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1. 

General surveys on dynamic analysis of composite structures were performed by Bert [1–4],
Kapania and Raciti [5, 6], and Ren [7]. Several survey papers have specialized sections on
this subject. For example, Reddy has reviewed finite element modelling of laminated
composite plates [8] and refined theories of laminated composite plates [9]. Kapania has
considered the analysis of laminated shells [10]. Yang et al. discussed thin shell finite
elements and applications [11] while Noor and Burton examined computational models
for multilayered composite shells [12].

Shear deformation theories have received considerable attention in linear vibration
analysis of laminated composite structures due mainly to their advantages over classical
theories. A variety of solution schemes based on first order shear deformable theory has
been employed by various researchers [13–17] to solve vibration problems of laminated
composite plates. References [18–20] present results of such structures by the finite element
method. Examples of first order shear deformation theory used for finite element analysis
of laminated composite shell structures can be found in references [21, 22]. An earlier
report by Noor and Mathers [23] included shear deformation effect for a number of
displacement and mixed shear–flexible finite laminated composite plate and shell elements
for linear vibration problems. Applications of high order shear deformation and other
theories can be found in references [12] and [24].

While shell and solid elements for modelling and analysis of layer-by-layer problems,
which generally are known as local problems, have important applications in dealing with
delamination, the size in term of the degrees of freedom (dof) is relatively much larger than
the global problems. The main objective of the study reported in this paper is, however,
concerned with global problems in which the individual layers are assumed to be perfectly
bonded together. It may be appropriate to mention that the local problems are currently
being studied and their results shall be reported in due course.

In this note the hybrid strain-based laminated composite three-node flat triangular shell
finite elements for linear static analysis proposed by the authors [25, 26] and identified as
HLCTS elements, are employed for the free vibration analysis of laminated composite
plate and shell structures. The stiffness matrices of HLCTS elements have been derived
and obtained explicitly in reference [26]. Thus, in the vibration analysis only the
corresponding consistent element mass matrices are required. They have several important
features which are different from existing similar elements. First, their derivations are
obtained by using a symbolic manipulation package MACSYMA. Therefore, numerical
matrix inversion and numerical integration are unnecessary in their derivations. Second,
the normal rotations or so-called drilling degrees-of-freedom (ddof) are included. Third,
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two of these elements, with ddof based on the displacement formulation, have no shear
locking, can provide the correct number of rigid body modes, and have sufficient rank and
have no zero energy mode.

This note consists of five sections. The present section is an introduction whereas the
following section presents the derivation of consistent element mass matrices. The third
and fourth sections are concerned with numerical studies of free vibration problems of
multi-layer plates and multi-layer shells, respectively. The last section includes concluding
remarks.

2.      

The formulation and derivation of the element stiffness matrices have been presented
in references [26] and therefore are not included here for brevity.

The same shape functions or displacement interpolation functions adopted in the
derivation of element stiffness matrices are employed. The same co-ordinate systems and
two groups of displacement interpolation functions used in reference [26] are also adopted
here.

The consistent element mass matrix for isotropic material is given as

[m]=gV

r[f]T[f] dV, (1)

where r is the density and [f] is the 18×6 displacement shape function matrix. For an
element having only translational dof, equation (1) can be applied directly. For elements
having translational dof, rotational dof and ddof, Liu and To [27] recommended the
following consistent element mass matrix:

[m]=gV

[f]T[r] [f] dV, (2)

where
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J= r(r2
2 + s2

3 + r3 (r3 − r2))/18. (4)

Equation (3) defines the generalized density matrix. It may be noted that the polar moment
of inertia term, J, defined in equation (4) is specifically for the three-node flat triangular
element with the chosen local co-ordinates.

For the laminated composite HLCTS elements, analogy to equation (2) is drawn and
the consistent element mass matrix is defined as
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[me ]= s
n

k=1 ga

[f]T[r]k [f] da, (5)

where n is the total number of layers and the density matrix for the kth layer is
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[r]k = 0 0 0 Ir 0 0
, (6)

0 0 0 0 Is 0

0 0 0 0 0 Jd 6×6

and

Ir = Is = rk (h3
k − h3

k−1)/3, Jd = rk (hk − hk−1) (r2
2 + s2

3 + r3 (r3 − r2))/18. (7a, b)

In equations (6) and (7a, b), hk is the layer co-ordinate in the transverse direction at the
top of the kth layer (see Figure 1).

The element mass matrix defined in equation (5) is in the local co-ordinate system shown
in Figure 1. Before assembling the mass matrices, they are transferred to the global
co-ordinate system. The consistent element mass matrix in the global co-ordinate system
is then

[Me ]= [T]T[me ] [T], (8)

where the transformation matrix T is defined in reference [26].
Applying the mass matrices derived in this section and the stiffness matrices obtained

in reference [26], one can obtain six elements for vibration analysis of laminated composite
plate and shell structures. These elements are denoted by HLCTSqd

r , HLCTSld
r , HLCTSqh

r ,
HLCTS1h

r , HLCTSqd
t and HLCTSqh

t , where the superscripts q, l, d and h denote,
respectively, the quadratic interpolation function for transversal displacement, the linear
interpolation function for transversal displacement, the displacement formulation for the

Figure 1. The three-node triangular composite laminated shell element.
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ddof, and the hybrid formulation for the ddof. The subscript r refers to the case in which,
in addition to the translational dof the moment of inertia and polar moment of inertia
are considered, while the subscript t means that only the mass corresponding to the
translational dof has been considered.

The above consistent element mass matrices have been derived and obtained explicitly
by using the computer algebra package MACSYMA. For brevity, the explicit element
mass matrices are not included here. It may be suffice to note that there are about 600
statements or lines in the fortran subroutines that described the above element mass
matrices.

When the above HLCTS elements are employed for the vibration analysis of single layer
plate and shell structures of isotropic materials, the HLCTSqd

r element, for example,
reduces to that of formulation number 16 proposed by Liu and To [27].

3.    - 

Before presenting the details of the free vibration analysis for different multi-layer cases,
it should be mentioned that single element of single layer tests have been conducted to
detect rigid-body modes and zero energy modes. In the tests, all the eighteen element dof
are not constrained. The following remarks are in order. First, the HLCTSqd

r , HLCTSld
r and

HLCTSqd
t elements have six rigid-body modes and have no zero energy modes. Second,

the HLCTSqh
r , HLCTSlh

r and HLCTSqh
t elements have six rigid-body modes and two zero

energy modes. Third, the so-called basic triangular (BT) elements, that were presented in
reference [26] and designated as BTq and BTl where the superscripts q and l have already
been defined above, have six rigid-body modes and three zero energy modes. The zero
energy modes are all associated with the in-plane torsional rotations. In other words, in
the static analysis reported in reference [26] the BT elements have three zero energy modes,
the HLCTSqh and HLCTSlh elements have two zero energy modes, and the HLCTSqd and
HLCTSld elements do not have any zero energy modes. In short, the displacement
formulation for the ddof eliminated the spurious modes from the elements.

In addition to the above tests, a relatively comprehensive vibration analysis of single
layer plates was performed. For brevity, the results of single layer cases are not included
in this paper.

In this section a nine layers cross-ply symmetrically laminated square plate, and an eight
layers antisymmetric laminated angle-ply square plate with different side–length ratios and
length to thickness ratios are studied. Other examples have been investigated but not
included here for brevity. Comparisons are made with analytical solution or other finite
element solutions that are available in the literature. In the analysis the two in-plane dof,
U and V (henceforth upper case refers to the global co-ordinate system), and the ddof of
the HLCTS elements are constrained. The remaining dof for the HLCTS elements are
associated with the bending part, that is, the transversal displacement W and two
rotational dof, Ux and Uy . Therefore, only the HLCTSqd

r , HLCTSld
r and HLCTSqd

t elements
are used in the investigation.

3.1. Nine-layered cross-ply plate
A nine-layered, cross-ply symmetrically laminated square plate with fibre orientation

(0/90/0/90/0/90/0/90/0) is considered in this subsection. The side length, b, of the plate is
1·0 m (39·37 in). The total thickness of the 0° and 90° layers is the same. The thickness
of the laminate is h=0·01 m (0·3937 in). The material is the high modulus graphite/epoxy
composite with E1 /E2 =40, G12 /E2 =0·6 and G13 /E2 =G23 /E2 =0·5, in which
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Figure 2. The square plate with D meshes: (a) 2×2 D mesh, (b) 4×4 D mesh.

E1 =2·0685×1011 N/m2 (3·0×107 psi), r=1605 kg/m3 (0·058 lb/in3) and Poisson’s ratio
n12 =0·25.

In this first case, the plate is simply supported at four sides (S4). It is modelled by the
four finite element meshes shown in Figure 2. The shear correction factors are
k4 = k5 = (5/6)1/2. The boundary conditions are: W=0·0 at all simply supported edges,
Ux =0·0 at the edges parallel to Y-axis and Uy =0·0 at the edges parallel to X-axis. All
dof at four corners of the plate are constrained. Only the first three natural frequencies
are presented in Table 1, though higher natural frequencies and mode shapes for this case
and all the examples considered in this paper were obtained. They are not included here
for brevity. For comparison with results in the literature, the dimensionless frequency
parameter is defined as

V=2pfb( r/E2)1/2 ×10, (9)

where f is the natural frequency in Hz.

T 1

First three dimensionless natural frequencies of the nine-layered cross-ply
S4 plate

Mode sequence
ZXXXXXXXXXCXXXXXXXXXV

Mesh Neq.† 1 2 3

HLCTSqd
r

2×2 D 19 2·08427 6·48111 6·83126
4×4 D 87 1·92484 5·55288 6·00242
6×6 D 203 1·89712 5·25759 5·70811
8×8 D 367 1·88774 5·17046 5·62086

HLCTSld
r

2×2 D 19 2·62976 13·29262 13·92842
4×4 D 87 2·02886 6·35132 6·00242
6×6 D 203 1·94123 5·56773 5·70811
8×8 D 367 1·91216 5·33761 5·62086

HLCTSqd
t

2×2 D 19 2·08444 6·48249 6·83270
4×4 D 87 1·92500 5·55397 6·00359
6×6 D 203 1·89728 5·25862 5·70922
8×8 D 367 1·88790 5·17147 5·62195

Analytical
Ref. [23] – 1.88576 – –

†Neg denotes the number of unknowns on dof in the solution.
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T 2

Comparison of the convergence on the dimensionless fundamental natural
frequency of the nine-layered cross-ply S4 plate by using different finite

elements

Mesh (quarter plate)
ZXXXXXXXXXXCXXXXXXXXXXV

Source 2×2 3×3 4×4 5×5

SQ4 – – 4·232 3·558
ST6 2·010 1·939 1·910 –
SQ8 1·932 1·899 1·891 1·888
SQ9 1·921 1·898 1·891 –
SQ11 1·905 1·891 – –
ST10 1·892 1·887 – –
SQ12 1·896 1·887 – –
SQH 1·886 – – –
MT3 1·836 1·879 1·884 –
MQ4 1·877 1·884 1·885 –
MT6 1·887 – – –

HLCTSqd
r 1·925 1·897 1·888 –

zXXXXXXXXXcXXXXXXXXXv
Analytical [23] 1·88576

The analytical solution for the first mode in Table 1 is taken from reference [23] in which
shear deformation was considered. To the best knowledge of the authors, there is no
analytical solution available for the second and third modes. For the 2×2 D, 4×4 D,
6×6 D and 8×8 D meshes, the HLCTSqd

r results for the first mode differ from the
analytical one by 10·5%, 2·1%, 0·6% and 0·1%, respectively. The corresponding
discrepancies given by HLCTSld

r results are 39·5%, 7·6%, 2·9% and 1·4%. It shows
consistently that the HLCTSqd

r element has a better performance than the HLCTSld
r element

and therefore results for other examples using the HLCTSld
r element are not included. To

compare the HLCTSqd
r element with other finite elements in the literature, the numerical

results for the same problem obtained by different finite element models are included in
Table 2. The other finite element results are taken from reference [23]. In the latter the
elements are all shear-deformable type and vary in formulation, element shape, and
approximation of the displacement field. These features are outlined in Table 3 for
convenient reference. The results in Table 2 show the convergence trend of each element.
The HLCTSqd

r element is the simplest element listed in the table. Although it is difficult
to make direct comparison when the element shape and number of nodes are different,
the accuracy and efficiency can be compared when the total number of dof of a finite
element model is taken into consideration. It seems that the HLCTSqd

r element results
converge faster than the ST6 (displacement type, triangular, 6 nodes, 18 dof per element),
MT3 (mixed type, triangular, 3 nodes, 24 dof per element), SQ4 (displacement type,
quadrilateral, 4 nodes, 12 dof per node), SQ8 (displacement type, quadrilateral, 8 nodes,
24 dof per element), SQ9 (displacement type, quadrilateral, 9 nodes, 27 dof per element)
and comparable to all the remaining elements including high-order elements, such as ST10
(displacement type, triangular, 10 nodes, 30 dof per element). For example, the MT6
element case has 200 dof with a 2×2 mesh and prior to the application of boundary
conditions while the HLCTSqd

r element model has only 123 dof with a 4×4 D mesh, and
yet their results are in excellent agreement.
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T 3

Description of characteristics of the shear–flexible finite elements listed in Table 2

Number Total dof
Element Formulation Element shape Approximation of nodes (for plate)

SQ4 displacement quadrilateral bilinear 4 12
ST6 displacement triangular quadratic 6 18
SQ8 displacement quadrilateral quadratic 8 24
SQ9 displacement quadrilateral quadratic 9 27
SQ11 displacement quadrilateral quadratic 11 33
ST10 displacement triangular cubic 10 30
SQ12 displacement quadrilateral cubic 12 36
SQH displacement quadrilateral product of first order 4 48

Hermitian polynomials
MT3 mixed triangular linear 3 24
MQ4 mixed quadrilateral bilinear 4 32
MT6 mixed triangular quadratic 6 48

HLCTSqd
r hybrid triangular quadratic for transversal 3 9

displacement, linear for
rotations

The nine layers cross-ply laminated square plate is then analyzed with the fully clamped
(C4) and cantilevered (CFFF) boundary conditions. The clamped boundary conditions are
imposed by constraining all the dof at the four sides of the plate. For the cantilevered case
only one side of the square plate is clamped while the W, Ux and Uy dof of the other three
edges are left free. The results are presented in Tables 4 and 5, respectively. There is no
analytical or finite element solution for comparison in the C4 and CFFF cases. In Table 4,
the dimensionless frequency parameters are defined by equation (9) whereas those in
Table 5 are given as

V=2pf b0 r

E21
1/2

×100. (10)

T 4

First three dimensionless natural frequencies of the nine-layered cross-ply
C4 plate

Mode sequence
ZXXXXXXXXXCXXXXXXXXXV

Mesh Neq. 1 2 3

HLCTSqd
r

2×2 D 15 17·0777 27·8824 27·9487
4×4 D 75 4·5920 10·2280 10·8644
6×6 D 183 4·2712 8·7165 9·3168
8×8 D 339 4·1768 8·3357 8·9238

HLCTSqd
t

2×2 D 15 17·0783 27·8860 27·9522
4×4 D 75 4·5925 10·2304 10·8670
6×6 D 183 4·2716 8·7184 9·3189
8×8 D 339 4·1772 8·3375 8·9257
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T 5

First three dimensionless natural frequencies of the nine-layered cross-ply
cantilever plate

Mode sequence
ZXXXXXXXXXCXXXXXXXXXV

Mesh Neq. 1 2 3

HLCTSqd
r

2×2 D 30 4·5147 6·6778 37·7556
4×4 D 108 4·3719 5·7041 28·6511
6×6 D 234 4·3497 5·5261 27·4863
8×8 D 408 4·3432 5·4701 27·1613

HLCTSqd
t

2×2 D 30 4·5148 6·6782 37·7644
4×4 D 108 4·3720 5·7045 28·6551
6×6 D 234 4·3497 5·5265 27·4900
8×8 D 408 4·3434 5·4704 27·1649

3.2. Eight-layered angle-ply plate
This plate is antisymmetrically laminated with a 45° angle and stacking sequence,

(45/−45/45/−45/45/−45/45/−45). The side length of the plate is b=1·0 m and the
thickness is h=0·01 m. The thickness of each layer is 0·01/8 m. The material properties
are E1 /E2 =40, G12 /E2 =G13 /E2 =0·6 and G23 /E2 =0·5, in which E1 =2·0685×1011

N/m2 (3·0×107 psi), r=1605 kg/m3 (0·058 lb/in3) and Poisson’s ratio n12 =0·25. The plate
is simply supported at four sides. The entire plate is considered in the finite element
analysis. The boundary conditions imposed on the finite element models are the same as
for previous S4 plate. The shear correction factors are k4 = k5 = (p2/12)1/2.

Results by using HLCTS elements are reported in Table 6. The first three natural
frequencies are given as dimensionless frequency parameters defined by

T 6

First three dimensionless natural frequencies of the simply supported
eight-layered angle-ply square plate

Mode sequence
ZXXXXXXXXCXXXXXXXXV

Mesh Neq. 1 2 3

HLCTSqd
r

2×2 D 19 28·382 73·097 73·097
4×4 D 87 26·235 62·500 62·500
6×6 D 203 25·875 59·690 59·690
8×8 D 367 25·758 58·848 58·848

HLCTSqd
t

2×2 D 19 28·385 73·113 73·113
4×4 D 87 26·237 62·512 62·512
6×6 D 203 25·877 59·702 59·702
8×8 D 367 25·760 58·859 58·859

Analytical [28]
FSDPT – 25·176 – –
HSDPT – 25·174 – –
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V=2pf (b2/h) ( r/E2)1/2. (11)

This problem has been solved by Reddy and Phan in reference [28] by applying first order
shear deformation plate theory (FSDPT) and high order shear deformation plate theory
(HSDPT). The available results are included in the table for comparison. For the 2×2
D, 4×4 D, 6×6 D and 8×8 D meshes, the HLCTSqd

r results of the first mode differ
from the FSDPT solution by 12·7%, 4·2%, 2·8% and 2·3%, respectively.

4.    - 

In this stage of the investigation single-layer isotropic shell structures were studied by
using the proposed finite elements. However, for brevity they are not included here. In this
section, results of free vibration analysis of laminated composite shell structures are
presented. A two-layered antisymmetric angle-ply laminated cylindrical panel, a
four-layered symmetric cross-ply laminated cylindrical panel and a nine-layered symmetric
cross-ply laminated spherical shell segment having double curvatures are included. The
results, by using HLCTS elements, are compared with the existing solutions in the
literature.

4.1. Multi-layer cylindrical shells
The first case considered in this subsection is a two-layered antisymmetric, angle-ply

cylindrical shell panel. The shell panel is constructed using two equal thickness layers with
fibre orientation of (60/−60). The quantities in the bracket are in degrees and measured
from the positive direction of the X-axis (see Figure 3). The cylindrical shell panel has
a square projection plan with side length L=1·0 m. The total thickness of the shell is
h=0·05 m. The radius is R=2·8794 m and the open angle is 28=20°. The radius to
side length ratio R/L=2·8794 and the side length to thickness ratio b/h=20. The
material used is graphite/epoxy composite with the moduli ratios: E1 /E2 =40,
G12 /E2 =G13 /E2 =0·6, G23 /E2 =0·5. The other pertinent material properties are E1 =
2·0685×1011 N/m2 (3·0×107 psi), r=1605 kg/m3 (0·058 lb/in3) and n12 =0·25.

The cylindrical shell panel is simply supported. However, U or V perpendicular to the
boundary edges are also constrained. Symmetry conditions are applied such that only one
quarter of the shell is analyzed. The details of the constraints are: V=W=Uy =0·0 at
curve AB, U=W=Ux =0·0 at straight edge BC, V=Ux =Uz =0·0 at curved symmetry
line CD and U=Uy =Uz =0·0 at straight symmetry line AD. For the four corners, V
and Ux are free at point A. All dof are constrained at point B. U and Uy are free at point
C. The transversal deformation W is free at D. With this set of boundary conditions
imposed, one can solve for doubly symmetrical modes of the simply supported multi-layer
cylindrical shell panel. The shear correction factors are k4 = k5 = (p2/12)1/2.

Table 7 contains results of 2×2 D and 4×4 D mesh using the HLCTS elements. It
also contains the analytical result from reference [29]. The latter gave the dimensionless
frequency parameter of the first mode as 18·80. The dimensionless frequency parameter
is defined by equation (11) in which b is replaced with L. In the analysis, the 4×4 D mesh
results differ from the analytical solution by no more than 2·24%.

The second laminated cylindrical shell panel considered is a four-layered symmetric
cross-ply cylindrical shell panel (see Figure 3). The shell is constructed of four layers with
the fibre orientation in 0 and 90° directions (0/90/90/0). The geometrical properties of the
panel are: R=1·270 m (50 in), L=0·254 m (10 in), h=0·00254 m (0·1 in). Thus, one has
R/L=5 and L/h=100. The layer material properties are E1 =5·1713×1010 N/m2
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T 7

First three dimensionless natural frequencies for the doubly symmetric
modes of the simply supported two-layered angle-ply cylindrical shell panel

Mode sequence
ZXXXXXXXXCXXXXXXXXV

Source Neq. 1 2 3

2×2 D
HLCTSqd

r 45 21·167 66·668 79·451
HLCTSqd

t 45 21·199 66·975 79·651
HLCTSqh

r 45 21·144 66·510 79·414
HLCTSqh

t 45 21·176 66·820 79·619

4×4 D
HLCTSqd

r 189 19·214 51·173 68·417
HLCTSqd

t 189 19·244 51·464 68·621
HLCTSqh

r 189 19·200 51·150 68·361
HLCTSqh

t 189 19·230 51·441 68·566
Ref. [29] – 18·800 – –

(7·5×106 psi), r=27 680 kg/m3 (1·0 lb/in3) and n12 =0·25. The modulus ratios are
E1 /E2 =25, G12 /E2 =G13 /E2 =0·5, G23 /E2 =0·2. This cylindrical shell panel is simply
supported on four sides. One quarter of the shell is solved in the current study. The
boundary conditions imposed are the same as those specified in the first case above. The
shear correction factors are unity. The HLCTS element results with 2×2 D and 4×4
D meshes are presented in Table 8. The results are given as dimensionless frequency
parameters defined in equation (11) where b is replaced with L. The analytical solution
for the first mode of this problem reported in reference [30] is 20·360. This Navier-type
solution was obtained based on higher order shear deformation theory. The HLCTS
element results in Table 8 are excellent. The results of the first mode for the case with 4×4
D mesh indicated that they are slightly below the analytical counterpart. This observation
is not uncommon in elements based on mixed or hybrid formulation.

Figure 3. The Scordelis–Lo roof with 2×2 D mesh for one quarter of the shell.
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T 8

First three dimensionless natural frequencies for the doubly symmetric
modes of the simply supported four-layered cross-ply cylindrical shell panel

Mode sequence
ZXXXXXXXXCXXXXXXXXV

Source Neq. 1 2 3

2×2 D
HLCTSqd

r 47 21·184 92·300 116·498
HLCTSqd

t 47 21·186 92·350 116·546
HLCTSqh

r 47 21·182 92·283 116·498
HLCTSqh

t 47 21·184 92·334 116·544

4×4 D
HLCTSqd

r 191 20·357 82·341 111·341
HLCTSqd

t 191 20·358 82·374 111·381
HLCTSqh

r 191 20·356 82·338 111·341
HLCTSqh

t 191 20·358 82·372 111·381
Ref. [30] – 20·360 – –

4.2. Multi-layered spherical shell segments
This spherical shell segment shown in Figure 4 is doubly curved. It is a nine-layered

cross-ply laminate with fibre orientation (0/90/0/90/0/90/0/90/0). It is symmetrically
laminated. The side length, a, of the shell segment is 1·0 m (39·37 in). The total thickness
of the 0° and 90° layers is the same. The thickness of the laminate is h=0·01 m (0·3937 in).
The material of the laminate is high modulus graphite/epoxy composite with E1 /E2 =40,
G12 /E2 =0·6 and G13 /E2 =G23 /E2 =0·5, in which E1 =2·0685×1011 N/m2 (3·0×107 psi),
r=1605 kg/m3 (0·058 lb/in3) and Poisson’s ratio n12 =0·25.

In the first case the shell segment is simply supported at four curved edges. Three finite
element meshes: 2×2 D, 3×3 D and 4×4 D are considered for one quarter of the shell.
The shear correction factors are k4 = k5 = (5/6)1/2. The boundary conditions are:
V=Ux =Uz =0·0 at symmetry line AB, V=W=Ux =0·0 at curve edge BC,
U=W=Uy =0·0 at curve edge CD and U=Uy =Uz =0·0 at symmetry line AD. For

Figure 4. The double curvature spherical shell segment.
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First three dimensionless natural frequencies for the doubly symmetric
modes of the simply supported nine-layered cross-ply spherical shell

segment

Mode sequence
ZXXXXXXXXCXXXXXXXXV

Source Neq. 1 2 3

2×2 D
HLCTSqd

r 47 0·2473 1·3010 1·4165
HLCTSqd

t 47 0·2473 1·3016 1·4170
HLCTSqh

r 47 0·2473 1·3010 1·4164
HLCTSqh

t 47 0·2473 1·3015 1·4170

3×3 D
HLCTSqd

r 107 0·2428 1·2247 1·2866
HLCTSqd

t 107 0·2429 1·2251 1·2871
HLCTSqh

r 107 0·2428 1·2246 1·2866
HLCTSqh

t 107 0·2429 1·2251 1·2871

4×4 D
HLCTSqd

r 191 0·2420 1·1281 1·2750
HLCTSqd

t 191 0·2420 1·1285 1·2755
HLCTSqh

r 191 0·2420 1·1281 1·2750
HLCTSqh

t 191 0·2420 1·1285 1·2755
Ref. [23] – 0·2411 1·063 1·292

the four corners of the finite element model ABCD, all dof are constrained except W at
point A, the centre of the shell segment. The displacement and rotation, U and Uy , are
free at point B. All dof are constrained at C while V and Ux are free at point D. Note
that these boundary conditions are for doubly symmetrical modes. The HLCTS element
results are given in Table 9. The numerical values in the table are dimensionless frequency
parameters which are defined in equation (11) with b replaced by h. The analytical
solutions for the first three doubly symmetrical modes in the table are from reference [23]
in which shear deformation was considered. For the 4×4 D mesh, the first mode results
applying the HLCTS elements with quadratic polynomial for w converged at the same
value 0·2420 which differs from the analytical solution by 0·37%. When using the coarse
mesh, 2×2 D, the discrepancy is about 2·57%. The latter indicates that the elements
proposed in this paper are very efficient as there are only 47 active dof for this 2×2 D
mesh model. For the higher modes, refined meshes are required for more accurate results.

A comparison with other finite elements is shown in Table 10. The elements include ST6,
SQ8, SQ9, SQ11, ST10, SQ12 and SQH. Their properties and characteristics have been
described in Table 3 except that now the dof of these elements are, respectively, 30, 40,
45, 55, 50, 60 and 80. For brevity, only the first and second doubly symmetric natural
frequencies expressed in the dimensionless frequency parameter defined by equation (10)
in which b is replaced by h, are given in Table 10. Since the other HLCTS element results
for this problem are presented in Table 9 only the results of HLCTSqd

r are included in
Table 10. Also, the SQ4 results are much different from the analytical solutions and are
not included here. With reference to Table 10 the overall performances and efficiency of
the HLCTSqd

r element is the best.
In the second case, the shell segment in Figure 4 is fully clamped. The

non-dimensionalized frequency parameters are included in Table 11. All the geometrical
and material properties remain the same as the simply supported case above. It may be
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Comparison of convergence on the dimensionless natural frequency of the
nine-layered cross-ply S4 spherical shell segment by using different finite

elements

Mesh (quarter shell)
ZXXXXXXXXXCXXXXXXXXXV

Source 2×2 3×3 4×4

First doubly symmetric mode
ST6 0·2538 0·2459 –
SQ8 0·2452 0·2422 0·2416
SQ9 0·2433 0·2422 –
SQ11 0·2428 – –
ST10 0·2417 – –
SQ12 0·2419 – –
SQH 0·2412 – –

HLCTSqd
r 0·2473 0·2428 0·2420

zXXXXXXXXXcXXXXXXXXXv
Analytical [23] 0·2411

Second doubly symmetric mode
ST6 1·350 1·173 –
SQ8 1·303 1·136 1·094
SQ9 1·265 1·134 –
SQ11 1·182 – –
ST10 1·094 – –
SQ12 1·099 – –
SQH 1·084 – –

HLCTSqd
r 1·301 1·225 1·128

zXXXXXXXXXcXXXXXXXXXv
Analytical [23] 1·063

noted that in the present case there is no analytical or numerical solution available for
comparison.

5.  

In this note the consistent mass matrices for the hybrid strain based laminated composite
triangular shell (HLCTS) elements have been developed. The following points should be
mentioned.

T 11

First three dimensionless natural frequencies for the doubly symmetric
modes of the fully clamped nine-layered cross-ply spherical shell segment

Mode sequence
ZXXXXXXXXCXXXXXXXXV

Source Neq. 1 2 3

4×4 D
HLCTSqd

r 169 0·6741 1·5775 1·7393
HLCTSqd

t 169 0·6742 1·5781 1·7399
HLCTSqh

r 169 0·6741 1·5775 1·7393
HLCTSqh

t 169 0·6741 1·5781 1·7399
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(1) Together with the element stiffness matrices developed in references [25, 26], the
HLCTS elements are all in explicit expressions. There is no numerical matrix inversion and
numerical integration involved in the derivations of element matrices.

(2) The HLCTS elements have been applied to solve free vibration problems of single
layer and multilayer plates and shells, and only results of some representative multilayer
plates and shells are included in this note for brevity. These elements show excellent
performance. The comparisons made to the analytical solutions and numerical results
obtained by using other finite elements proved that the HLCTS elements are more accurate
and efficient than other lower order elements and even comparable to some higher order
elements (see Tables 2, 3 and 10). Note that in the vibration analysis higher mode natural
frequencies and mode shapes were obtained but not included here for brevity.

(3) There is no shear locking phenomenon detected. The hybrid strain formulation
seems to be effective in eliminating shear locking which is problematic in lower order finite
elements employing displacement formulation.

(4) The numerical study confirms that the HLCTS elements with a quadratic
displacement field for w are more accurate and converge faster than those with a linear
field. Whether the moment of inertia is included or not it seems to have no significant effect
on results of thin plate and shell structures.

(5) The improved formulation of ddof has eliminated the zero energy modes or spurious
modes from the HLCTS elements. With the displacement formulation of ddof, all three
zero energy modes are eliminated from the HLCTS elements while the hybrid formulation
eliminates one.

(6) Finally, the HLCTSqd and HLCTSld elements have been found to be the most
favourite ones and they are rank sufficient. Because of its ability to give (a) correct number
of rigid body modes, and (b) accurate and rank sufficient results, the HLCTSqd

r has further
been developed for geometrically non-linear analysis of laminated composite shell
structures. The results of this part of the investigation are published elsewhere.
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