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The present paper is dedicated to the study of the radiation of a baffled and/or unbaffled
plate with arbitrary boundary conditions. The proposed work deals with a complete and
rigorous fluid–structure coupling. A Rayleigh–Ritz approach is used to develop the plate
deflection and, in the unbaffled case, the sound pressure jump function. A suitable set of
trial functions is proposed. It allows to obtain only one generic numerical code for all the
boundary conditions and—a key aspect of the formulation—for both the baffled and the
unbaffled plate. An efficient numerical scheme is proposed for the computation of the
radiation impedance coefficients. A good agreement is found with a numerical approach
based on the boundary element method. Validation with experimental results is also
presented. The present formulation provides a useful tool to perform a clear and systematic
comparison between the baffled and the unbaffled plate.

7 1998 Academic Press Limited

1. INTRODUCTION

Throughout the past 20 years, the acoustic radiation from baffled structures has been a
subject of intense research, at least for simple structures such as beams and plates. Many
efforts have been concentrated on the calculation of the radiation efficiency to qualify the
radiation behaviour of these structures. Early works on plane structures have been mainly
devoted to the study of simply supported plates [1–4], for which modal radiation
efficiencies are calculated. Generally, only the resistive parts of the modal radiation
efficiencies are evaluated, since it governs the radiated power. Moreover, the intermodal
radiation impedance coefficients are usually neglected, an assumption that remains valid
only when the fluid is considered to be ‘‘light’’.

From a practical point of view, realistic plates prove to be more complicated: (1) the
boundary conditions are not restricted to the simply supported case, so the effect of other
boundary conditions has to be examined; (2) common plates are generally not inserted in
an infinite rigid baffle; (3) many applications require the fluid–structure coupling to be
rigorously taken into account—as is the case, for example, for acoustic excitation or for
‘‘heavy’’ fluid (e.g., water).

Many authors have proposed different approaches to the study of the above
considerations. The effect of cross-coupling terms has been discussed by Keltie and Peng
[5] for baffled simply supported and clamped plates and by Davies [6]. Sound radiation
from plates with general boundary conditions has been studied by Gomperts [7, 8] and
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more recently by Berry [9, 10]. The latter formulation presents the advantage that only one
set of trial functions is needed to develop the plate deflection, so only one generic numerical
code can be used to simulate plates with arbitrary boundary conditions. Despite the useful
information and physical tendencies that these studies can provide, they have all been
dedicated to the case of plates inserted in a rigid baffle. Moreover, the calculation of modal
radiation impedance coefficients for baffled plates remains a difficult mathematical task.

Few works have been devoted to the study of unbaffled plates, particulary when the
coupling between the fluid and the plate is important. Atalla et al. [11] have treated the
radiation in the air of an unbaffled plate excited by a point force. Their method uses a
two-step procedure for which the fluid–structure coupling is neglected when calculating the
plate deflection. Comparisons with experimental results have shown that this procedure
was quite valid in the case of a plate that radiates in air. The authors have also presented
a brief literature review for the unbaffled plate. The radiation of an oscillating unbaffled
disk has been studied by Williams [12] and Wu et al. [13]. In the study by Wu et al., a
variational formulation is used to avoid the calculation of highly singular integrals that
are classically encountered when using double layer potential formulations [14, 15]. An
equivalent formulation has been also developed by Hamdi [16]. This variational
formulation is implemented in commercial FEM–BEM codes [17, 18]. The numerical
interface between two commercial numerical codes has been developed to study the
vibrations of unbaffled tridimensional structures [19] but, once again it seems, to the
authors’ knowledge, that fluid–structure coupling is neglected. Moreover, there is a lack
of realistic results published for unbaffled structures.

This short literature review has made it clear that, while radiation by baffled plates is
well mastered, the case of an unbaffled plate remains a subject of interest, in particular
for strong fluid–structure coupling. Interpretations based on physical tendencies observed
for radiation by baffled plates cannot simply be transposed to the case of unbaffled plates.
It is well known, for low frequency, that monopolar behaviour characterizes the baffled
plate, while dipolar behaviour is observed for the unbaffled plate, leading to an acoustic
‘‘short-circuit’’ effect. If one makes an exception for the works of Atalla et al. [11] for weak
coupling, there are no clear and systematic comparisons between baffled and unbaffled
plates. It is thought that such a study would be of great interest in helping to understand
the physical mechanisms that govern the acoustic radiation of both baffled and unbaffled
plates.

In the present paper a new semi-analytical approach, denoted as TRM, is presented; this
is designed to perform, in a simple way, a systematic comparison between the baffled and
the unbaffled plate with complete fluid–structure coupling. The paper draws together the
theoretical framework for such a study, and numerical and experimental validations are
presented. The present paper is mainly divided into a vibrational part and an acoustic part.
First, the equation of motion of a thin plate in the fluid is introduced. A Rayleigh–Ritz
solution is proposed as an approximation for the plate deflection. Using the stationary
condition for the Hamiltonian of the plate, a standard linear set of equations is obtained
for the Rayleigh–Ritz expansion coefficients. One main original feature of the approach
lies in the choice of a suitable set of trial functions that allows arbitrary boundary
conditions on the plate contour. A set of trigonometric functions is used, leading to what
one can call the Trigonometric Ritz Method (TRM). The basis equations of the fluid are
then presented, to lead to the complete fluid–structure coupling relations. The quantity of
importance in the fluid–structure coupling is the surface acoustic pressure acting on the
plate, detailed calculations of which are then given. These calculations require different
approaches depending on whether or not the plate is baffled. To compute the surface
acoustic pressure in the baffled case, the well-known Rayleigh integral is used. This allows
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us to relate the surface acoustic pressure to the radiation impedance coefficients with few
manipulations. For the unbaffled plate, one has to identify the sound pressure jump over
the plate. To do so, a variational formulation associated to the Kirchhoff integral equation
is used [16]. Once again, a Rayleigh–Ritz expansion is used to approximate the sound
pressure jump function. This finally allows us to relate this latter to a set of coefficients
that can be interpreted as the radiation impedance coefficients. A key aspect of the
formulation is the introduction of an efficient numerical scheme to compute these
coefficients without requiring many recurrences, as is the case in the work of Atalla et al.
[11] or Berry [10]. Despite the fact that the baffled and the unbaffled plate are treated using
two different approaches, it is shown here that the coefficient of the radiation impedances
can be computed using the same numerical scheme in both cases. This is a direct
consequence of the choice of trial functions in the Rayleigh–Ritz expansions. This
represents a significant improvement over other semi-analytical methods. The main
originality of the proposed approach is that it provides, probably for the first time, a simple
semi-analytical tool that includes all of the important features for the radiation of plates:
(1) arbitrary boundary conditions can be achieved with only one set of trial functions; (2)
both baffled and unbaffled plates can be simulated; (3) the fluid–structure coupling is
rigorously taken into account; and (4) an efficient computation and interpolation scheme
for the radiation impedance coefficients is proposed.

The remainder of this paper is organized as follows. In the next section the basis
equations for both the plate motion and the fluid motion are presented. The choice of a
suitable set of trial functions for the plate deflection is then discussed, followed by the
detailed calculations of the surface acoustic pressure for both the baffled and unbaffled
cases. The forced vibration response is discussed and, finally, numerical validations as well
as experimental validations are presented.

2. BASIC EQUATIONS

Let us consider an homogeneous thin rectangular plate of dimensions Lx ×Ly and
uniform thickness h, excited by a force density fexc (x, y, t). The plate is characterized by
a mass density rs , a Young’s modulus EY and a Poisson ratio n. Two cases will be
considered in this paper, as shown in Figures 1 and 2. In Figure 1 is shown a baffled plate
for which the zQ 0 half-space is filled with a fluid (characterized by its density r and the
celerity c), while the zq 0 half-space is considered to be the vacuum. The unbaffled plate,
shown in Figure 2, is immersed entirely in the fluid. In both cases, the plates are considered
to be strictly identical. Throughout the paper, the baffled problem will be denoted BF,
while the unbaffled one will be UBF.

2.1. -  

A variational formulation is used for the fluid-loaded plate motion. The Hamilton
functional for the present problem is the action integral given by

H(w)=g
t2

t1

[T(ẇ)−V(w)+W(w)] dt, (1)

where t1 and t2 are arbitrary times and w(x, y, t) is the plate deflection.
The term T(ẇ) represents the kinetic energy of the plate and is given by

T(ẇ)=gSp

1
2rs (1tw)2 dS. (2)
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Figure 1. The geometry of a baffled plate.

The second term of equation (1) is the potential energy,

V(w)=gSp

D
2

{(12
xxw)2 + (12

yyw)2 +2n12
xxw12

yyw+2(1− n)(12
xyw)2} dS, (3)

where D is the flexural rigidity, defined by D=EYh3/12(1− n2).
The last term is the work associated with the external forces f (x, y, t):

W(w)=gSp

f (x, y, t)w(x, y, t) dS. (4)

The force density f (x, y, t) acting on the plate is the sum of the excitation force density
fexc (x, y, t) and the surface acoustic pressure f P(x, y, t). This surface pressure is induced

Figure 2. The geometry of an unbaffled plate.
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by both the plate motion and the incident acoustic field if such a field is introduced in the
analysis.

According to Hamilton’s principle, the true plate deflection w(x, y, t) renders the
functions H(w) stationary. The deflection w(x, y, t) that satisfies both the geometric
boundary conditions and the plate equation is thus found by calculating the extremum of
the functional H(w). The eigenvalue problem of the in-vacuo plate is found by setting up
f(x, y, t)=0 in the functional (1). Thus, in this case, the stationary condition leads to the
in-vacuo eigenvalues and eigenmodes of the plate.

2.2. – 

To find the extremum of the functional H(w) the Rayleigh–Ritz method is used. It
consists of finding an approximate solution of w(x, y, t) by expanding it over basis
functions satisfying the geometric boundary conditions. Thus, the following linear
combination is used:

w(x, y, t)= s
mn

wmn (t)fmn (x, y). (5)

The functions fmn (x, y) are linearly independent and depend only on the spatial
co-ordinates. The set {wmn (t)} forms a vector of unknown coefficients to be determined.

With this expansion and assuming a harmonic state eivt for the time dependence, the
stationary condition gives

s
pq

(−v2Mmnpq +Kmnpq )wpq =60,
fmn ,

free vibration,
forced vibration,

(6a, b)

where the right-hand term in equation (6) is the generalized-force vector and M and K are
the mass and stiffness matrices.

Using non-dimensional variables u=2x/Lx and v=2y/Ly , the mass matrix M and the
stiffness matrix K are given by

Mmnpq = rs
LxLy

4 g
1

−1 g
1

−1

fmn (u, v)fpq (u, v) du dv (7)

and

Kmnpq =D
LxLy

4 g
1

−1 g
1

−1 60 2
Lx1

4
12fmn

1u2

12fpq

1u2 +0 2
Ly1

4
12fmn

1v2

12fpq

1v2

+
32

(LxLy )2 $n 12fmn

1u2

12fpq

1v2 + n
12fmn

1v2

12fpq

1u2 + (1− n)
12fmn

1u 1v
12fpq

1u 1v%7 du dv, (8)

these matrices being symmetric.
The solution of equation (6a) give the decompositions {wmn} over the basis functions

{fmn} of the in-vacuo mode shapes and also give the natural frequencies associated with
these modes. The resolution of equation (6b) gives the solution of the forced vibrations.
In this case, dissipation within the plate can be introduced by the use of a complex bending
stiffness D=D(1+ ihs ), hs being the structural damping.
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2.3.  

The pressure field P(r� ) must satisfy the following Helmholtz equation and the
Sommerfeld radiation condition if an harmonic state eivt is assumed:

92
r� P(r� )+ k2P(r� )=60,

0,
for zq 0;
[ r� in V;

baffled plate,
unbaffled plate,

(9)

lim
R:a

R$1P
1r

+ikP%r=R

=0, (10)

where R is the radius of a hemisphere (BF) or a sphere (UBF) and k=v/c.
The pressure field must also respect the boundary condition at the interface between the

fluid and the plate, which states that the plate and acoustic velocities must be equal. This
velocity continuity on Sp reads

ivw(x, y)=−
1

ivr

1P
1z bz=0

. (11)

The two main challenges in this study are as follows. (1) It is necessary to find a suitable
set of functions {fmn} that satisfy the geometric boundary conditions. Moreover, the
functions fmn must be linearly independent and regular enough in order to ensure that the
integrals involving these functions are well-behaved. (2) The surface acoustic pressure
induced by the plate motion must be computed. Calculations of this surface pressure lead
to the well-known radiation impedance. Computations of the radiation impedance
coefficients represent a challenging task, particularly for the unbaffled plate, for which no
straightforward calculations and approximations can be performed.

The remainder of the paper is mainly dedicated to the study of a suitable set of {fmn}
and to the computation of the radiation impedance for both the baffled and unbaffled
plates.

3. CHOICE OF THE BASIS FUNCTIONS

3.1.  

Our goal is to find only one set of functions that fits arbitrary boundary conditions on
the edge of the plate without the use of a contour spring [9, 10, 20], since in this case some
ill-conditioned matrices can be obtained. By arbitrary conditions, one means that the same
boundary condition prevails along a distinct edge but can differ from one edge to another.
The Leissa [20] convention will be used to characterize the different boundary conditions:
F (free), C (clamped), S (simply supported) and G (guided).

In a previous work [21] the authors have shown that, for a simply supported plate, the
use of sine functions allows one to avoid numerical instabilities for the radiation
impedances due to the use of polynomials in a Ritz expansion. In the same spirit, a set
of trigonometric functions, originally developed by Beslin [22], has then been used to
expand the plate deflection. This allows one to simulate arbitrary conditions on the plate
contour without the use of contour springs, and leads to a stable algorithm for the
computation of the radiation impedance coefficients. These types of functions were found
to be particularly suitable for both the mechanical and the acoustical parts of the problem
addressed in this paper.
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T 1

Coefficients for the basis function fm (u)

m am bm cm dm

1 p/4 3p/4 p/4 3p/4
2 p/4 3p/4 p/2 3p/2
3 p/4 −3p/4 p/4 −3p/4
4 p/4 −3p/4 p/2 −3p/2

me 5 (m−4)p/2 (m−4)p/2 p/2 p/2

The trial function fmn is written as a product of a u-dependent function fm (u) with a
v-dependent one, fn (v):

fmn (u, v)=fm (u)fn (v). (12)

The proposed set consists of a product of trigonometric functions of the form

fm (u)= sin (amu+ bm ) sin (cmu+ dm ), (13)

where the coefficients am , bm , cm and dm are listed in Table 1.
The first four functions are used to set the boundary conditions at u=21, since they

allow non-zero displacement and slope at the edges, as prescribed by particular boundary
conditions. The higher order functions (me 5) possess both zero displacement and zero
slope at the edges. So that they do not affect the displacements along the free edges. The
first six basis functions are sketched in Figure 3. Arbitrary conditions such as mixed
support conditions can be achieved with few operations using the appropriate functions
suitable for the boundary conditions.

With this choice of basis functions, the calculation of Mmnpq and Kmnpq presents no major
difficulties and leads to well-behaved matrices. It has been shown by Beslin et al. [22] that
these trigonometric functions present greater numerical stability (no ill-conditioning) and
faster convergence than polynomials for the mechanical part (mass and stiffness matrices)
of the problem; therefore, very high order functions can be used. This suggests that the
medium frequency range can be approached using such a set of functions. For the
acoustical part, the next sections are devoted to the computation of the surface acoustic
pressure for the BF and UBF case using the above set of functions.

4. CALCULATION OF THE SURFACE ACOUSTIC PRESSURE

One of the major difficulties for a radiation problem is to compute the surface acoustic
pressure for both the baffled and unbaffled cases. Knowledge of this surface pressure allows
to obtain the near field, a quantity of importance in radiation problems. This surface
acoustic pressure acting on the plate is defined by

f P(x, y)=6−P(x, y, 0),
−P�(x, y)=−lim

o:0
(P(x, y, o)−P(x, y, −o)),

BF,
UBF.

(14a, b)

The function P�(x, y) is defined as the ‘‘pressure jump’’ function. In the literature, the
pressure jump is more often called the ‘‘double-layer density’’.

To compute the surface acoustic pressure, the integral equation method is used. Using
Green’s identities, the pressure field P(r� 0) can be expressed as
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P(r� 0)=g
G

G

G

G

F

f

−gg
Sp

9� r� P(r� ) · n� pG(r� 0, r� ) dS,

gg
Sp

P�(x, y)9� r� G(r� 0, r� ) · n� p dS,

BF,

UBF,

(15a, b)

where G(r� 0, r� ) is the Green function for the semi-infinite free field (BF) or the infinite free
field (UBF). It is given by

G(r� 0, r� )=g
G

G

F

f

e−ikR

2pR
,

e−ikR

4pR
,

BF,

UBF,
(16)

with R= =r� − r� 0=, the distance between the points r� 0 and r� .

Figure 3. The basis functions fm (u) as a function of u for (a) m=1, (b) m=2, (c) m=3, (d) m=4, (e) m=5
and (f) m=6.
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With these relations and the velocities continuity condition (11), the surface acoustic
pressure can be computed as a function of the plate deflection. While being direct for BF,
the computation of f P(x, y) is quite complicated for the unbaffled plate, since an
integro-differential system has to be solved. Moreover, taking the gradient of the Green
function lead to strong singularities that have to be overcome. In the next two sections,
the calculations of the surface acoustic pressure for, respectively, the baffled and the
unbaffled plates, are presented.

4.1.  

As mentioned earlier, the calculation of the surface acoustic pressure is straightforward.
It starts with the velocity continuity condition (11), which can be written in a more
convenient way:

rv2w(x, y)=
1P
1z bz=0

. (17)

Using this equation in equation (15), one obtains

P(x, y, z)=−rv2 gg
Sp

w(x', y')G(x, y, z; x', y', 0) dS', (18)

which is often referred as the ‘‘Rayleigh integral’’. Particularizing this last one to z=0,
one then obtains the surface acoustic pressure f P =−P(x, y, 0) for the baffled plate.

To compute the forced vibration of the plate, one has to calculate instead the term

f P
mn =gg

Sp

f P(x, y)fmn (x, y) dS. (19)

Using equation (18) and by expanding the deflection w(x, y) over the {fmn} set, one
finally obtains

f P
mn = rv2 s

pq 0gg
Sp

gg
Sp

fmn (x, y)G(x, y, 0; x', y', 0)fpq (x', y') dS dS'1wpq , (20)

which can be rewritten as

f P
mn =−iv s

pq

ZBF
mnpqwpq , (21)

with

ZBF
mnpq =irv gg

Sp

gg
Sp

fmn (x, y)G(x, y, 0; x', y', 0)fpq (x', y') dS dS'. (22)

These coefficients are the radiation impedance coefficients. The real part of the ZBF
mnpq is

the radiation resistance and expresses the radiation damping of the plate, while the
imaginary part is the radiation reactance and expresses the added mass of fluid on the plate.
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Many authors have calculated the radiation resistance coefficients for simply supported
panels [2, 3, 6, 12]. Generally, only the diagonal part of the radiation resistance matrix is
considered, neglecting the intermodal coupling. A numerical integration scheme has been
proposed by Sandman [23] but, once again, it is limited to the case of simply supported
plates. More recently, Berry [9, 10] has proposed an approach based on a Taylor expansion
to compute the radiation impedance coefficients. The use of polynomials allows one to deal
with arbitrary boundary conditions, but it leads to strong instabilities when the frequency
increases, particularly for the radiation impedance computation, which involves many
recurrences.

The approach proposed in this paper to compute the radiation impedance coefficients
is based, like that of Sandman [23], on a numerical integration scheme. Details of the
calculations are given in section 4.3. First, let us derive the expressions for the surface
acoustic pressure for the unbaffled plate.

4.2.  

Our goal is to calculate the sound pressure jump function defined in equation (14), which
is an unknown of the problem. Since the pressure field depends on this pressure jump (see
section (14)), the computation of the pressure jump is not straightforward. Moreover, one
has to take the gradient of the Green function leading to double-layer density singularities.

A variational approach, based on one initially developed by Hamdi [16], has been used
with success by the present authors [21, 24] to treat the fluid-loaded simply supported plate.
The main aspects of their calculations are stated here by extending it to the case of the
plate with arbitrary boundary conditions.

As in the baffled case, one starts with the velocity continuity condition

w(r� ')= 1
rv2

1P
1z bz=0

=
1

rv2 9r� 'P · n̂r� , (23)

where the point r� ' lies on the surface Sp . The acoustic pressure defined in equation (15b)
can then be written

w(r� ')= 1
rv2 6gg

Sp

P�(r� ) 12G(r� , r� ')
1nr� 1nr� '

dS7, (24)

where the kernel of the integral equation (24) is given by

12G(r� , r� ')
1nr� 1nr� '

. (25)

This kernel approaches infinity, as R−3 when R:0, since the Green function behaves
like R−1. Thus, it is singular for r� = r� '. However, physically, the acoustic velocity must
remain continuous across the panel surface. To ensure that this condition is well
established, the integral equation is replaced by

w(r� ')= 1
rv2 F.P.6gg

Sp

P�(r� ) 12G(r� , r� ')
1nr� 1nr� '

dS7, (26)

where F.P. designates the finite part of the integral by the Hadamard mean [16].
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To overcome the singularity and to solve equation (26), Hamdi [16] has suggested a
variational formulation. He has shown that the solution P�(r̄) of equation (26) must be such
that it renders stationary the functional

F(P�(r� ))=1
2

1
rv2 J(P�, P�)+gg

Sp

w(r� )P�(r� ) dS, (27)

where J(P�, P�) is the quadratic functional

J(P�, P�)=−gggg
Sp ×Sp

$k2P�(r� )P�(r� ')+ 1P�(r� )
1x

1P�(r� ')
1x'

+
1P�(r� )
1y

1P�(r� ')
1y' %G(r� , r� ') dS' dS. (28)

It is to be noted that this functional is only valid for a plane structure and for a vanishing
pressure jump on the contour of the surface Sp .

To identify the pressure jump function P�(x, y), an expansion over a set of admissible
functions {cmn} is used:

P�(x, y)= s
mn

P�mncmn (x, y), (29)

where the P�mn are unknown coefficients. The choice of the functions {cmn} will be discussed
later.

With this expansion and the one for the plate deflection, equation (5), the stationary
condition for the fluid functional F(P�) reads

1F(P�(r� ))
1P�mn

=0, [(mn), (30)

and leads to

1
v2 s

pq

AmnpqP�pq + s
ij

Smnijwij =0. (31)

The matrix A, which behaves like an admittance, is given by

A=−v2MA +KA, (32)

with

MA
mnpq =

1
rc2 gggg

Sp ×Sp

cmn (r� )G(r� , r� ')cpq (r� ) dS dS'. (33)

and

KA
mnpq =

1
r gggg

Sp ×Sp

61cmn (r� )
1x

1cpq (r� ')
1x'

+
1cmn (r� )

1y
1cpq (r� ')

1y' 7G(r� , r� ') dS dS', (34)

while S is a transform from a c to a f basis matrix. It is defined by
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Smnpq =gg
Sp

cmn (r� )fpq (r� ) dS. (35)

Details of the calculations of the matrix A elements, as well as the radiation impedance
elements for the baffled plate, are presented in the next section.

Equation (31) now tells us how the sound pressure jump is related to the panel deflection.
Thus, the surface acoustic pressure for the unbaffled plate reads

f P(x, y)=−P�(x, y)=v2 s
ij 0skl

s
pq

A−1
ijkl Sklpqwpq1cij (x, y). (36)

The generalized force coefficients f P
mn associated with the surface acoustic pressure are

then given, by using the definition of matrix S and denoting the transpose of S by S†,

f P
mn =v2 s

pq 0sij s
kl

S†
mnijA−1

ijkl Sklpq1wpq , (37)

which can be written in the same manner as in the baffled case:

f P
mn =−iv s

pq

ZUBF
mnpqwpq , (38)

with

ZUBF
mnpq =iv s

ij

s
kl

S†
mnijA−1

ijkl Sklpq (39)

or, in matrix form

ZUBF =ivS†A−1S. (40)

It has to be noted that the radiation impedance coefficients for BF are quite similar to
the coefficients MA

mnpq appearing in the matrix A for UBF. In fact, if the same functions
are used to expand both the plate deflection and the pressure jump (f0c), the four-fold
integrals involved in Zmnpq for BF and MA

mnpq for UBF are the same. The next section is
devoted to the calculation of the radiation impedance Z for both the baffled and unbaffled
cases.

4.3.   

The main drawback of the above formulation for the radiation impedances is that it
requires computation of four-fold integrals. Some formulations [3, 6] use a wavenumber
transformation to compute the radiation impedance where only two-fold integrals over
wavenumber variables are required. However, this procedure remains a quite difficult task.

A numerical method, based on an approach developed by Sandman [23], is proposed
here to overcome the evaluation of four-fold integrals. Using an appropriate mapping of
the co-ordinates, the four-fold integral can be converted to a two-fold one which can be
evaluated with a Gaussian quadrature scheme. The present calculation is an extension of
a previous work [21] in which the case of the simply supported plate has been considered.

One has to compute the coefficients of the radiation impedance ZBF
mnpq and the coefficients

of the matrix A, MA
mnpq and KA

mnpq . These three sets of coefficients involve integrals of the
form



   219

Imnpq =g
1

−1 g
1

−1 g
1

−1 g
1

−1

gm (u)gn (v)
eikLxR/2

R
hp (u')hq (v') du dv du' dv', (41)

where gm (u) and hm (u) are functions that depend on spatial variable u and integer m, and
will be detailed later. The variable R is here given by

R=$(u− u')2 +
1
r2 (v− v')2%

1/2

, (42)

with r=Lx /Ly . It is to be noted that the function hm (u) can be the same as gm (u), as it
is the case for ZBF

mnpq and MA
mnpq .

The following mapping is then used.

a= u− u', a'= v− v', b= u', b'= v'

and leads, after a few mathematical manipulations, to

Imnpq =g
2

0 g
2

0

[Gmp (a)+Gpm (a)][Hnq (a')+Hqn (a')]K(a, a') da da' (43)

with

Gmp (a)=g
2− a

0

gm (a+ b−1)gp (b−1) db,

Hmp (a)=g
2− a

0

hm (a+ b−1)hp (b−1) db, (44, 45)

and

K(a, a')=
e−ikLx /2[a2 + a'2/r2]1/2

[a2 + a'2/r2]1/2 . (46)

For the baffled plate, one has (see equation (13))

gm (a)0 hm (a)= sin (ama+ bm ) sin (cma+ dm ). (47)

For the unbaffled plate one has to choose some admissible functions that must vanish
on the plate contour to expand the pressure jump function. A natural choice is the
normalized sine function, since it allows a non-vanishing slope but a vanishing value on
the contour:

cij (u, v)=
1

zNij

sin 0ip2 (u+1)1 sin 0jp2 (v+1)1. (48)

Using this set of functions, the functions g and h for the matrix MA will be

gm (a)0 hm (a)= sin 0mp

2
(a+1)1, (49)

while for the matrix KA it will be
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gm (a)= sin 0mp

2
(a+1)1, hm (a)= cos 0mp

2
(a+1)1. (50)

It is worth noting that the use of trigonometric functions for both the plate deflection
and the pressure jump function allows one easily to perform analytically the integrals
involved in equations (44) and (45). Moreover, the use of trigonometric functions avoids,
contrary to polynomials basis functions, numerical instabilities due to recurrence relations
[10]. The present approach leads to the same type of calculation for both the baffled and
unbaffled cases so a generic computational routine can be used to compute the impedance
coefficients. It offers the advantage to treat both the BF and UBF on an equal footing so
interpretations can be done more easily.

With the above relations, the matrix coefficients ZBF
mnpq , MA

mnpq and KA
mnpq finally reads

ZBF
mnpq =ivr

LxL2
y

16p g
2

0 g
2

0

[Gmp (a)+Gpm (a)][Gnq (a')+Gqn (a')]K(a, a') da da', (51)

MA
mnpq =

Ly

8prc2 g
2

0 g
2

0

[Gmp (a)+Gpm (a)][Gnq (a')+Gqn (a')]K(a, a') da da', (52)

and

KA
mnpq =

pLy

8rL2
x g

2

0 g
2

0

[mpHmp (a)Gnq (a')+ r2nqGmp (a)Hnq (a')]K(a, a') da da'. (53)

The two-fold integrals appearing in equations (51), (52) and (53) are computed
numerically using a Gaussian quadrature scheme. Care must be taken when the variable
a= a', for which K(a, a) goes to infinity. However, this singularity is integrable, since the
surface integral tends towards zero as R2, while the singularity behaves as R−1. Thus, the
singularity can be overcome by a judicious choice of the discretization points in the
Gaussian procedure.

It is also to be noted that the radiation coefficients presented in equations (51)–(53)
exhibit a smooth behaviour as a function of the frequency, so an interpolation scheme can
easily be used to compute these coefficients. Using the fact that the matrices are symmetric,
and using some symmetries related to the Gmp and Hmp functions, a powerful numerical
algorithm can then be developed to compute the various radiation impedance coefficients.

5. FORCED DYNAMIC RESPONSE

Knowledge of the radiation impedance coefficients allows one to compute the plate
deflection unknowns wij for the forced vibrations by solving the linear system

[−v2M+K+ivZ] [w]= [ fexc ]. (54)

This system can be solved with a standard linear algebra algorithm. Knowledge of the
deflection unknowns and the radiation impedance coefficients thus allows one to compute
different physical quantities of interest.

If one compares equation (39) for the radiation impedance coefficients of the unbaffled
plate with the one for the baffled plate (equation (22)), it becomes clear that the
computation of these coefficients is more complicated for the UBF. This requires the
calculation of two four-fold integrals, a matrix inversion and two matrix multiplications.
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For BF, one just has to compute one four-fold integral. Then, from a practical point of
view, another set of linear equations is used to compute the plate deflection coefficients
for the UBF. By combining equations (31) and (6), one obtains the plate deflection and
the pressure jump function if the following system is solved:

G
K

k

1
v2 A

S

S

−v2M+K
G
L

l $P�w% =$ 0
fexc%. (55)

Even if this system is larger than the one given in equation (54), the computation of the
inverse of matrix A is avoided, and it provides direct access to the pressure jump coefficients
P�rs .

6. NUMERICAL AND EXPERIMENTAL VALIDATIONS

A first validation for the mass and stiffness matrices (equations (7) and (8)) has been
proposed by Beslin et al. [22] for the basis functions given in equation (13). The authors
have computed the eigenvalues and eigenvectors for different boundary conditions and
compared them to well-known results. It has been verified that the same results prevail
here.

To validate the forced vibration response in air, an experimental study has been
performed. The set-up used for the validation consists of a free plate with dimensions
Lx =0·48 m, Ly =0·42 m and thickness h=0·00322 m. The plate had the following
properties: Young’s modulus Ey =6·7×1010 Pa, density rs =2680 kg/m3, Poisson ratio
v=0·3 and structural damping hs =3×10−3. The mean squared velocity of the plate has
been measured using a laser vibrometer. A total of 361 measurement points have been used
to compute the quadratic velocity. The plate was excited by a shaker through a string at
the excitation point (0·08 m, 0·07 m). For the present approach, a total of 14 functions in
each direction (v and v) has been used to expand the plate deflection. The same number
of functions has also been used to expand the pressure jump functions. The comparison
between the present theory for the UBF, denoted TRM, and the experimental results is
shown in Figure 4. The figure shows that exceptionally good agreements is obtained
between the two approaches. In accordance with the validation proposed by Beslin et al.
[22], this strongly suggests that the mass and stiffness matrices of the plate are then well
computed.

On the other hand, since the fluid–structure coupling is weak in air, one cannot conclude
using the above results that the coupling matrices (radiation impedance coefficients) are
well computed. To do so, a numerical validation has been performed using a boundary
element method (BEM). Using software developed in-house [25], an unbaffled all-clamped
square plate of unitary surface (1 m×1 m) and thickness h=0·01 m vibrating in water
has been studied. The plate properties are as follows: Young’s modulus Ey =2×1011 Pa,
density rs =7800 kg/m3, Poisson ratio n=0·3 and structural damping hs =1×10−2. The
BEM used a mesh of (14×14) eight-node square elements. Once again, a total of 14
functions in each directions (u and v) has been used to expand the plate deflection and
the pressure jump function. The excitation point, a point force, is located at the point
(0·7 m, 0·2 m). The radiation efficiency of the plate has been computed using the relation

s=
Prad

2rfcS�v2�, (56)

where Prad , the radiated power, and �v2�, the mean squared velocity, are given by
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Figure 4. The mean squared velocity for a free plate: a comparison between experimental results (· · · · ·) and
the present approach (——).

Prad =−
iv
2

Re gg
Sp

f P(r� )w*(r� ) dS, �v2�=
v2

2S gg
Sp

=w(r� )=2 dS. (57, 58)

A factor of 2 has been put on the denominator of equation (56) to take into account
that both sides of the plate radiates in the fluid. For the configurations described above
used in TRM and BEM, the TRM reveals to be faster by a factor of 020 comparatively
to the BEM simulation. The radiation efficiency for the frequency range 0–500 Hz is shown
in Figure 5. The agreement between the two methods is excellent. This comparison allows
us principally to validate the computation of the matrices MA and KA (equations (52) and
(53)). Since the same technique is used to compute the radiation impedance coefficients
for the baffled case, it is thought that the baffled case is giving correct results too. As an
example, in Figure 6 the radiation efficiency is shown once again for the same configuration
as above, but now also including the baffled plate compared to the unbaffled one. This
figure clearly demonstrates that important differences are obtained between the two when
strong fluid–structure coupling prevails. The expected result that a baffled plate radiates
more at low frequencies (monopolar radiation versus dipolar one) is well observed.
Moreover, one can see that frequency shifts induced by the fluid added mass are not the
same whether or not the plate is baffled. In the authors’ opinion, these results legitimate
the work addressed in this paper.

7. CONCLUSIONS

This paper has been dedicated to the study of the radiation from baffled and/or unbaffled
plates with arbitrary conditions. The present paper has focused on the theoretical
framework of the formulation. A Rayleigh–Ritz procedure has been used to expand the
quantity of interest. A suitable choice of trial functions for the plate deflection has been
presented. It allows one simply to generate arbitrary boundary conditions on the plate
contour using trigonometric functions. An efficient numerical scheme has been developed
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Figure 5. The radiation efficiency for a clamped plate in water: a comparison between the boundary element
method (——) and the present approach (· · · · ·).

to compute the radiation impedance coefficients for both the baffled and the unbaffled
plates. Good agreement has been found with experimental results and boundary element
method predictions.

The proposed formulation presents many interesting novelties:
(1) It provides a direct comparison between the baffled and unbaffled plates, since the

two cases are treated on the same basis.

Figure 6. The radiation efficiency for a clamped plate in water: a comparison between the baffled (——) and
the unbaffled plate (----).
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(2) Only one generic numerical code is needed for all of the boundary conditions.
(3) An efficient numerical scheme has been developed to compute all of the four-fold

integrals involved in the radiation impedance coefficients for both the baffled and unbaffled
plates. The same scheme is used for the baffled and the unbaffled plate so, once again, only
one generic code can be used, thanks to a judicious choice of the trial functions.

(4) The fluid–structure coupling is completely and rigorously taken into account.
(5) The numerical code based on the present formulation was found to be efficient and

sufficiently fast to simulate numerous practical applications, and to perform parametric
analysis. As an example, it was found that a plate with high modal density can be simulated
(medium frequency range).

(6) It provides a useful tool with which to validate other techniques such as the BEM
or the FEM, since the present formulation contains all of the main aspects related to the
vibroacoustics of a plate.
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