the deep end, while for large
Helmholtz numbers, the slender end geometry yields the corresponding uniform beam. The
intermediate transition region is featured by a stiffness-controlled initial part, followed by
a resonant part. In contrast, the ‘‘inverted’’ horn configuration exhibits an essentially
mass-controlled transition region between, in this case asymptotically, slender beam
behaviour for small Helmholtz numbers and deep beam behaviour for large. Furthermore,
the transition itself involves a transition from mainly translational to rotational motion
of the tapered part. Moreover, in contrast to the wave propagation in the uniform case,
the wave amplitude for a tapered beam is proven to be dependent on the separation
between the excitation and response positions. From the asymptotic behaviour for large
Helmholtz numbers, one may conclude that the transfer mobility is primarily influenced
by the geometrical mean of the heights at the two ends of the taper. It should
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Figure 19. A comparison of measured (——) and numerically evaluated ( · · · · · ) point force mobilities at the
end of the long taper.

be emphasized that all of the analysis is based on Euler–Bernoulli theory, which will restrict
the applicability to frequencies for which the deep beam can be considered in pure bending.

From the analysis of the semi-infinite wedge—‘‘the bending wave accelerator’’–it can be
inferred that the transition region established in the horn case also comprises a taper shape
dependent resonance on which, in the finite case, are superimposed the constructive and
destructive interferences due to reflections from the discontinuity between the two
structural members. Such a shape dependent resonance can be explained from the

Figure 20. The measured magnitudes of the transfer mobility at long taper. ——, =xr−xs ==0;
-----, =xr − xs ==0·33 m; – · – · –, =xr − xs ==0·66 m; · · · · ·, asymptotic behaviour according to equation (20).
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Figure 21. Computed and measured transfer mobilities. ——, =xr−xs ==0; ----, =xr − xs ==0·33 m; – · – · –,
=xr − xs ==0·66 m.

mass–spring system constituted by the mass moment of inertia of a portion of the taper
and the rotational stiffness of the remaining part of the semi-infinite wedge.

The experimental results obtained for a system made up of a tapered and a uniform
beam not only show that the model for a tapered, semi-infinite beam accurately describes
the dynamic behaviour but, foremost, confirm the applicability of the asymptotic
expressions developed, thus demonstrating the reliability of the parameter dependence

Figure 22. A comparison of the measured (——) and estimated ( ) point force mobility at the end of the
short taper. Generating lines for magnitude (- - - - - - -) and the real part ( · · · · · ).
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extracted. Moreover, from the experiments it is clear that the region of validity is that set
by negligible influence of shear deformation of the beam lamina. This means that the
estimation procedure proposed correctly depicts the dynamic characteristics of the bending
wave horn in the same region.

In a design perspective, the employment of spatially varying properties such as linearly
varying height for beam-like structures can be interesting owing to savings with respect
to cost, weight and space. The introduction of a broad resonance controlled transition
region, however, markedly limits the usefulness from a vibration transmission point of
view. As a rule of thumb, therefore, such designs should be considered only for Helmholtz
numbers, kB(h1) L, well below unity.
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APPENDIX I: ELEMENTS OF THE IMPEDANCE MATRIX FOR A FINITE
TAPERED BEAM

The following closed form expressions were derived for the elements of the impedance
matrix in equation (10) (see also Figure 1),
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ZFv
00 =−i(Eba3/6v) (D1 /T), ZFv

01 = i(Eba3/6v) (D2 /T),

ZMv
10 =−i(Eba2/6v) (D3 /T), ZMw

00 =−i(Eba/6v) (h2
0 +D4 /T),

ZMw
10 = i(Eba/6v) (D5 /T), ZMv

00 = i(Eba2/6v) (D6 /T),

ZFv
11 = i(Eba3/6v) (D7 /T), ZMw

11 = i(Eba/6v) (h2
1 +D8 /T),

ZMv
11 =−i(Eba2/6v) (D9 /T), ZFw

10 =−i(Eba2/6v) (D10 /T).

The functions D1 –D10 and T are given below. A short notation is used for the Bessel
functions (the subscript refers to the order of the Bessel function, whereas the superscript
refers to the arguments of the Bessel functions), for example, K0
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0 K0
0 Y1

1 + I0
0 J1

0 K1
1 Y1

1}

+ kh1 zh1 {−I1
1 J1

1 K1
0 Y0

1 − I1
0 J1

1 K1
1 Y0

1 + I0
1 J1

1 K1
1 Y1

0 − I1
1 J1

1 K0
1 Y1

0

+ I1
0 J0

1 K1
1 Y1

1 + I1
1 J0

1 K1
0 Y1

1 + I1
1 J1

0 K0
1 Y1

1 − I0
1 J1

0 K1
1 Y1

1},
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D4 = kh2
0 zh0{−I0

1 J0
1 K1

0 Y1
1 − I1

0 J0
1 K0

1 Y1
1 − I0

1 J0
1 K1

1 Y1
0 + I1

1 J0
1 K0

1 Y1
0

+ I0
1 J1

1 K1
0 Y0

1 + I1
0 J1

1 K0
1 Y0

1 + I0
1 J1

0 K1
1 Y0

1 − I1
1 J1

0 K0
1 Y0

1},

D5 = kh0 h1 zh1 {I1
1 J1

1 K1
0 Y0

1 + I1
0 J1

1 K1
1 Y0

1 − I0
1 J1

1 K1
1 Y1

0 + I1
1 J1

1 K0
1 Y1

0

− I1
1 J0

1 K1
0 Y1

1 − I1
0 J0

1 K1
1 Y1

1 + I0
1 J1

0 K1
1 Y1

1 − I1
1 J1

0 K0
1 Y1

1},

D6 = 1
2 k2h2

0 {+I1
1 J0

1 K1
0 Y0

0 + I1
0 J0

1 K1
1 Y0

0 − I0
0 J0

1 K1
0 Y1

1 + I1
0 J0

1 K0
0 Y1

1

− I0
0 J0

1 K1
1 Y1

0 − I1
1 J0

1 K0
0 Y1

0 − I1
0 J0

0 K1
1 Y0

1 − I1
1 J0

0 K1
0 Y0

1

+ I0
0 J1

1 K1
0 Y0

1 − I1
0 J1

1 K0
0 Y0

1 + I1
1 J1

0 K0
0 Y0

1 + I0
0 J1

0 K1
1 Y0

1

− I0
1 J0

0 K1
0 Y1

1 − I0
1 J0

0 K1
1 Y1

0 + I0
1 J1

1 K1
0 Y0

0 − I0
1 J1

1 K0
0 Y1

0

+ I0
1 J1

0 K1
1 Y0

0 + I0
1 J1

0 K0
0 Y1

1 − I1
0 J0

0 K0
1 Y1

1 + I1
1 J0

0 K0
1 Y1

0

+ I1
0 J1

1 K0
1 Y0

0 − I0
0 J1

1 K0
1 Y1

0 − I1
1 J1

0 K0
1 Y0

0 + I0
0 J1

0 K0
1 Y1

1}

+ kh0 zh0 {+ I0
1 J0

1 K1
0 Y1

1 + I1
0 J0

1 K0
1 Y1

1 + I0
1 J0

1 K1
1 Y1

0 − I1
1 J0

1 K0
1 Y1

0

− I0
1 J1

1 K1
0 Y0

1 − I1
0 J1

1 K0
1 Y0

1 + I1
1 J1

0 K0
1 Y0

1 − I0
1 J1

0 K1
1 Y0

1},

D7 = k2h1 {−I0
1 J1

0 K1
1 Y0

0 − I0
1 J0

0 K1
0 Y1

1 + I0
0 J0

1 K1
0 Y1

1 − I1
0 J0

1 K0
0 Y1

1

− I1
0 J0

0 K0
1 Y1

1 − I0
0 J0

1 K1
1 Y1

0 + I0
1 J0

0 K1
1 Y1

0 − I1
1 J0

1 K0
0 Y1

0

− I1
1 J0

0 K0
1 Y1

0 + I0
1 J1

1 K1
0 Y0

0 − I0
0 J1

1 K1
0 Y0

1 + I1
0 J1

1 K0
0 Y0

1

+ I1
0 J1

1 K0
1 Y0

0 + I0
0 J1

0 K1
1 Y0

1 + I1
1 J1

0 K0
0 Y0

1 + I1
1 J1

0 K0
1 Y0

0}

+ k3h1 zh1 {−I1
0 J1

0 K0
0 Y0

1 + I1
0 J0

0 K0
1 Y1

0 + I0
0 J1

0 K1
0 Y0

1 − I1
0 J1

0 K0
1 Y0

0

− I0
1 J1

0 K1
0 Y0

0 + I1
0 J0

1 K0
0 Y1

0 + I0
1 J0

0 K1
0 Y1

0 − I0
0 J0

1 K1
0 Y1

0}

+ kzh1 {−I1
1 J1

1 K0
0 Y0

1 − I0
0 J1

1 K1
1 Y0

1 − I1
1 J1

1 K0
1 Y0

1 + I0
1 J1

1 K1
1 Y0

0

+ I1
1 J0

1 K0
0 Y1

1 + I0
0 J0

1 K1
1 Y1

1 + I1
1 J0

0 K0
1 Y1

1 − I0
1 J0

0 K1
1 Y1

1},

D8 = kh2
1 zh1 {−I1

1 J1
1 K0

0 Y0
1 − I0

0 J1
1 K1

1 Y0
1 − I1

1 J1
1 K0

1 Y0
0 + I0

1 J1
1 K1

1 Y0
0

+ I1
1 J0

1 K0
0 Y1

1 + I0
0 J0

1 K1
1 Y1

1 + I1
1 J0

0 K0
1 Y1

1 − I0
1 J0

0 K1
1 Y1

1},

D9 = 1
2 k2h2

1 {+I0
1 J1

1 K0
0 Y1

0 + I0
0 J1

1 K0
1 Y1

0 − I1
0 J1

1 K0
0 Y0

1 + I0
0 J1

1 K1
0 Y0

1

− I1
0 J1

1 K0
1 Y0

0 − I0
1 J1

1 K1
0 Y0

0 − I0
0 J1

0 K0
1 Y1

1 − I0
1 J1

0 K0
0 Y1

1

+ I1
0 J0

1 K0
0 Y1

1 − I0
0 J0

1 K1
0 Y1

1 + I0
1 J0

0 K1
0 Y1

1 + I1
0 J0

0 K0
1 Y1

1

− I1
1 J1

0 K0
0 Y0

1 − I1
1 J1

0 K0
1 Y0

0 + I1
1 J0

1 K0
0 Y1

0 − I1
1 J0

1 K1
0 Y0

0

+ I1
1 J0

0 K0
1 Y1

0 + I1
1 J0

0 K1
0 Y0

1 − I0
0 J1

0 K1
1 Y0

1 + I0
1 J1

0 K1
1 Y0

0

+ I0
0 J0

1 K1
1 Y1

0 − I1
0 J0

1 K1
1 Y0

0 − I0
1 J0

0 K1
1 Y1

0 + I1
0 J0

0 K1
1 Y0

1}

+ kh1 zh1 {+ I1
1 J1

1 K0
0 Y0

1 + I0
0 J1

1 K1
1 Y0

1 + I1
1 J1

1 K0
1 Y0

0 − I0
1 J1

1 K1
1 Y0

0

− I1
1 J0

1 K0
0 Y1
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0 J0
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1 + I0
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0 K0
1 Y1

1},



. . .   . . . 118

D10 = k2h0 h1 {+ I1
1 J1

0 K1
0 Y0

1 + I1
0 J1

0 K1
1 Y0

1 − I0
1 J1

0 K1
0 Y1

1 − I1
0 J1

0 K0
1 Y1

1

− I1
0 J0

1 K1
1 Y1

0 − I1
1 J0

1 K1
0 Y1

0 + I0
1 J1

1 K1
0 Y1

0 + I1
0 J1

1 K0
1 Y1

0}

+ kh0 zh1 {−I1
1 J1

1 K1
0 Y0

1 − I1
0 J1

1 K1
1 Y0

1 + I0
1 J1

1 K1
1 Y1

0 − I1
1 J1

1 K0
1 Y1

0

+ I1
0 J0

1 K1
1 Y1

1 + I1
1 J0

1 K1
0 Y1

1 + I1
1 J1

0 K0
1 Y1

1 − I0
1 J1

0 K1
1 Y1

1}.

APPENDIX II: IMPEDANCE ELEMENTS FOR SMALL TAPER ANGLES

For a very small taper angle—that is, h0 1 h1 = h—a tends towards zero and
consequently k grows very large (see equation (9b)). The arguments of the Bessel functions
in Appendix I therefore become very large and a good approximation may be achieved
by replacing the different Bessel functions by their asymptotic expressions. For the driving
point force impedance ZFv

00 such a substitution results in the formula,

ZFv
00 =

Eba2

12 6−2012r

E 1
1/2 h0

a

sinh [A] sin [A]
cosh [A] cos [A]−1

−2012r

E 1
3/4 h0 zh0

a2 zv
cosh [A] sin [A]+ sinh [A] cos [A]

cosh [A] cos [A]−1

+012r

E 1
1/4 zh0

zv

cosh [A] sin [A]+ sinh [A] cos [A]
cosh [A] cos [A]−1 7,

with A=2k(zh1 −zh0). For h0 1 h1 = h and a tending to zero this means

ZFv
00 =

Bk3
b

v

cosh [kb L] sin [kb L]+ sinh [kb L] cos [kb L]
cosh [kb L] cos [kb L]−1

,

with kb the wavenumber of a beam with height h, which is identical to the well-known
Kolousek function for the point impedance of a homogeneous prismatic beam.

APPENDIX III: STIFFNESSES FOR FINITE TAPERED BEAMS

From the closed form expressions for the impedances, the following asymptotes for
small Helmholtz numbers have been derived, which establishes satisfactory approxi-
mations for almost all of the range of the depth ratios, h0 /h1, less than unity (for the three

Figure AIII.1. A clamped–guided finite tapered beam.
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Figure AIII.2. A clamped–simply supported finite tapered beam.

Figure AIII.3. A clamped–free finite tapered beam.

expressions, see, respectively, Figures AIII.1, AIII.2 and AIII.3):

sc–g =
Eba3

12
h2

0 − h2
1

2(h1 − h0)2 + (h2
0 − h2

1 ) ln (h1 /h0)
;

sc–ss =
Eba

12
h2

0 [h2
0 +3h2

1 −4h1 h0 −2h2
1 ln (h1 /h0)]

2(h1 − h0)2 + (h2
0 − h2

1 ) ln (h1 /h0)
;

s=
Eba3

12
2h4

1 [−2+ ln(h1 /h0)]−2h2
0 h2

1 [2+ ln (h1 /h0)]+8h0 h3
1

6 h4
1 [6−7 ln(h1 /h0)+2 ln2 (h1 /h0)]+2h2

0 h2
1 [12− ln (h1 /h0)− ln2 (h1 /h0)]

+ h4
0 [2+ ln (h1 /h0)]− h3

0 h1 [12+4 ln (h1 /h0)]+ h0 h3
1 [−20+12 ln (h1 /h0)]7

.

APPENDIX IV: ESTIMATION PROCEDURE FOR POINT FORCE MOBILITY OF
BENDING WAVE HORN

The basic assumptions are linearly elastic, homogeneous material, rectangular
cross-section, constant width and linear taper.

AIV.1. 

Region B1: deep beam behaviour:

=Y ==z2/(bh1 zh1z4 1
12 Er3zv).

Region S: stiffness controlled behaviour: from Appendix III, the compliance of the
clamped–free beam tip is given by

C=
12

Eba3

6 h4
1 [6−7 ln (h1 /h0)+2 ln2 (h1 /h0)]+2h2

0 h2
1 [12− ln (h1 /h0)− ln2(h1 /h0)]

+ h4
0 [2+ ln (h1 /h0)]− h3

0 h1 [12+4 ln (h1 /h0)]+ h0 h3
1 [−20+12 ln (h1 /h0)]7

2h4
1 [−2+ ln (h1 /h0)]−2h2

0 h2
1 [2+ ln (h1 /h0)]+8h0 h3

1
,

and the mobility in this region becomes

=Y ==vC.
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Region R: resonant region: the mobility in this region is calculated from the bending
wave accelerator, or the cross-mobility of the semi-infinite beam: i.e.,

1
2bah0X12

Er
, 2Ca0Ebh0

12r 1
1/3

q 1

=Y ==g
G

G

G

G

F

f
L
bh2

1 X12
Er

, 2Ca0Ebh0

12r 1
1/3

E 1

h
G

G

G

G

J

j

.

Region B2: thin beam behaviour:

=Y == z2
bh0 zh0

4z(Er3/12)zv
.

AIV.2.  

Region B1: deep beam behaviour:

Re [Y]= 8
1

bh1 zh1
4z(Er3/12)zv

,

(L/bh2
1 )z(12/Er),

kB1 LQ 1

kB1 Le 19.
Region S: stiffness-controlled behaviour: if L 3zz2/B1 CE 1,

1
bh1 zh1

4z(Er3/12)zv
, 0z2L3

B1 C 1
1/3

E kB1 LE 1

Re[Y]=
g
G

G

G

G

F

f
z(12/Er)(L/bh2

1 )
[(h1 /L2)z(E/12r)]g

vg, g=
−ln [2(1− h0 /h1) (h0 /h1)]

ln [6L3/CEbh3
1 (1− h0 /h1) (h0 /h1)]

h
G

G

G

G

J

j

,

whereas, for L 3zz2/B1 Cq 1,

(L/bh2
1 )z(12/Er), 1E kB1 LE (z2L3/B1 C)1/3

Re[Y]=
g
G

G

F

f
z(12/Er)(L/bh2

1 )
[(1/h1) (48/C4b4Er3)1/6]g

vg, g=
−ln [2(1− h0 /h1) (h0 /h1)]

ln [(3/4CEb)1/3 L/h1 (1− h0 /h1) (h0 /h1)]

h
G

G

J

j
,

Region R: resonant region:

Re[Y]=6(1/2bah0)z(12/Er),

(L/bh2
1 )z(12/Er),

2a(CEb/12)1/3 q 1

2a(CEb/12)1/3 E 17,

Region B2: thin beam behaviour:

Re[Y]=1/(bh0 zh0
4z(Er3/12)zv ).
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APPENDIX V: SYMBOLS AND NOTATION

B bending stiffness
C compliance
D denominator
F force
H(m)

n Hankel function of order n, mth kind
I moment of inertia of beam cross section area
In modified Bessel function of order n
Jn Bessel function of order n
Kn modified Bessel function of order n
L taper length
M moment
V transverse velocity field
X beam depth
Yn Bessel function of order n
Z impedance
b beam width
h0 tip height
i imaginary unit
k bending wavenumber
m' mass per unit of length
v translational velocity
w rotational velocity
x axial co-ordinate
a tangent of taper angle
r density
v angular frequency

indices
b beam
r receiver
s source


