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In a recent paper [1], a novel approach was presented to analyze the free vibration of a
combined dynamical system which consists of a continuous structure onto which various
lumped elements are attached. Using the commonly assumed-modes method [2] with N
component modes, the free vibration of such a combined system corresponds to the
solution of an N×N generalized eigenvalue problem, whose stiffness and mass matrices
consist of diagonal matrices modified by the sum of rank one matrices. Algebraically
manipulating this generalized eigenvalue problem, the free vibration natural frequencies
can be calculated instead by solving a reduced characteristic determinant of size R×R,
where R corresponds to the number of constraints of lumped elements, resulting in
substantial computational savings.

In a recent published work [3], Posiada<a analyzed the free vibrations of uniform
Timoshenko beams with lumped attachments (see Figure 1 of reference [3]). He derived
the frequency equation governing free response for the combined system by means of the
Lagrange multiplier approach. While the final results are concise, the scheme he used to
derive the frequency equation is quite complicated, because R Lagrange multipliers and
R constraint equations need to be introduced. In this note, the authors intend to show that
the same results can be obtained by using the approach outlined in reference [1].

Consider the free vibration of a Timoshenko beam with the lumped attachments as
shown in Figure 1, which consists of linear translational springs at x1 and x6, linear
rotational springs at x3 and x7, a concentrated mass at x2, an element with rotary inertia
at x4, and a linear undamped spring–mass oscillator at x5. The total kinetic energy of the
system is

T= 1
2 g

L

0

rA(x)ẇ2(x, t) dx+ 1
2 g

L

0

rI(x)c� 2(x, t) dx

+ 1
2mẇ2(x2, t)+ 1

2Jc� 2(x4, t)+ 1
2Mż2(t), (1)

where w(x, t) represents the transverse displacement of the beam, c(x, t) is the angle of
rotation due to bending, z(t) is the displacement of the undamped oscillator, r is the mass
density, A(x) is the cross sectional area of the beam, I(x) is the moment of inertia of the
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Figure 1. A uniform Timoshenko beam with lumped attachments.

cross section, and an overdot denotes the partial derivative with respect to time. The total
potential energy of the system is

V= 1
2 g

L

0

EI(x)c'2(x, t) dx+ 1
2 g

L

0

kGA(x)[w'(x, t)−c(x, t)]2 dx

+ 1
2kw2(x1, t)+ 1

2cc
2(x3, t)+ 1

2kM [z(t)−w(x5, t)]2

+ 1
2ksw2(x6, t)+ 1

2csc
2(x7, t), (2)

where E is the Young’s modulus, G is the shear modulus, k is a shape factor which depends
on the cross-section of the beam, and a prime represents the partial derivative with respect
to space.

Using the Rayleigh–Ritz method [2], one writes

w(x, t)= s
N

i=1

Wi (x)hi (t) and c(x, t)= s
N

i=1

Ci (x)hi (t), (3)

where Wi (x) and Ci (x) are the ith transverse and rotational eigenfunctions, respectively,
of the unconstrained Timoshenko beam (or the Timoshenko beam without any
attachments), that serve as the basis functions for this approximate solution. Substituting
equation (3) into equations (1) and (2), one obtains the following discretized total kinetic
and potential energies:

T= 1
2 s

N

i=1

Miḣ
2
i + 1

2m$s
N

i=1

Wi (x2)ḣi%
2

+ 1
2J$s

N

i=1

Ci (x4)ḣi%
2

+ 1
2Mż2, (4)

V= 1
2 s

N

i=1

Kih
2
i + 1

2k$s
N

i=1

Wi (x1)hi%
2

+ 1
2c$s

N

i=1

Ci (x3)hi%
2

+ 1
2kM$z− s

N

i=1

Wi (x5)hi%
2

+ 1
2ks$s

N

i=1

Wi (x6)hi%
2

+ 1
2cs$s

N

i=1

Ci (x7)hi%
2

, (5)
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where

Mi =g
L

0

rA(x)W2
i (x) dx+g

L

0

rI(x)C2
i (x) dx, (6)

Ki =g
L

0

EI(x)C'2i (x) dx+g
L

0

kGA(x)[W'i (x)−Ci (x)]2 dx. (7)

Applying Lagrange’s equations and assuming simple harmonic motion,

hi (t)= h̄i ejvt, z(t)= z̄ ejvt, (8)

where j=z−1 and v is the natural frequency, the eigenvalue equation for the system
of Figure 1 is given by

$ [K]
−kMWT(x5)

−kMW(x5)
kM %$h̄z̄%=v2$[M ]

0T

0
M%$h̄z̄%, (9)

where the vector of normal co-ordinates h̄=[h̄1 h̄2 . . . h̄N ]T, and the N×N matrices [M ]
and [K] are

[M ]= [Md]+mW(x2)WT(x2)+ JC(x4)CT(x4), (10)

[K]= [Kd]+ kW(x1)WT(x1)+ cC(x3)CT(x3)+ kMW(x5)WT(x5)

+ ksW(x6)WT(x6)+ csC(x7)CT(x7). (11)

In equations (10) and (11), [Md] and [Kd] are diagonal matrices whose ith diagonal elements
are Mi and Ki , respectively, and

W(xi )= [W1(xi ) W2(xi ) . . . WN (xi )]T, C(xi )= [C1(xi ) C2(xi ) . . . CN (xi )]T. (12)

Note that both [M ] and [K] are diagonal matrices modified by a sequence of rank one
matrices.

Solving for z̄ using the second equation of (9), one obtains

z̄=−kMWT(x5)h̄/(Mv2 − kM ). (13)

Substituting equation (13) into the first equation of (9) yields

{[K]+ k2
MW(x5)WT(x5)/(Mv2 − kM )}h̄=v2[M ]h̄. (14)

Rearranging equation (14), one can write it alternatively as

6[Kd]+ s
R

i=1

sif(xi )fT(xi )−v2[Md]7h̄= 0, (15)

where R=T and

s1 = k, s2 =−mv2, s3 = c, s4 =−Jv2,

s5 = kMMv2/(Mv2 − kM ), s6 = ks , s7 = cs (16)

and f(xi ) is a vector of length N whose elements are given by

fr (xi )=6Wr (xi ),
Cr (xi ),

i=1, 2, 5, 6,
i=3, 4, 7. 7 (17)
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For non-trivial h̄, the eigenvalues, v2, must satisfy the zeros of the following N×N
characteristic determinant:

det 6[Kd]+ s
R

i=1

sif(xi )fT(xi )−v2[Md]7=0. (18)

Upon rearranging, equation (18) becomes

det {[Kd]−v2[Md]} det 6[I]+ s
R

i=1

si ([Kd]−v2[Md])−1f(xi )fT(xi )7=0. (19)

After some algebra, equation (19) can be shown to be identical to

det {[Kd]−v2[Md]} det [B]= t
N

i=1

(Ki −v2Mi ) det [B]=0, (20)

where the (i, j)th element of [B], of size R×R, is given by

bij = s
N

r=1

fr (xi )fr (xj )
Kr −v2Mr

+
1
si

dj
i , i, j=1, 2, . . . , R, (21)

and dj
i represents the Kronecker delta. Note that each element of [B] consists of a sum of

N terms. Finally, in the limit as ks and cs approach infinity, the supports against beam
translation and rotation analyzed in reference [3] are recovered.

Comparing equation (20) and equation (19) of reference [3], one notices the absence of
the product terms. When the constraint locations of the lumped attachments do not
coincide with the nodes of the unconstrained component modes, the eigenvalues of the
constrained and unconstrained systems must be distinct; thus Ki $v2Mi , and equation (20)
reduces to equation (19) of reference [3]. However, when all the constraint locations
coincide wtih the nodes of a given unconstraint component mode, equation (19) of
reference [3] (obtained via Lagrange multipliers formalism) fails to generate all the
eigenvalues of the constrained system, because some of the fr (xi )’s in the summation of
equation (21) become zero. In this case, equation (20) (obtained via the assumed-modes
method) can still be used to extract all of the eigenvalues of the contrained system, though
some of the eigenvalues will correspond to those of the unconstrained system.

In summary, the concise eigenvalue equation for the free vibration of a combined
dynamical system, obtained by means of the Lagrange multipliers formalism, can also be
extracted by using the more straightforward and simpler assumed-modes method. The
latter approach also has the distinct advantage that it can be used when the constraint
locations are located at the nodes of the unconstrained component mode.
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