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An approximate solution for floor vibration is proposed as an aid to structural design.
The building floor is approximated as a thin rectangular plate in order to use the
Rayleigh–Ritz method in the analysis. To represent various structural types of building
floors, the plate may be simultaneously subjected to many different factors, including
orthotropy of the plate material, the presence of in-plane forces, uniform elastic edge
supports, elastic point supports, reinforcement by flexural and torsional beams and
vibration control by tuned mass dampers (TMDs). Beam functions, for which free edge
conditions of the plate are generally difficult to represent, are used in practice as admissible
functions in the Rayleigh–Ritz method under various boundary conditions, in
consideration of the approximate approach for only free edge conditions of the plate. The
accuracy and applicability of the approximate solution are confirmed in comparison with
the results obtained by earlier studies and the finite element method (FEM).
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1. INTRODUCTION

From the viewpoint of environmental problems concerning the habitability of residential
space and mechanical manipulation under vibration isolation, the estimation of floor
vibration is important in structural design. To comprehend the vibration characteristics
of building floors, the FEM has often been used. However, it is troublesome for structural
engineers to handle the FEM and its pre- and post-processors. Such a simplified analysis
as the Rayleigh–Ritz method is helpful in the structural design of building floors.

A building floor is approximated as a thin rectangular plate in order to use the
Rayleigh–Ritz method in the analysis. However, there are various structural types of
building floors; for example, the flat slab, the void slab, the prestressed concrete slab, the
slab using a steel deck, the slab reinforced by beams and columns, and the slab with TMDs
to control vibration. Furthermore, various boundary conditions exist due to structural
members surrounding the floor. To examine the vibration characteristics of such floors,
the following requirements are considered in the analysis: (1) the orthotropy of the plate
material; (2) the presence of in-plane forces; (3) uniform elastic edge supports against
translation and rotation; (4) elastic point supports against translation and rotation at
arbitrary locations; (5) reinforcement by flexural and torsional beams; and (6) vibration
control by TMDs at arbitrary locations.

A number of important research papers on vibration analyses of a rectangular plate,
can be found in the literature. For various boundary conditions implying uniform elastic
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edge supports and clamped, simply supported and free edge conditions, beam
functions are often used as admissible functions in the Rayleigh–Ritz method. In 1959,
Chrichael [1] analysed a plate with uniform elastic edge supports against rotation. In
1973, Leissa [2] showed accurate analytical solutions using exact characteristic
equations and the Rayleigh–Ritz method for classical boundary conditions containing
clamped, simply supported and free edges. Clamped and simply supported edge
conditions were exactly satisfied by the use of beam functions, but free edge conditions
were only approximated, making the approach usually less accurate when a free edge
was involved. In 1975, Bassily and Dickinson [3] solved problems involving free
edge conditions using degenerated beam functions. In 1984, Warburton and Edney [4]
studied the application of beam functions that satisfied classical boundary conditions
to represent uniform elastic edge supports. As for problems containing point supports,
in 1979, Kerstens [5] showed solutions using Lagrangian multipliers. The fully free
edge condition was assumed and beam functions were adopted in addition to special
rigid body deflection modes for the first and second modes. On the other hand, several
different polynomials [6–9] have also been proposed as admissible functions, since the use
of beam functions is difficult for representing free edge conditions. Static beam functions
[10] were also proposed for the various boundary conditions. Therefore, there is no
example of beam functions that can be practically applied to the various boundary
conditions; nevertheless, beam functions are superior to any other function as admissible
functions.

For items (1)–(4) above, in 1990, Kim and coworkers [9] represented accurate natural
frequencies up to the sixth mode using simple polynomials in the Rayleigh–Ritz method.
For point supports, the simple technique of taking the strain energy of springs into account
without Lagrangian multipliers was shown. In contrast, Gorman [11–13] developed the
superposition method for items (1), (3) and (4).

For item (5), in 1970, Kirk [14] dealt with a plate reinforced by a single integral stiffener
using the Rayleigh–Ritz method. The plate was fully simply supported. In 1981, Laura and
Gutiérrez [15] added the condition of edges elastically restrained against rotation to the
problem examined by Kirk. In those papers, the effects of torsional deflection in stiffeners
was not treated. In 1995, Lee [16] studied the effects of torsional and bending restraints
of intermediate stiffeners using the Rayleigh–Ritz method.

For item (6), in 1970, Sundara Raja Iyengar and Jagadish [17] studied a spring–mass
system to simulate the dynamic response of highway bridges to moving loads. The
orthotropic plate theory was used under the classical boundary conditions. However, the
damping effect was not considered.

The primary purpose of this work is to apply the Rayleigh–Ritz solution to the problems
in structural design concerning floor vibration by integrating those techniques mentioned
above and taking TMDs into consideration. The secondary purpose is to show that beam
functions can be used in practice for the various boundary conditions as admissible
functions. For only free edge conditions, an approximate approach is introduced, because
the rigid body deflection modes beneficial for the analysis of plates are produced in the
primary modes by attaching extremely small restraints against translation along free edges.
From a designer’s viewpoint, the valid value of the translational spring constant for the
extremely small restraints is shown as the dimensionless value.

It is confirmed that the approximate free edge conditions used here almost equal the
exactly free edge conditions, in comparison with the results of earlier studies. Furthermore,
the results of more realistic examples for building floors are also shown, compared with
the results obtained by the FEM. As a consequence, it is clarified that the present solutions
are sufficiently applicable to structural design of building floors.
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2. THE RAYLEIGH–RITZ SOLUTION

2.1.  

The Rayleigh–Ritz method is employed under the Kirchhoff–Love hypotheses. The
mechanical system investigated here is shown in Figure 1, using the Cartesian co-ordinate
system x, y, z. The plate is subjected to in-plane forces per unit width Nx and Ny (tensile
force positive) in the middle plane of the plate in the x- and y-directions, respectively.
Translational restraints (having spring constants KA , KB , KC and KD ) and rotational
restraints (having spring constants RA , RB , RC and RD ) are along the edges of the plate.
Here, four boundaries are denoted as A (x=0), B (x= a), C (y=0) and D (y= b). The
locations of point supports (having spring constants Kr against translation, Ryr against
rotation about the y-direction and Rxr against rotation about the x-direction) are set at
points (xr , yr ). Beams in the y-direction are placed along the line x= xp with flexural
rigidities EpIp and torsional rigidity GpJp . Likewise, beams in the x-direction are located
along the line y= yq with flexural rigidities EqIq and torsional rigidity GqJq . The mid-point
of the beam is placed so that it coincides with the centroid of the plate. TMDs are set at
points (xs , ys ) with spring constants ks and masses ms , where p, q, r and s=1, 2, 3, . . . .

The maximum strain energy U for the stiffened plate with TMDs is given as

U= 1
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where Dx =Exh3/12(1− nxynyx ), Dy =DxEy/Ex , Hxy =Gxyh3/12 and Dxy = nxyDy are the
flexural rigidities of the orthotropic plate, in which h is the plate thickness, Ex and Ey are
Young’s moduli in the x- and y-directions respectively, Gxy is the shear modulus, and nxy

and nyx are Poisson ratios. w is the deflection of the stiffened plate. ws indicates the
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Figure 1. The mechanical system investigated in the present study.

displacement relative to the plate; that is, the deflection of the spring in a TMD. The
symbol ( ),s denotes differentials in the s-direction.

The kinetic energy T is given as,

T= 1
2(rh+m0)v2 g
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where v is the radian natural frequency. r, rp and rq are the mass densities of the plate
and the y- and x-directional beams, respectively. m0 is the distributed attached mass. Ap

and Aq are the cross-sectional areas of the y- and x-directional beams, respectively.
Then, the deflection w may be expressed as

w(x, y)= s
m=1

s
n=1

wmnfxm (x)fyn (y), (3)

in which fxm (x) and fyn (y) denote the assumed admissible functions in the x- and
y-directions, respectively. wmn are the undetermined constants.
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Substituting equation (3) into equations (1) and (2) and applying the minimization of
the Rayleigh quotient with respect to the coefficients wmn leads to the following eigenvalue
equation in matrix form:
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in which the symbol f (n) denotes the number of differentials.
The solution of equation (4) yields the natural frequencies and coefficients for the mode

shapes (3) of free vibration. For the case without TMDs, only the terms Kmn,ij , Mmn,ij and
wij are used in equation (4).

2.2.   

It is important to consider the effect of the viscous damper in TMDs for dynamic
response analyses. Although there are some procedures for considering it, Rayleigh
damping, which is proportional to both mass and stiffness, is adopted here, because the
damping coefficients for TMDs can simply be added to the Rayleigh damping of the
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stiffened plate without TMDs. Similarly to the example of equation (4), the damping
elements are written as

Cmn,ij = aM0Mmn,ij − s
s=1

msE(0,0)
xsmiE(0,0)

ysnj 1+ aKKmn,ij , (5a)

Cmn,s =Cs,ij =0, Cs,s = cs , (5b, c)

where cs in equation (5c) is the damping coefficients for TMDs, and the two coefficients

aM =2vivj
jjvi − jivj

v2
i −v2

j
and aK =

2(jivi − jjvj )
v2

i −v2
j

(6)

in equation (5a) are the Rayleigh damping coefficients, in which vi is the radian natural
frequency and ji is the modal critical damping ratio for the ith mode without TMDs.

The term concerning external forces is considered by introducing the potential energy
of external forces in the z-direction. Then, the Newmark-b method is performed in the
analysis, since the orthogonality is lost between modes of different degrees, because of the
addition of equation (5c). The deflections of the plate can be obtained via equation (3).
The velocity and acceleration for the deflections of the plate are also obtained in the same
manner.

2.3.  

In the present work, the following beam function [1, 18] in the x-direction is used as
an admissible function with respect to the various boundary conditions including free
edges:

fxm (x)=C1mD1m +C2mD2m +C3mD3m +C4mD4m , (7)

where

D1m =cosh (lmx/a)+ cos (lmx/a), D2m =cosh (lmx/a)− cos (lmx/a),

D3m =sinh (lmx/a)+ sin (lmx/a), D4m =sinh (lmx/a)− sin (lmx/a),

in which lm is a root of the characteristic equation. C1m , C2m , C3m and C4m are the
undetermined constants. Then, four boundary conditions [6] for the plate in the x-direction
are given as

w=x=0 =−Dxw,xxx =x=0/KA , w=x= a =Dxw,xxx =x= a /KB ,

w,x =x=0 =Dxw,xx =x=0/RA , w,x =x=a =−Dxw,xx =x= a /RB . (8)

Substitution of equation (7) into equation (8) leads to the value of lm and the ratio of
the four undetermined constants for each mode through a simple iterative process of
varying lm gradually as the determinant vanishes. The beam function in the y-direction
is expressed in the same manner.

When this beam function is applied to free edge conditions, extremely small restraints
against translation should be attached along free edges, because the beneficial rigid body
deflection modes are added to the original mode. By means of our numerical examples,
the dimensionless value of the translational spring constant attached along the free edges
in the case of boundary A is given as

KAa3/Dx 0 0·11. (9)
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Figure 2. The first three mode shapes of a beam, including the approximate free edge conditions.

It can be given in the same manner in the cases of boundaries B, C and D. If the value
of equation (9) is given to free edges as the extremely small restraint against translation,
the rigid body deflection modes are produced as shown by Figure 2, in which C, SS and
F denote clamped, simply supported and free edge conditions, respectively. The first and
second modes in the case of F–F and the first mode in the case of SS–F cannot be obtained
without the small restraints against translation along free edges. Such modes are effective
for the analysis of plates. The other mode shapes correspond to shapes obtained by using
just free edge conditions. On the other hand, the number of terms in series is limited, since
equation (8) is solved numerically. The maximum number of terms is 14 for the case of
F–F in our calculation.

3. NUMERICAL RESULTS

3.1.         

 

In order to examine the applicability of the beam functions including the approximate
approach for only free edge conditions, free vibration analyses of a rectangular plate with
classical boundary conditions are performed using 6×6 terms in series. The present
solutions are shown in Table 1, together with references [2] and [6]. In reference [2], exact
characteristic equations are given for the six cases having two opposite sides simply
supported. The Rayleigh–Ritz method is employed using the products of beam functions
with 6×6 terms to analyze the remaining cases. In reference [6], the Rayleigh–Ritz method
is also employed using polynomials with 2×2 terms. The solutions are compared by the
dimensionless fundamental natural frequency parameter written as

V=v1a2zrh/D,

in which D denotes flexural rigidity of the isotropic plate.
In all cases, the present solutions indicate good agreement with the results of other

studies.

3.2.          

   

The performance of the beam functions is examined for uniform elastic edge supports.
The fundamental natural frequency parameter for a square plate with the same restraint
parameters along each edge is plotted in Figure 3. There are the following three cases: case
A—RA =RB =RC =RD =SR and KA =KB =KC =KD =a (from a fully simply
supported to a fully clamped plate), case B—RA =RB =RC =RD =0 and
KA =KB =KC =KD =SK (from a fully free to a fully simply supported plate), case
C—RA =RB =RC =RD =SR and KA =KB =KC =KD =SK (from a fully free to a fully
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clamped plate), SR =RAa/D and SK =KAa3/D are dimensionless restraint parameters
varying from 10−2 to 104, respectively. This problem has been solved by several researchers.
For example, in reference [4], the Rayleigh–Ritz method was used by combining beam
functions that satisfied classical boundary conditions. In reference [9], the Rayleigh–Ritz
method was employed by using simple polynomials with 8×8 terms.

The present solutions obtained by using the beam functions with 6×6 terms are
compared with results in references [4] and [9] and solutions obtained by the FEM (using
the commercial package MARC). The present solutions show good agreement with the
results in reference [9] and by the FEM. In the present solutions, the value of
equation (9) was not used, since the stable solutions were obtained up to SK =10−2.

T 1

Comparison of dimensionless fundamental natural frequency parameter V

Boundary Present
conditions a/b study Reference [2] Reference [6]

SS–SS–SS–SS 1·0 19·74 19·73 19·74
1·5 32·08 32·07 32·09

SS–C–SS–C 1·0 29·00 28·95 28·95
1·5 56·45 56·34 56·40

SS–C–SS–SS 1·0 23·66 23·64 23·67
1·5 42·56 42·52 42·55

SS–C–SS–F 1·0 12·76 12·68 12·92
1·5 16·93 16·82 17·00

SS–SS–SS–F 1·0 11·75 11·68 11·79
1·5 13·82 13·71 13·81

SS–F–SS–F 1·0 9·72 9·63 9·98
1·5 9·70 9·55 10·12

C–C–C–C 1·0 36·07 35·99 35·99
1·5 60·89 60·77 60·85

C–C–C–SS 1·0 31·88 31·82 31·86
1·5 48·23 48·16 48·23

C–C–C–F 1·0 24·07 24·02 24·20
1·5 26·81 26·73 26·89

C–C–SS–SS 1·0 27·08 27·05 27·11
1·5 44·93 44·89 45·02

C–C–SS–F 1·0 17·64 17·61 17·79
1·5 21·10 21·03 21·17

C–C–F–F 1·0 7·00 6·94 7·00
1·5 11·33 11·21 11·48

C–SS–C–F 1·0 23·51 23·46 23·54
1·5 24·85 24·77 24·84

C–SS–SS–F 1·0 16·89 16·86 16·92
1·5 18·60 18·54 18·59

C–SS–F–F 1·0 5·43 5·36 5·42
1·5 7·07 6·93 7·13

C–F–C–F 1·0 22·32 22·27 22·50
1·5 22·28 22·21 22·58

C–F–SS–F 1·0 15·31 15·28 15·53
1·5 15·27 15·21 15·62

C–F–F–F 1·0 3·58 3·49 3·59
1·5 3·69 3·47 3·64

SS–SS–F–F 1·0 3·46 3·36 3·43
1·5 5·21 5·02 5·17
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Figure 3. The variation of the dimensionless fundamental frequency parameter of a square plate with
translational and rotational restraint parameter. , Present study; — —, references [4]; - - - - , reference [9];
W, FEM.

3.3.          

The applicability of the beam functions, including the approximate approach
concerning free edge conditions, is examined for the higher modes. Dimensionless
frequency parameters for a fully free isotropic plate point supported (a) at all four corners,
(b) at the mid-point of each side and (c) at all four corners and at the mid-point of each
side are calculated by beam functions containing some different terms in series.

The values of dimensionless frequency parameters up to the sixth mode are compared
with the results in references [8] and [19] and by the FEM (using the MARC) in Table
2. In reference [8], the Rayleigh–Ritz method is employed using polynomials as admissible

T 2
Comparison of dimensionless natural frequency parameters of rectangular plates with point

supports

Present study
Mode ZXXXXXCXXXXXV Reference Reference

Problem type number 6×6 8×8 10×10 [8] [19] FEM

1 7·18 7·17 7·16 — 7·11 7·13
2 15·86 15·84 15·83 — 15·77 15·74
3 15·86 15·84 15·83 — 15·77 15·74
4 19·78 19·72 19·69 — 19·58 19·39
5 38·87 38·73 38·68 — 38·43 38·54
6 44·49 44·37 44·35 — 44·37 43·98

1 13·52 13·51 13·51 13·47 13·47 13·41
2 18·29 18·16 18·03 18·03 17·85 17·87
3 19·35 19·19 19·05 18·93 18·79 18·96
4 19·35 19·19 19·05 18·93 18·79 18·96
5 27·71 27·47 27·26 27·05 26·92 26·73
6 52·04 51·51 51·38 51·44 51·13 50·74

1 18·30 18·16 18·03 18·03 17·85 17·87
2 35·87 35·62 35·32 35·17 34·89 35·04
3 35·87 35·62 35·32 35·17 34·89 35·04
4 38·87 38·73 38·68 38·43 38·43 38·54
5 62·74 61·96 61·06 60·58 60·12 60·39
6 69·53 69·31 69·12 69·14 68·51 67·75
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Figure 4. Examples to investigate the effects of various analytical conditions.

functions. The solutions using polynomials with 6×6 terms are presented in Table 2. In
reference [19], the spline finite strip method is used. From the viewpoint of designers, the
present solutions up to the sixth mode show good agreement with the other results.

3.4.         

More realistic problems are treated here. As the base model, a square isotropic plate
simply supported at four corner points and restrained along four edges against only
rotation, having infinite spring constants, is used. The plate is reinforced by the same four
beams along each boundary. The span, thickness, Poisson ratio, Young’s modulus and
mass density of the plate are 9 m, 0·15 m, 0·167, 2·1e7 Pa and 4·31 Ns2/m, respectively. The
cross-section of the beams having the same material constants as the plate, but a mass
density of 2·35 Ns2/m, is rectangular. The width and depth are 0·3 m and 0·8 m,
respectively. The following cases shown in Figure 4 are investigated: case 1, the base model;
case 2, adding two parallel beams in the same interval to case 1; case 3, adding a simply
supported point near the centre of the plate to case 1; case 4, adding in-plane forces
(Nx =9·8e5 N/m, Ny =0 N/m) to case 1; case 5; adding a TMD at the centre of the plate
to case 2. The material constants and dimensions of the intermediate beams in cases 2 and
5 are the same as those of the boundary beams, but the depth is 0·6 m. For cases 1–4, free

T 3
Comparison of natural frequencies up to 6th mode

Case 1 Case 2 Case 3 Case 4
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

Mode Present FEM Present FEM Present FEM Present FEM
number study (Hz) (Hz) study (Hz) (Hz) study (Hz) (Hz) study (Hz) (Hz)

1 6·28 6·36 8·84 8·95 8·10 8·24 6·61 6·53
2 12·00 12·34 14·04 14·42 12·00 12·34 12·20 12·44
3 12·00 12·34 14·90 15·14 16·02 16·42 12·48 12·57
4 17·40 17·91 18·48 19·15 17·40 17·91 17·63 18·06
5 18·34 18·86 22·56 23·27 18·34 18·86 18·63 18·97
6 19·62 20·41 22·81 23·60 21·65 22·48 20·10 20·64
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Figure 5. A comparison of time history curves for deflection at the centre of the plate. ——, Without TMD;
, with TMD. (a) Present study; (b) FEM.

vibration analysis is performed. For cases 2 and 5, the dynamic response analysis is carried
out using a sine curve of 9 Hz as a dynamic concentrated load at the centre of the plate.
The Rayleigh damping coefficients are calculated by equation (6) using the values j1 =0·03
and j2 =0·03. The values of the spring constant, mass and modal critical damping ratio
for the TMD are given as 5·0e5 N/m, 1·6e2 s2/m and 0·061, respectively, in order optimally
to control the vibration.

The natural frequencies up to the sixth mode are given in Table 3, and the time history
curves for deflection at the centre of the plate are shown in Figure 5, compared with the
results obtained by the FEM (using the MARC). Here, 10×10 terms in series were used
in all cases, since fully convergent solutions can be obtained. In the FEM, 12×12 meshes
were used for the plate with rectangular shell elements. Beam elements were located along
the meshes.

Considering that these are complicated problems with some analytical conditions, the
agreement is good, especially for the fundamental natural frequency.

4. CONCLUSIONS

In order to estimate the vibration characteristics of building floors in a simple manner,
the Rayleigh–Ritz solution was adopted for the transverse vibration analysis of a thin
rectangular plate. For representing various structural types of building floors, the plate
may be simultaneously subjected to many different factors, including the orthotropy of the
plate material, the presence of in-plane forces, uniform elastic edge supports, elastic point
supports, reinforcement by flexural and torsional beams and vibration control by TMDs.
In the analysis, beam functions, for which free edge conditions are generally difficult to
represent, were applied in practice to various boundary conditions, implying uniform
elastic edge supports and clamped, simply supported and free edge conditions as admissible
functions. The approximate approach was introduced for only free edge conditions,
because the rigid body deflection modes that were beneficial for the analysis of plates were
produced in the primary modes when extremely small restraints against translation were
attached along free edges. Then, the valid value of the translational spring constant for
the extremely small restraints was shown from a designer’s viewpoint.

It was confirmed that, in comparison with the results of earlier studies the approximate
free edge conditions almost equal the exactly free edge conditions. The more realistic
numerical examples were calculated and compared with the results obtained by the FEM.
As a consequence, it was clarified that the present solutions are sufficiently applicable to
structural design of building floors.
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