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An automatic code is proposed for the perturbation analysis of strongly non-linear
two-degree-of-freedom systems with cubic non-linearities. The recently proposed [1]
modified Lindstedt–Poincaré method is adopted, both because of its excellent performance
and of its straightforward implementation. The symbolic software Mathematica is used in
order to speed up all the cumbersome algebra which is inherent to every perturbation
method.
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1. INTRODUCTION

Since the pioneering works by Green [2] and Liouville [3], classical perturbation methods
have been the subject of countless papers and books, from the classic Kevorkian and Cole
[4] to the book by Linch [5] and the recent monograph by Holmes [6]. Many different
approaches have been proposed, such as the Lindstedt–Poincaré (LP) method [7, 8], the
powerful multiple scales approach [9] and the Krylov–Bogoliubov–Mitropolsky (KBM)
technique [10] with its equivalent Galerkin method [11]. All of these approaches were
originally limited to weak non-linearities and one-degree-of-freedom oscillators.
Consequently, satisfactory results could be obtained only in limited parametric ranges, and
internal resonance phenomena could not be investigated. More recently, the importance
of modal interactions has begun to be understood, and a great deal of effort has been
devoted to n-degree-of-freedom systems which exhibit internal resonances. For a complete
review, the reader can consult the paper by Nayfeh and Balachandran [12], in which a lot
of physical systems are illustrated where one-to-one, two-to-one and three-to-one internal
resonances can occur. In reference [12] the multiple scales method was employed, but a
LP method or a KBM technique could also be used.

If the non-linearities turn out to be too strong, the classical methods cannot give
satisfactory results, and a number of improvements have been proposed. Basically, two
different techniques can be adopted. In the first case, a classical perturbation method can
be used to give an approximate solution, and then this solution can be conveniently used
for a subsequent Galerkin analysis. Following these steps, Geer and Andersen [13]
obtained very interesting results both for one-degree-of-freedom oscillators and for
multiple-degree-of-freedom systems.
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In the second case, the classical LP method is used, and a new perturbation parameter
is defined, which remains small even if the original parameter grows without bound. The
original idea can be traced back to Jones [14], even if it was greatly extended by Burton
[15, 16], and deeply modified by Cheung and coworkers [17]. Quite recently this method
has been generalized to strongly non-linear two-degree-of-freedom systems in the presence
of internal resonance [1].

One of the major drawbacks of the perturbation methods lies in the cumbersome algebra
which is inherent to the successive perturbation steps. For example, in an effort to obtain
a seventh order approximation to the moon’s orbit, Delaunay obtained an equation which
covered 170 (printed) pages (quoted from Hagedorn [18], p. 2). Therefore, the recently
developed computerized symbolic softwares have been immediately seen as ideal tools for
such perturbation problems, and an early version of MACSYMA was used by Rand and
Armbruster [19] for a pioneering investigation in perturbation theory. Nowadays, much
more sophisticated and versatile symbolic programs are available, such as Maple [20] or
Mathematica [21]; for example, all the calculations in the quoted paper by Geer and
Anderson [13] were performed with the aid of Mathematica.

In this paper a computer-oriented version of the Chen and Cheung analysis for
two-degree-of-freedom oscillators [1] is given, a computer program written in Mathematica
is illustrated, and some examples are performed.

The advantages of the proposed approach seem to be twofold: first of all, parametric
investigations become immediate, and the influence of various parameter changes can be
easily detected. Moreover, with small efforts, the program can be modified to cope with
other kinds of non-linearities, and finally, other kinds of external excitations can be
studied. For example, a study in the presence of quasi-periodic forcing terms is currently
under development.

2. METHOD OF ANALYSIS

Consider a general two-degree-of-freedom oscillator with cubic non-linearities, whose
equations of motion can be written as

d2x/dt2 +v2
10x+ o(Ax3 +Bx2y+Cxy2 +Dy3)= op1 cos vt, (1)

d2y/dt2 +v2
20y+ o(Ex3 +Fx2y+Gxy2 +Hy3)= op2 cos vt, (2)

where v10, v20 are the linear frequencies, A, . . . , H are the non-linearity coefficients, p1,
p2 are the excitation amplitudes, v is the frequency of the forcing terms, and o is the
perturbation parameter. In order to study the internal resonance phenomena, one assumes
that

v2
20 =v2

10(l2/l1)2 + os2 (3)

if the fundamental resonance occurs when v1v10, or

v2
10 =v2

20(l1/l2)2 + os1 (4)

if v1v20. In the first case (henceforth case (a)) it is also convenient to define v0 =v10,
whereas in the other case (henceforth case (b)) it will be v0 =v20. The integers l1 and l2

are relatively prime, and s1, s2 are the so-called detuning parameters.
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The preliminary steps can be carried out as suggested by Chen and Cheung [1].
Therefore, v2 is expanded as a power series of o,

v2 =v2
0 + s

a

k=1

okvk , (5)

a new perturbation parameter a is defined as

a= ov1/(v2
0 + ov1) (6)

so that v2 turns out to be given by

v2 =
v2

0

1− a 01+ s
a

k=2

akdk1, (7)

and finally, the Lagrangian co-ordinates are expressed as series in the parameter a:

x= s
a

k=0

akxk , y= s
a

k=0

akyk . (8)

Assume for the moment that case (a) occurs. If equations (3, 6–8) are inserted into the
equations of motion, then it is possible to write

eq1= (1+ d2a
2 + d3a

3 + · · ·)ẍ+(1− a)x+(a/v1)(Ax3 +Bx2y+Cxy2 +Dy3)

− (a/v1)p1 cos t=0, (9)

eq2= (1+ d2a
2 + d3a

3 + · · ·)ÿ+(1− a)(l2
2 /l2

1 )y+(a/v1)s2y

+(a/v1)(Ex3 +Fx2y+Gxy2 +Hy3)− (a/v1)p2 cos t=0, (10)

where the dot denotes differentiation with respect to the scaled time parameter t=vt.
Equations (9, 10) are equivalent to the Chen and Cheung equations, but they are set in
a way which is more suitable to successive automatic manipulations.

A single command can expand the previous equations into a power series in a, and the
coefficients of like powers can be immediately extracted. For example, the following line
expands the first equation up to the quadratic a terms,

sseq1=Series[eq1, {alpha, 0, 3}], (11)

and the coefficients will be given by

ss0eq1=Coefficient[sseq1, alpha, 0],

ss1eq1=Coefficient[sseq1, alpha,1],

ss2eq1=Coefficient[sseq1, alpha, 2]. (12)

A similar set of commands should be used to isolate the coefficients in the second equation,
obtaining the quantities ss0eq2, ss1eq2 and ss2eq2.

The first order perturbation can be solved with the aid of the command

lin=DSolve[{ss0eq1 = =0, ss0eq2= =0,

x0[0]= =x00, x0'[0]= =0, y0[0]= =y00, y0'[0]= =0},

{x0[t], y0[t]}, t] (13)
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which finds the functions x0(t) and y0(t) with the initial conditions:

x0(0)= x00, ẋ0(0)=0, y0(0)= y00, ẏ0(0)=0. (14)

These solutions can be inserted into the coefficients of the linear part of the expansion,
ss1eq1 and ss1eq2.

Care should be taken, in order to obtain the desired results, because powers of the cosine
must be avoided. The following command can do the job:

ss1eq1=Simplify[ComplexToTrig[Expand[ss1eq1, Trig:True]]], (15)

with a similar line for the other coefficient. The software automatically uses the previously
obtained results, so that the user must merely manipulate the various terms. The outputs
to the previous commands are given by

ss1eq1= (1/4v1)/[(3Ax3
00 + x2

00y00B+2x00y2
00C−4x00v1 −4p1) cos (t)

+ (Ax3
00 +2x2

00y00B+3y3
00D) cos (3t)+ (x2

00y00B+ x00y2
00C) cos (5t)

+ x00y2
00C cos (7t)+ y3

00D cos (9t)]+ x1(t)+ ẍ1(t), (16)

ss2eq1= (1/4v1)[(3x3
00E+ x2

00y00F+2x00y2
00G−4p2) cos (t)

+ (x3
00E+2x2

00y00F+3y3
00H−36y00v1 +4y00s2) cos (3t)

+ (x2
00y00F+ x00y2

00G) cos (5t)+ x00y2
00G cos (7t)

+ y3
00H cos (9t)]+9y1(t)+ ÿ1(t). (17)

The secular terms can now be easily extracted, because the form of the previous formulae
is well adapted. One has

coefcoseq1=Coefficient[Numerator[ss1eq1], Cos[t]], (18)

coefcoseq2=Coefficient[Numerator[ss1eq2], Cos[3 t]]. (19)

From the first output, v1 can be found, from

Solve[coefcoseq1 = =0, omega1], (20)

whereas the second line gives the cubic relationship which is equivalent to equation (3.6)
in reference [1]. It is

v1 = (1/4x00)[3Ax3
00 + x2

00y00B+2x00y2
00C−4p1] (21)

y3
00(3H−18C)−9x00y2

00B+ y00(2x2
00F−27Ax2

00 +36p1/x00)+4s2 + x3
00E=0. (22)

The second order perturbation problem can be solved with the same steps. If the initial
conditions are

x1(0)=0, ẋ1(0)=0, y1(0)= y10, ẏ1(0)=0, (23)

then a simple application of DSolve (see equation (13)) gives

x1(t)=K11 cos (t)+K13 cos (3t)+K15 cos (5t)+K17 cos (7t)+K19 cos (9t),

y1(t)=K21 cos (t)+K23 cos (3t)+K25 cos (5t)+K27 cos (7t)+K29 cos (9t), (24)
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with:

K11 = (1/4v1)0Ax3
00

8
+

7x2
00y00B
24

+
x00y2

00C
16

+
31y3

00D
80 1,

K13 = −(1/4v1)0Ax3
00

8
+

x2
00y00B

4
+

3y3
00D
8 1,

K15 =−(1/4v1)0x2
00y00B
24

+
x00y2

00C
24 1, K17 =−(1/4v1)

x00y2
00C

48
,

K19 =−(1/4v1)
y3

00D
80

, (25)

K21 = (1/4v1)03x3
00E
8

+
x2

00y00F
8

+
x00y2

00G
4

− p2/21,

K23 = (1/4v1)04v1y10 −
3x3

00E
8

−
x2

00y00F
16

−
13x00y2

00G
80

+
y3

00H
72

+ p2/21,

K25 =−(1/4v1)0x2
00y00F
16

+
x00y2

00G
16 1, K27 =−(1/4v1)

x00y2
00G

40
,

K29 =−(1/4v1)
y3

00H
72

, (26)

after the results have been expanded and simplified.
Because of the initial conditions,

K11 +K13 +K15 +K17 +K19 =0, K21 +K23 +K25 +K27 +K29 = y10. (27)

It is interesting to note that the previously obtained formulae resemble equation (3.7) in
reference [1], but now the cos (t) coefficient in the first equation is not equal to zero.
It is also worth noting that the above results should merely be introduced in the quadratic
terms of the expansion, and therefore they can also not be displayed at all.

The following pair of commands perform a job similar to equation (15):

ss2eq1=Simplify[ComplexToTrig[Expand[ss2eq1, Trig:True]]], (28)

ss2eq2=Simplify[ComplexToTrig[Expand[ss2eq2, Trig:True]]], (29)

whereas the lines

coef2coseq1=Coefficient[Numerator[ss2eq1], Cos[t]], (30)

coef2coseq2=Coefficient[Numerator[ss2eq2], Cos[3 t]], (31)
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extract the secular terms. They are

coef2coseq1= (1/4v1)[K11(9Ax2
00 +2x00y00B+2y2

00C−4v1)

+K13[3Ax2
00 +4x00y00B)+K15(2x00y00B+ y2

00C )+ y2
00K17C

+K21(3x2
00B+2x00y00C+6y2

00D)+K23(x2
00B+4x00y00C)

+K25(2x00y00C+3y2
00D)+3y2

00K27D]− x00d2, (32)

coef2coseq2= (1/4v1)[K11(3x2
00E+4x00y00F)+K13(6x2

00E+3y2
00G)

+K15(3x2
00E+2x00y00F)+2x00y00K17F+ y2

00K19G

+K21(x2
00F+4x00y00G)+K23(2x2

00F+9y2
00H−36v1 +4s2)

+K25(x2
00F+2x00y00G)+2x00y00K27G+3y2

00K29H]−9y00d2, (33)

Finally, the unknowns d2 and y10 can be calculated by means of

Solve[{coef2coseq1 = =0, coef2coseq2= =0}, {delta2, y10}]. (34)

The pattern is now obvious. Each perturbation step can be performed with the following
lines:

DSolve[{ssieq1 = =0, xi[0]= =0, xi'[0]= =0}, xi[t], t],

DSolve[{ssieq2 = =0, yi[0]= =y1i, yi'[0]= =0}, yi[t], t], (35)

ssjeq1=Simplify[ComplexToTrig[Expand[ssjeq1, Trig:True]]],

ssjeq2=Simplify[ComplexToTrig[Expand[ssjeq2, Trig:True]]], (36)

coefjcoseq1=Coefficient[Numerator[ssjeq1], Cos[t]],

coefjcoseq2=Coefficient[Numerator[ssjeq1], Cos[3t]], (37)

Solve[{coefjcoseq1 = =0, coefjcoseq2= =0}, {deltaj, y1j}]. (38)

Here j should be equal to i+1. A more general approach can also be used, introducing
some arrays and matrices, but it is probably useless, because the number of perturbation
steps is always rather limited.

3. THE CASE OF v NEAR v20

With some minor changes, the above described procedure can also be applied to case
(b), where v1v20. First of all, the equations of motion become

eq1= (1+ d2a
2 + d3a

3 + · · · )ẍ+(1− a)(l2
1 /l2

2 )x+(a/v1)s1x

+ (a/v1)(Ax3 +Bx2y+Cxy2 +Dy3)− (a/v1)p1 cos t=0, (39)

eq2= (1+ d2a
2 + d3a

3 + · · · )ÿ+(1− a)y+(a/v1)(Ex3 +Fx2y+Gxy2 +Hy3)

− (a/v1)p2 cos t=0. (40)
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The coefficients of the linear part of the expansion, ss1eq1 and ss1eq2 can be calculated
with the same commands as for case (a). They are

ss1eq1= (1/36v1)[(27Ax3
00 +9x2

00y00B+18x00y2
00C−4x00v1 +36x00s1) cos (t/3)

+ (9Ax3
00 +18x2

00y00B+27y3
00D−36p1) cos (t)

+ (9x2
00y00B+9x00y2

00C) cos ((5t)/3)+9x00y2
00C cos ((7t)/3)+9y3

00D cos (3t)]

+ 1
9x1(t)+ ẍ1(t), (41)

ss1eq2= (1/4v1)[(3x3
00E+ x2

00y00F+2x00y2
00G) cos (t/3)

+ (x3
00E+2x2

00y00F+3y3
00H−4y00v1 −4p2) cos (t)+ (x2

00y00F+ x00y2
00G)

× cos ((5t)/3)+ x00y2
00G cos (7t)/3)+ y3

00H cos (3t)]+ y1(t)+ ÿ1(t). (42)

The secular terms can be extracted as follows (see equations (18, 19))

coefcoseq1=Coefficient[Numerator[ss1eq1], Cos[t/3]] (43)

coefcoseq2=Coefficient[Numerator[ss1eq2], Cos[t]] (44)

Equation (20) allows one to find v1:

v1 = 9
4[3Ax2

00 + x00y00B+2y2
00C+4s1], (45)

whereas the cubic relationship for y00 is given by

y3
00(3H−18C)−9y2

00x00B− y00(27Ax2
00 −2x2

00F+36s1)−4p2 + x3
00E=0. (46)

Once again, x1(t) and y1(t) can be obtained by means of simple manipulations, giving:

x1(t)=K11 cos (t/3)+K13 cos (t)+K15 cos (5t/3)+K17 cos (7t/3)+K19 cos (3t),

y1(t)=K21 cos (t/3)+K23 cos (t)+K25 cos (5t/3)+K27 cos (7t/3)+K29 cos (3t), (47)

where:

K11 =
−9Ax3

00

32v1
−

21x2
00y00B

32v1
−

9x00y2
00C

64v1
−

279y3
00D

320v1
+

9p1

8v1
,

K13 =
9Ax3

00

32v1
+

9x2
00y00B
16v1

+
27y3

00D
32v1

−
9p1

8v1
,

K15 =
3x2

00y00B
32v1

+
3x00y2

00C
32v1

, K17 =
3x00y2

00C
64v1

, K19 =
9y3

00D
320v1

,

and:

K21 =
−27x3

00E
32v1

−
9x2

00y00F
32v1

−
9x00y2

00G
16v1

,

K23 = y10 +
27x3

00E
32v1

+
9x2

00y00F
64v1

+
117x00y2

00G
320v1

−
y3

00H
32v1

,

K25 =
9x2

00y00F
64v1

+
9x00y2

00G
64v1

, K27 =
9x00y2

00G
160v1

, K29 =
y3

00H
32v1

. (49)

Even in this case the results coincide with the Chen and Cheung expressions, apart from
the coefficient of cos (t) in the first equation.
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Equations (28, 29) express the quadratic part of the expansion in a form which is suitable
for the extraction of the secular terms, according to the lines

coef2coseq1=Coefficient[Numerator[ss2eq1], Cos[t/3]], (50)

coef2coseq2=Coefficient[Numerator[ss2eq2], Cos[t]]. (51)

They are

coef1coseq2=K11(81Ax2
00 +18x00y00B+18y2

00C−4v1 +36s1)

+K13(27Ax2
00 +36x00y00B)+K15(18x00y00B+9y2

00C)

+K179y2
00C+K21(27x2

00B+18x00y00C+54y2
00D)

+K23(9x2
00B+36x00y00C)+K25(18x00y00C+27y2

00D)

+K2727y2
00D−4x00d2v1. (52)

and

coef2coseq2=K11(3x2
00E+4x00y00F)+K13(6x2

00E+3y2
00G)

+K15(3x2
00E+2x00y00F)+K172x00y00F+K19y2

00G

+K21(x2
00F+4x00y00G)+K23(2x2

00F−4v1)

+K25(x2
00F+2x00y00G)+2K27x00y00G+3K29y2

00H−4y00d2v1. (53)

4. NUMERICAL RESULTS

In order to perform a comparison between our results and the applications reported in
reference [1], one has to adopt the following values for the coefficients:

v10 =1, v20 =3, A=0·2788, B=−0·3111, C=1·116, D=−0·3864,

E=B/3, F=C, G=3D, H=3·8703. (54)

Moreover, as already said, the results given in reference [1] can be obtained by putting
K11 =0. A first comparison can be performed for the free vibration analysis, p1 = p2 =0,
and in Table 1 the frequency of the response is given as a function of the initial amplitude
x00. As can be immediately seen, the discrepancies are very small, at least for small
amplitudes. A forced vibration analysis is also performed, for p1 =1, p2 =0 and v0 =v10,
as reported in Table 2. If the initial amplitude is reasonably small, the agreement can be

T 1

Free frequency response of the system for various initial amplitude x00

values, as given by the authors (first column) and by [1] (second column).

v v
A10 ZXXXXCXXXXV A10 ZXXXXCXXXXV

0·1 1·00105 1·00105 3 1·66428 1·69641
0·5 1·02588 1·02599 3·5 1·84159 1·88499
1 1·09866 1·10011 4 2·02634 2·08137
1·5 1·20776 1·21323 4·5 2·21677 2·28355
2 1·34301 1·35543 5 2·41159 2·49012
2·5 1·49691 1·51849
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T 2

Forced frequency response of the system (p1 =1, p2 =0) for various initial
amplitude x00 values, as given by the authors (first column) and by reference

[1] (second column)

v v
A10 ZXXXXCXXXXV A10 ZXXXXCXXXXV

−8 3·65296 3·79746 0·5 1·82131 1·82151
−7·5 3·44763 3·58062 1 1·57164 1·63133
−7 3·24405 3·36539 1·5 1·34271 1·36704
−6·5 3·04260 3·15215 2 1·14269 1·16579
−6 2·84378 2·94138 2·5 1·34746 1·38134
−5·5 2·64827 2·73376 3 1·56984 1·59519
−5 2·45695 2·53018 3·5 1·75505 1·80745
−4·5 2·27106 2·33192 4 1·95741 2·02018
−4 2·09232 2·14078 4·5 2·16064 2·23410
−3·5 1·9232 1·95945 5 2·16064 2·44937
−3 1·76738 1·79198 5·5 2·57069 2·66596
−2·5 1·63059 1·64477 6 2·7775 2·88373
−2 1·52246 1·52840 6·5 2·98535 3·10255
−1·5 1·46099 1·46188 7 3·19414 3·32230
−1 1·48707 1·4863 7·5 3·40376 3·54285
−0·5 1·74746 1·74708 8 3·61412 3·76409

considered satisfactory. Nevertheless, if x00 is large enough, the difference can
become noticeable (up to 4%).

All the numerical values have been generated by means of the simple
Mathematica notebook reported in the Appendix. Case (b) can be treated with
some minor changes.

5. CONCLUSIONS

A recently proposed modified Lindstedt–Poincaré perturbation method has
been proved to be particularly suited to automatic symbolic analysis. A
two-degree-of-freedom oscillator has been used as an example, in the presence of
internal resonances and general cubic non-linearities. The numerical examples
show quite a good agreement with some results from the literature [1].
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APPENDIX: THE MATHEMATICA NOTEBOOK

Off[ General::spell, General::spell1 ]
��Algebra ‘Trigonom’
sintras=Sin [t–]:Sqrt[1−Cos [t] Cos [t]];
x[t]=x0[t]+x1[t]*e+x2[t]*eg2;
y[t]=y0[t]+y1[t]*e+y2[t]*eg2;
eq1= (1+delta2*eg2)*

D[x[t], {t, 2}]+ (1−e)*x[t]+ e/omega1*(AA*x[t]g3+
BB*x[t]g2*y[t]+CC*x[t]*y[t]g2+DD*y[t]g3)−
e/omega1*p1*Cos[t];

eq2= (1+delta2*eg2)*
D[y[t], {t, 2}]+9*(1−e)*y[t]+ e/omega1*ss2*y[t] +
e/omega1*(EE*x[t]g3+FF*x[t]g2*y[t]+GG*x[t]*
y[t]g2+HH*y[t]g3)−e/omega1*p2*Cos[t];

sseq1[t]=Series[eq1, {e, 0, 2}];
sseq2[t]=Series[eq2, {e, 0, 2}];
ss0eq1[t]=Simplify[Coefficient[sseq1[t], e, 0]];
ss0eq2[t]=Simplify[Coefficient[sseq2[t], e, 0]];
ss1eq1[t]=Simplify[Coefficient[sseq1[t], e, 1]];
ss1eq2[t]=Simplify[Coefficient[sseq2[t], e, 1]];
ss2eq1[t]=Simplify[Coefficient[sseq1[t], e, 2]];
ss2eq2[t]=Simplify[Coefficient[sseq2[t], e, 2]];

lin=DSolve[{ss0eq1[t] = =0, ss0eq2[t]= =0,
x0[0]= =x00, x0'[0]= =0, y0[0]= =y00, y0'[0]= =0},

{x0[t], y0[t]}, t];
x0[t]=x0[t]/ . lin; y0[t]=y0[t]/ . lin;
x00[t]=D[x0[t], {t, 2}]; y00[t]=D[y0[t], {t, 2}];
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ss1eq1[t]=Simplify[ComplexToTrig[Expand[
ss1eq1[t], Trig:True]]];

ss1eq2[t]=Simplify[ComplexToTrig[Expand[
ss1eq2[t], Trig:True]]];

coefcoseq1=Coefficient[Numerator[ss1eq1[t]], Cos[t]];
coefcoseq2=Coefficient[Numerator[ss1eq2[t]], Cos[3*t]];

Solve[coefcoseq1 = =0, omega1];
omega1=Simplify[omega1/.%];
eqA20=Simplify[ coefcoseq2];
ss1eq1[t]=Simplify[ss1eq1[t]];
ss1eq2[t]=Simplify[ss1eq2[t]];
ddd=Simplify[4*omega1];
rhs=Coefficient[Numerator[ss1eq1[t]], Cos [3 t]]*

Cos [3 t]+
Coefficient[Numerator[ss1eq1[t]], Cos [5 t]]*
Cos [5 t]+
Coefficient[Numerator[ss1eq1[t]], Cos [7 t]]*
Cos [7 t]+
Coefficient[Numerator[ss1eq1[t]], Cos [9 t]]*
Cos [9 t];

DSolve[{x10[t] +x1[t]= =cc1*rhs[[1, 1]],
x1[0]= =0, x1'[0]= =0}, x1[t], t];
quad1=Simplify[%, Trig:True];
rhs=Coefficient[Numerator[ss1eq2[t]], Cos [t]]*

Cos [t]+
Coefficient[Numerator[ss1eq1[t]], Cos [5 t]]*
Cos [5 t]+
Coefficient[Numerator[ss1eq1[t]], Cos [7 t]]*
Cos [7 t]+
Coefficient[Numerator[ss1eq1[t]], Cos [9 t]]*
Cos [9 t];

DSolve[{y10[t] +9*y1[t]= =cc1*rhs[[1, 1]],
y1[0]= =y10, y1'[0]= =0}, y1[t], t];
quad2=Simplify[%, Trig:True];
x1[t]=x1[t] /. quad1; y1[t]=y1[t] /. quad2;
x1'[t]=D[x1[t], t]; x10[t]=D[x1[t], {t, 2}];
y1'[t]=D[y1[t], t]; y10[t]=D[y1[t], {t, 2}];
x1[t]/ .sintras; y1[t]/.sintras;
x1[t]=Expand[x1[t], Trig:True]/. cc1:−1/ddd;
y1[t]=Expand[y1[t], Trig:True]/ .cc1:−1/ddd;
ss2eq1[t]=Simplify[ComplexToTrig[Expand[

ss2eq1[t], Trig:True]]]
ss2eq2[t]=Simplify[ComplexToTrig[Expand[

ss2eq2[t], Trig:True]]];
coef2coseq1=Collect[Coefficient[

Numerator[ss2eq1[t]], Cos [t]], delta2]
coef2coseq2=Coefficient[

Numerator[ss2eq2[t]], Cos[3*t]]
AA= .2788; BB=−0.3111; CC=1.116; DD=−0.3864; HH=3.8703;
GG=3*DD; FF=CC; EE=BB/3; p1=1; p2=0; ss2=0;
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Do[
tt1=NSolve[eqA20 = =0, y00, 30]/. x00:Amp10;
Amp20=y00/.tt1[1]];
ss1=N[omega1,20]/. {x00:Amp10, y00:Amp20];
tt2=NSolve[{coef2coseq1 = =0, coef2coseq2= =0}, {delta2, y10},

30]/. {x00:Amp10, y00:Amp20};
alpha=omega1/(1+omega1)/. {x00:Amp10, y00:Amp20};
omega2=1/(1−alpha)*(1+delta2*alphag2)/.tt2;
Print[StringForm[0Initial amplitude = 55 0, Amp10]];
Print[StringForm[0Second mode amplitude = 55 0, Amp20]];
Print[StringForm[0Omega1 = 55 0, ss1]];
Print[StringForm[0Frequency = 55 0, Sqrt[omega2]]];
Print[StringForm[0delta2 = 55 0, tt2[[1, 2]]]];
Print[StringForm[0Amplitude y10 = 55 0, tt2[[1, 1]]]];
Print[StringForm[0Amplitude y00 = 55 0, tt1]];
Print[00],
{Amp10, −8, 8, .1}]


