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One important current focus of modal identification is a reformulation of modal
parameter estimation algorithms into a single, consistent mathematical formulation with
a corresponding set of definitions and unifying concepts. Particularly, a matrix poly-
nomial approach is used to unify the presentation with respect to current algorithms such
as the least-squares complex exponential (LSCE), the polyreference time domain (PTD),
Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction
polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indi-
cation function (CMIF) methods. Using this unified matrix polynomial approach
(UMPA) allows a discussion of the similarities and differences of the commonly used
methods. The use of least squares (LS), total least squares (TLS), double least squares
(DLS) and singular value decomposition (SVD) methods is discussed in order to take
advantage of redundant measurement data. Eigenvalue and SVD transformation methods
are utilized to reduce the effective size of the resulting eigenvalue—eigenvector problem as

well.
© 1998 Academic Press Limited

1. INTRODUCTION

Modal parameter estimation is a special case of system identification where the a priori
model of the system is known to be in the form of modal parameters. Over the past
twenty years, a number of algorithms have been developed to estimate modal parameters
from measured frequency or impulse response function data. While most of these
individual algorithms, summarized in Table 1, are well understood, the comparison of
one algorithm to another has become one of the thrusts of current research in this area.
Comparison of the different algorithms is possible when the algorithms are reformulated
using a common mathematical structure.

This reformulation attempts to characterize different classes of modal parameter
estimation techniques in terms of the structure of the underlying matrix polynomials
rather than the physically based models used historically. Since the modal parameter
estimation process involves a greatly over-determined problem (more data than indepen-
dent equations), this reformulation is helpful in understanding the different numerical
characteristics of each algorithm and, therefore, the slightly different estimates of modal
parameters that each algorithm yields. As a part of this reformulation of the algorithms,
the development of a conceptual understanding of modal parameter estimation technol-
ogy has emerged. This understanding involves the ability to visualize the measured data
in terms of the concept of characteristic space, the data domain (time, frequency, spatial),
the evaluation of the model (polynomial) order of the problem, the condensation of the
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TABLE 1

Acronyms—modal parameter estimation algorithms

Modal parameter estimation algorithms

CEA Complex exponential algorithm [1, 2]
LSCE Least squares complex exponential [1, 2]
PTD Polyreference time domain [3, 4]

ITD Ibrahim time domain [5, 6]

MRITD Multiple reference Ibrahim time domain [5]
ERA Eigensystem realization algorithm [7, 8]
PFD Polyreference frequency domain [9, 10-12, 13, 14]
SFD Simultaneous frequency domain [15]
MRFD Multi-reference frequency domain [16]
RFP Rational fraction polynomial [17]

oP Orthogonal polynomial [18-20]

CMIF Complex mode indication function [19, 21]

data, and a common parameter estimation theory that can serve as the basis for
devloping any of the algorithms in use today. The following sections review these
concepts as applied to the current modal parameter estimation methodology.

1.1. DEFINITION OF MODAL PARAMETERS

Modal identification involves estimating the modal parameters of a structural system
from measured input-output data. Most current modal parameter estimation is based
upon the measured data being the frequency response function or the equivalent impulse
response function, typically found by inverse Fourier transforming the frequency re-
sponse function. Modal parameters include the complex-valued modal frequencies 4.,
modal vectors {{,} and modal scaling (modal mass or modal A4). Additionally, most
current algorithms estimate modal participation vectors {L.} and residue vectors {A,} as
part of the overall process. Modal participation vectors are a result of multiple reference
modal parameter estimation algorithms and relate how well each modal vector is excited
from each of the reference locations included in the measured data. The combination of
the modal participation vector {L,} and the modal vector {\,} for a given mode give the
residue matrix [A,] for that mode.

In general, modal parameters are considered to be global properties of the system. The
concept of global modal parameters simply means that there is only one answer for each
modal parameter and that the modal parameter estimation solution procedure enforces
this constraint. Most of the current modal parameter estimation algorighms estimate the
modal frequencies and damping in a global sense but very few estimate the modal vectors
in a global sense.

2. SIMILARITIES IN MODAL PARAMETER ESTIMATION ALGORITHMS

The similarities in modal parameter estimation algorithms arise from the common
theoretical basis of the algorithms. Fundamentally, each algorithm starts with a system
that can be represented by a second order, linear, constant coefficient matrix equation.
This fundamental equation depends upon several assumptions: linearity, time invariance,
observability and reciprocity. Rather than working with this matrix equation directly,
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Figure 1. MDOF—superposition of SDOF (positive frequency poles).

most modal parameter estimation algorithms utilize measured frequency response func-
tions (or the time domain equivalent, the impusle response functions) as the experimental
database for the algorithm.

The current approach in modal identification involves using numerical techniques to
separate the contributions of individual modes of vibration in measurements such as
frequency response functions. The concept involves estimating the individual single-de-
gree-of-freedom contributions (SDOF) to the multiple-degree-of-freedom measurement
(MDOF):

N
= (A, ]Nu X Ny [Ar]N” x N
M@= L 575 jo— i - (1)

r=1

This concept is represented mathematically in equation (1) and graphically in Figure 1.

Equation (1) represents a mathematical problem that, at first observation, is non-linear
in terms of the unknown modal parameters. Once the modal frequencies 4, are known,
the mathematical problem is linear with respect to the remaining unknown modal
parameters [A,]. For this reason, the numerical approach in many algorithms involves
two or more linear stages. Typically, the modal frequencies and modal participation
vectors are found in a first stage and residues, modal vectors and modal scaling are
determined in a second stage. This general approach is discussed in the sections 2.3
and 2.4.
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2.1. DATA DOMAIN

Modal parameters can be estimated from a variety of different measurements that exist
as discrete data in different data domains (time and/or frequency). These measurements
can include free-decays, forced responses, frequency response functions (FRFs) or
impulse response functions (IRFs). These measurements can be processed one at a time
or in partial or complete sets simultaneously. The measurements can be generated with
no measured inputs, a single measured input, or multiple measured inputs. The data can
be measured individually or simultaneously. There is a tremendous variation in the types
of measurements and in the types of constraints that can be placed upon the testing
procedures used to acquire these data. For most measurement situations, FRFs are
utilized in the frequency domain and IRFs are utilized in the time domain.

2.2. CHARACTERISTIC SPACE

From a conceptual viewpoint, the measurement space of a modal identification
problem can be visualized as occupying a volume with the co-ordinate axes defined in
terms of the three sets of characteristics. Two axes of the conceptual volume correspond
to spatial information and the third axis to temporal information. The spatial axes are in
terms of the input and output degrees of freedom (DOF) of the system. The temporal
axis is either time or frequency depending upon the domain of the measurements. These
three axes define a 3-D volume which is referred to as the characteristic space.

This space or volume represents all possible measurement data. This conceptual
representation is very useful in understanding which data subset has been measured.
Also, this conceptual representation is very useful in recognizing how the data are
organized and utilized with respect to different modal parameter estimation algorithms.
Information parallel to one axis consists of a superposition of the characteristics defined
by that axis. The other two characteristics determine the scaling of each term in the
superposition.

Any structural testing procedure measures a subset of the total possible data available.
Modal parameter estimation algorithms may then use all of this subset or may choose to
further limit the data to a more restrictive subset. It is theoretically possible to estimate
the characteristics of the total space by measuring any subset which samples all three
characteristics. Measurement data spaces involving many planes of measured data are the
best possible modal identification situations since the data subset includes contributions
from temporal and spatial characteristics. The particular subset which is measured and
the weighting of the data within the subset in an algorithm are the main differences
between the various modal idenitfication procedures which have been developed. This is
discussed further in section 3.

2.3. FIRST STAGE MODAL IDENTIFICATION MODELS

Rather than using a physically based mathematical model, the common characteristics
of different modal parameter estimation algorithms can be more readily identified by
using a matrix polynomial model. One way of understanding the basis of this model can
be developed from the polynomial model used historically for the frequency response
function.

X)) _ B0y 4 oy ot fiGo) + o)
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This can be rewritten:

H, (o) = % = i ﬂA(]w)k/i o o). 3)

k=0

k=0

Further rearranging yields the following equation that is linear in the unknown o and 8
terms:

m

Y w(i0) K@) = 3 AGo)F @) @)

k=0

This model can be generalized to represent the general multiple input, multiple output
case as follows:

m

L ]G X (@)} = ¥ 1B Fo). ®)

Note that the size of the coefficient matrices [o,] will normally be N; x N; or N, x N, and
the size of the coefficient matrices [Bi] will normally be N, x N; or N; x N, when the
equations are developed from experimental data.

Rather than developing the basic model in terms of force and response information,
the models can be stated in terms of frequency response information. The response vector
{X(w)} can be replaced by a matrix of frequency response functions [H(w)]:

m

2 (ol H)] ='2: Be1Go) . ©)

The above model, in the frequency domain, corresponds to an autoregressive—moving
average (ARMA) model that is developed from a set of finite difference equations in the
time domain. The general matrix polynomial model concept recognizes that both the time
and frequency domain models generate functionally similar matrix polynomial models.
For that reason, the UMPA terminology is used to describe both domains since the
ARMA terminology has been connected primarily with the time domain. Equation (6)
can be transposed and rearranged into a linear matrix equation. Additional equations
can be developed by repeating equation (6) at many frequencies (w;) until all data or a
sufficient overdetermination factor is achieved. Note that both positive and negative
frequencies are required in order to accurately estimate conjugate modal frequencies.

Paralleling the development of equations (2)—(6), a time domain model representing the
relationship between a single response degree of freedom and a single input degree of
freedom can be stated as follows:

i OCkx(tz+/c) = Z ﬁ/f(ttM) (7

k=0 k=0

In the time domain, this model is commonly known as the ARMA(m, n) model. For the
general multiple input, multiple output case:

i o {X(ti 1)} = Z B 1{£(2i+ 1)} 8)
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If the discussion is limited to the use of free decay or impulse response function data, the
previous time domain equations can be simplified by noting that the forcing function can
be assumed to be zero for all time greater than zero. If this is the case, the [B.] coefficients
can be eliminated from the equations:

m

> [ [h(ti )] = 0. ©)

k=0

Equation (9) can be transposed and rearranged into a linear matrix equation. Additional
equations can be developed by repeating equation (9) at different time shifts into the data
t; until all data or a sufficient overdetermination factor is achieved. Note that at least one
time shift is required in order to accurately estimate conjugate modal frequencies.

In light of the above discussion, it is now apparent that most of the modal parameter
estimation processes available could have been developed by starting from a general
matrix polynomial formulation that is justifiable based upon the underlying matrix
differential equation. The general matrix polynomial formulation yields essentially the
same characteristic matrix polynomial equation, for both time and frequency domain
data. For the frequency domain data case, this yields

[0t ]s™ + [0t — 118" ="+ [otw—2]s" 24 -+ + [ow]| = 0. (10)
For the time domain data case, this yields
|[am]zm + [a71171]ZI”71 + [dn172]zn172 + -+ [a0]| = 0 (11)

Note that the same nomenclature for the coefficient matrices [a] was used in both
equation (10) and equation (11). This is done to demonstrate the similarity of the two
equations. While the two characteristic equations result in the same modal frequencies,
clearly, the coefficient matrices are not the same in the two domains.

From a theoretical consideration, the number of characteristic values (number of
modal frequencies, number of roots, number of poles, etc.) that can be determined
depends upon the size of the matrix coefficients involved in the model and the order of
the polynomial terms in the model. The characteristic matrix polynomial equation,
equation (10) or equation (11) has a model order of m and the number of modal
frequencies or roots that will be found from this characteristic matrix polynomial
equation will be m times the size of the coefficient matrices [a]. In terms of sampled data,
the time domain matrix polynomial results from a set of finite difference equations and
the frequency domain matrix polynomial results from a set of linear equations where
each equation is formulated at one of the frequencies of the measured data. This
distinction is important to note since the roots of the matrix characteristic equation
formulated in the time domain are in the z domain z, and must be converted to the
frequency domain 4, while the roots of the matrix characteristic equation formulated in
the frequency domain 4, are already in the desired domain (reference [22]). Note that the
roots that are estimated in the time domain are limited to maximum values determined
by the Sampling Theorem relationship (discrete time steps):

z, = e, A =0, + jo,, o, = Re[In z,/41], o, =Im[In z/4t]. (12, 13)

Much of the work concerned with modal parameter estimation since 1975 has involved
methodology for determining the correct model order for the modal parameter model.
The number of modal frequencies found will be equal to the modal order times the size
of the matrix coefficients, normally N, or ;. For a given algorithm, the size of the matrix
coefficients is normally fixed; therefore, determining the model order is directly linked to
estimating NN, the number of modal frequencies that are of interest in the measured data.
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2.4. SECOND STAGE MODAL IDENTIFICATION MODELS

Most current modal parameter estimation algorithms utilize frequency or impulse
response functions as the data, or known information, to solve for modal parameters.
The general equation that can be used to represent the relationship between the measured
frequency response function matrix and the modal parameters is shown in equation (1)
or, in the more common matrix product form, in the following way:

1 T
[H(w)]N,, x N; = [‘I’]N x 2N ’ilw_llJ o ov [Llow « Np» (14)

1
[H(CO)]{, x N, = [L]N, x 2N ’7JCU—/1J 2N x 2N[‘//EN X N, + (15)

Impulse response functions are rarely directly measured but are calculated from associ-
ated frequency response functions via the inverse FFT algorithm. The general relations
that can be used to represent the relationship between the impulse response function
matrix and the modal parameters are

[h(t)]N“ x Ny = [lﬂ]/v,, x 2N|—e)""J2N x 2N [L]g}v x N;» (16)
[h(l )]TVI x N, = [L]N,- x zlx're)"‘zjzjv x 2N [lp]gv X N, + (1 7)

Many modal parameter estimation algorithms have been originally formulated from
equations (14)—(17). However, a more general development for all algorithms is based
upon relating the above equations to a general matrix polynomial model.

2.5. GENERAL (TWO-STAGE) SOLUTION PROCEDURE

Based upon equations (2)—(17), most modern modal identification algorithms can be
outlined as follows:

First stage (modal frequencies and modal participation vectors).

Load measured data into linear equation form (equations (6) or (9)).

Find scalar or matrix autoregressive coefficients ([o]).

Solve matrix polynomial for modal frequencies.

Formulate companion matrix [23].

Obtain eigenvalues of companion matrix (4, or z,).

Convert eigenvalues from z, to 4, (time domain only).

Obtain modal participation vectors L, or modal vectors {{}, from eigenvectors of the
companion matrix.

Second stage (modal vectors and modal scaling).
e Find modal vectors and modal scaling from equations (14)—(17).

Further details concerning the mathematical structure and data configuration of these
algorithms are given in Appendices A—E.

3. DIFFERENCES IN MODAL PARAMETER ESTIMATION ALGORITHMS

The differences in modal parameter estimation algorithms arise from the way in which
different modal parameter estimation algorithms utilize the redundant information in the
experimental database. Since the actual number of parameters being estimated is quite
small compared to the amount of data available, the different numerical methods that are
used to solve for the modal parameters can have a great influence on the results. These
issues are discussed in the following sections.
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3.1. DATA SIEVING/FILTERING/DECIMATION

For almost all cases of modal identification, a large amount of redundancy or
overdetermination exists. This means that the number of equations available compared
to the number required to form an exactly determined solution, defined as the overdeter-
mination factor, will be quite large. Beyond some value of overdetermination factor, the
additional equations contribute little to the result but may add significantly to the
solution time. For this reason, the data space is often filtered (limited within minimum
and maximum temporal axis values), sieved (limited to prescribed input DOFs and/or
output DOFs) and/or decimated (limited number of equations from the allowable
temporal data) in order to obtain a reasonable result in the minimum time.

3.2. COEFFICIENT CONDENSATION

For the low order modal identification algorithms, the number of physical co-ordinates
(typically ,), which dictates the size of the coefficient matrices [er; ], is often much larger
than the number of desired modal frequencies N. For this situation, the numerical
solution procedure is constrained to solve for N, or 2N, modal frequencies. This can be
very time consuming and is unnecessary. The number of physical co-ordinates N, can be
reduced to a more reasonable size (N,~ N or N, =~ 2N) by using a decomposition
transformation from physical co-ordinates N, to the approximate number of effective
modal frequencies N,. Currently, singular value decompositions (SVD) or eigenvalue
decompositions (ED) are used to preserve the principal modal information prior to
formulating the linear equation solution for unknown matrix coefficients [24-26]. In most
cases, even when the spatial information must be condensed, it is necessary to use a
matrix dimension greater than the number of effective modal frequencies N, to compen-
sate for distortion errors or noise in the data and to compensate for the case where the
location of the transducers is not sufficient to totally define the structure:

[H'] = [T][H], (18)

where [H'] is the transformed (condensed) frequency response function matrix, sometimes
called the virtual frequency response function matrix; [T] is the transformation matrix;
[H] is the original FRF matrix.

The difference between the two techniques lies in the method of finding the transform-
ation matrix, [T]. Once [H] has been condensed, however, the parameter estimation
procedure is the same as for the full data set. Because the data eliminated from the
parameter estimation process ideally corresponds to the noise in the data, the poles of the
condensed data are the same as the poles of the full data set. However, the participation
factors calculated from the condensed data may need to be expanded back into the full
space:

[¥] = [TI'TY], (19)
where [¥] is the full-space participation matrix and [W’] is the condensed-space partici-

pation matrix.

3.2.1. Eigenvalue decomposition

In the eigenvalue decomposition method (sometimes referred to as Principal Com-
ponent Analysis [24]), the [T] matrix is composed of the eigenvectors corresponding to the
N, largest eigenvalues of the power spectrum of the FRF matrix as follows:

[H(w)]w, « v [H(@)]¥x, < v, = [VIIAIIV]”. (20)
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The eigenvalues and eigenvectors are then found, and the [T] matrix is constructed from
the eigenvectors corresponding to the N, largest eigenvalues:

[Tly, v, = [{vij{va) - i) v 315 (21)

where {v;} is the N, x 1 eigenvector corresponding to the kth eigenvalue.

3.2.2. Singular value decomposition

The singular value decomposition condensation technique is similar to the egenvalue-
based technique, but operates on the FRF matrix directly instead of the power spectrum
of the FRF matrix. The basis for this technique is the singular value decomposition
[23-27], by which the matrix [H] is broken down into three component parts, [U], [X],
and [V]:

[H]y, « v, = [Uls, o [E]s, o0 [V v, 2)

The left-singular vectors corresponding to the N, largest singular values are the first N,
columns of [U]. These become the transformation matrix [T]:

[Tl v, = Mg - {uep - {u T 23)

where {u;} is the kth column of [U], which corresponds to the kth singular value.

3.3. EQUATION CONDENSATION

Equation condensation methods are used to reduce the number of equations generated
from measured data to more closely match the number of unknowns in the modal
parameter estimation algorithms. There are a large number of condensation algorithms
available. Based upon the modal parameter estimation algorithms in use today, the three
types of algorithms most often used are:

Least Squares: LS, weighted least squares (WLS), TLS or DLS are used to minimize
the squared error between the measured data and the estimation model.

Transformation: The measured data are reduced by approximating the data by the
superposition of a limited (reduced) set of independent vectors. The number of signifi-
cant, independent vectors is chosen equal to the maximum number modes that are
expected in the measured data. This set of vectors is used to approximate the measured
data and used as input to the parameter estimation procedures. SVD is an example of
one of the more popular transformation methods.

Coherent Averaging: Coherent averaging is another popular method for reducing the
data. In the coherent averaging method, the data are weighted by performing a dot
product between the data and a weighting vector (spatial filter). Information in the data
which is not coherent with the weighting vectors is averaged out of the data.

The least squares and the transformation procedures tend to weight those modes of
vibration which are well excited. This can be a problem when trying to extract modes
which are not well excited. The solution is to use a weighting function for condensation
which tends to enhance the mode of interest. This can be accomplished in a number of
ways: in the time domain, a spatial filter or a coherent averaging process can be used to
filter the response to enhance a particular mode or set of modes; in the frequency
domain, the data can be enhanced in the same manner as the time domain plus the data
can be additionally enhanced by weighting the data in a frequency band near the natural
frequency of the mode of interest. Obviously, the type of equation condensation method
that is utilized in a modal identification algorithm has a significant influence on the
results.
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3.4. MODEL ORDER DETERMINATION

Much of the work concerned with modal parameter estimation since 1975 has involved
methodology for determining the correct model order for the modal parameter model.
The number of modal frequencies found will be equal to the model order times the size
of the matrix coefficients, normally N, or N;. For a given algorithm, the size of the matrix
coefficients is normally fixed; therefore, determining the model order is directly linked to
estimating NN, the number of modal frequencies that are of interest in the measured data.
As has always been the case, an estimate for the minimum number of modal frequencies
can be easily found by counting the number of peaks in the frequency response function
in the frequency band of analysis. This is a minimum estimate of N since the frequency
response function measurement may be at a node of one or more modes of the system,
repeated roots may exist and/or the frequency resolution of the measurement may be too
coarse to observe modes that are closely spaced in frequency. Several measurements can
be observed and a tabulation of peaks existing in any or all measurements can be used
as a more accurate minimum estimate of N. A more automated procedure for including
the peaks that are present in several frequency response functions is to observe the
summation of frequency response function power. This function represents the auto
power or auto moment of the frequency response functions summed over a number of
response measurements and is normally formulated as

Hypol@) = 3 S Hyy(0)HE (o). (24)

p=1lg=1

These simple techniques are extremely useful but do not provide an accurate estimate of
model order when repeated roots exist or when modes are closely spaced in frequency.
For these reasons, an appropriate estimate of the order of the model is of prime concern
and is the single most important problem in modal parameter estimation.

In order to determine a reasonable estimate of the model order for a set of representa-
tive data, a number of techniques have been developed as guides or aids to the user.
Much of the user interaction involved in modal parameter estimation involves the use of
these tools. Most of the techniques that have been developed allow the user to establish
a maximum model order to be evaluated (in many cases, this is set by the memory limits
of the computer algorithm). Data are acquired based upon an assumption that the model
order is equal to this maximum. In a sequential fashion, the data is evaluated to
determine if a model order less than the maximum will describe the data sufficiently. This
is the point that the user’s judgement and the use of various evaluation aids becomes
important. Some of the commonly used techniques are: measurement synthesis and
comparison (curve-fit), error chart, stability diagram, mode indication functions, and
rank estimation.

3.4.1. Measurement synthesis

One of the simplest techniques is to synthesize an impulse response function or a
frequency response function and compare it to the measured function to see if modes
have obviously been missed. This curve fitting procedure is also used as a measure of the
overall success of the modal parameter estimation procedure. Obviously, a poor compari-
son can be due to many reasons, an incorrect model order simply being one of the
possibilities. A good approach is to compare measured and synthesized data where the
measured data was used to generate the model used for the synthesized data. A better
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approach is to compare measured and synthesized data where the measured data was not
used to generate the model used for the synthesized data.

The comparison can be further evaluated by evaluating the normalized error between
the measured and synthesized data, computed at each frequency. This error is often
plotted on the same plot as the comparison between the measured and synthesized data.
The visual match can also be given a numerical value if a correlation coefficient, similar
to coherence, is estimated. The basic assumption is that the measured frequency response
function and the synthesized frequency response function should be linearly related
(unity) at all frequencies. This coefficient is referred to as the synthesis correlation
coefficient:

wM=%=ZfM@%@MZfMMW@EI%@%@L

w=wm] =0 w=wm]

(25)
where H,,(w) = measurement, H,, (o) = synthesis.

3.4.2. Error chart

Another method that has been used to indicate more directly the correct model order,
for high order model algorithms, is the error chart. Essentially, the error chart is a plot
of error in the model as a function of increasing model order. The error in the model is
a normalized quantity that represents the ability of the model to predict data that was
not involved in the estimate of the model parameters. For example, when using measured
data in the form of an impulse response function, only a small percentage of the total
number of data values are involved in the estimate of modal parameters. The error in the
model can then be estimated by the ability of the model to predict data points not
utilized in the estimation of the model. When the model order is insufficient, this model
error will be large but when the model error reaches the “correct” value, further increase
in the model order will not result in a further decrease in the error. Figure 3 is an
example of an error chart.
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Figure 2. Model order determination: synthesis comparison. ——, Measured data; ---, reconstructed data.
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Figure 3. Model order determination: error chart for increasing model order.

3.4.3. Stability/consistency diagram

A further enhancement of the error is the stability diagram. The stability diagram has
been developed in the same fashion as the error chart and involves tracking the estimates
of frequency, damping, and possibly modal participation factors as a function of model
order. As the model order is increased, more and more modal frequencies are estimated
but, hopefully, the estimates of the physical modal parameters will stabilize as the correct
model order is found. For modes that are very active in the measured data, the modal
parameters will stabilize at a very low model order. For modes that were poorly excited
in the measured data, the modal parameters may not stabilize until a very high model
order is chosen. Nevertheless, the non-physical (computational) modes will not stabilize
at all during this process and can be sorted out of the modal parameter data set more
easily. Note that inconsistencies (frequency shifts, leakage errors, etc.) in the measured
data set will obscure the stability and render the stability diagram difficult to use.
Normally, a tolerance, in percentage, is given for the stability of each of the modal
parameters that are being evaluated. Figure 4 is an example of a stability diagram. In
Figure 4, a summation of the frequency response function power is plotted on the
stability diagram for reference. Other mode indication functions can be plotted against
the stability diagram for reference.

Stability diagrams have traditionally only been used for the high order model cases,
such as the LSCE or the PTD. If the concept of stability is broadended to include
consistency, a stability/consistency diagram can be constructed for almost any modal
parameter estimation method where the vertical axis is a function of a change in model
order, a change in the data subset used to estimate the modal frequencies, a change in
modal parameter estimation method or, for low order methods, a change in the number
of singular values used to represent the data matrix.

3.4.4. Mode indication functions

Mode indication functions (MIF) are normally real-valued, frequency domain func-
tions that exhibit local minima or maxima at the natural frequencies of real normal
modes. The number of mode indication functions that can be formulated is equal to the
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number of references available in the measured data. The primary mode indication
function will exhibit a local minimum or maximum at each of the natural frequencies of
the system under test. The secondary mode indication function will exhibit a local
minimum or maximum at repeated or pseudo-repeated roots of order two or more.
Further mode indication functions yield local minima or maxima for successively higher
orders of repeated or pseudo-repeated roots of the system under test.

3.4.4.1. Multivariate mode indication function (MvMIF). The MvMIF is based upon
finding a force vector {F} that will excite a normal mode at each frequency in the
frequency range of interest [28]. If a normal mode can be excited at a particular
frequency, the response to such a force vector will exhibit the 90° phase lag characteristic.
Therefore, the real part of the response will be as small as possible particularly when
compared to the imaginary part or the total response. In order to evaluate this
possibility, a minimization problem can be formulated as

1 {F}T[HReal]T[HReal]{F} )
HrfrHanl {F} " (Hrea] THrea] + [Himag] [Himae){F} g

This minimization problem is similar to a Rayleigh quotient and it can be shown that the
solution to the problem is found by finding the smallest eigenvalue A, and the
corresponding eigenvector {F}, of the problem

[HReal]T[HReal]{F} = ;L([HReal]T[HReal] + [Hlmag]T[Hlmag]){F}- (27)

The above eigenvalue problem is formulated at each frequency in the frequency range of
interest. Note that the result of the matrix product [Hgea] [Hrea] and [Himg] [Himae] in
each case is a square, real-valued matrix of a size equal to the number of references in
the measured data N; x N;. The resulting plot of a mode indication function for a seven
reference case can be seen in Figure 5.

(26)

3.4.4.2. Complex mode indication function (CMIF). An algorithm based on singular
value decomposition (SVD) methods applied to multiple reference FRF measurements,
identified as the CMIF, was first developed for traditional FRF data in order to identify
the proper number of modal frequencies, particularly when there are closely spaced or
repeat modal frequencies [21]. Unlike the MvMIF, which indicates the existence of real
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Figure 4. Model order determination: stability diagram. O, Not stable; +, stable frequency; x, stable pole;
*_ stable pole and vector.
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Figure 5. Multivariate mode indication function.

normal modes, CMIF indicates the existence of real normal or complex modes and the
relative magnitude of each mode. Furthermore, MvMIF yields a set of force patterns that
can best excite the real normal mode, while CMIF yields the corresponding mode shape
and/or modal participation vector.

The CMIF is defined as a set of plots, normally in log format, of the singular values
of the frequency response function matrix across a frequency range of interest. Each plot
represents the nth singular value found for each of the discrete frequencies in the
frequency range of interest. The peaks detected in the CMIF indicate the existence of
modes, and the corresponding frequencies of these peaks give the damped natural
frequencies for each mode. When peaks occur in the first (largest) and successive CMIF
plots at the same frequency, this is an indication of a repeat root. In the application of
CMIF to traditional modal parameter estimation algorithms, the number of modes
detected in CMIF determines the minimum number of degrees of freedom of the system
equation for the algorithm. A number of additional degrees of freedom may be needed
to take care of residual effects and noise contamination.

[H(w)] = [U@)][E(@)][V(@)]", (28)

where N, is the number of effective modes; the effective modes are the modes that
contribute to the response of the structure at this particular frequency w, [U(w)] is the
left singular matrix of size N, x N., which is an unitary matrix; [X(w)] is the singular
value matrix of size N, x N,, which is a diagonal matrix; [V(w)] is the right singular
matrix of size N, x N;, which is also an unitary matrix.

Figure 6 represents a typical CMIF for a multiple reference set of data. It must be
noted that not all peaks in CMIF indicate modes. Errors such as noise, leakage,
non-linearities and/or a cross-over effects can also make a peak. The cross-over effect is
due to the way the CMIF is often plotted.

Since the mode shapes that contribute to each peak do not change much around each
peak, several adjacent spectral lines from the FRF matrix can be used simultaneously for
a better estimation of mode shapes. By including several spectral lines of data in the
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singular value decomposition calculation, the effect of some measurement errors can be
minimized.

3.4.5. Rank estimation

A more recent model order evaluation technique involves the estimate of the rank of
the matrix of measured data. An estimate of the rank of the matrix of measured data
gives a good estimate of the model order of the system. Essentially, the rank is an
indicator of the number of independent characteristics contributing to the data. While
the rank cannot be calculated in an absolute sense, the rank can be estimated from the
singular value decomposition (SVD) of the matrix of measured data. For each mode of
the system, one singular value should be found by the SVD procedure. The SVD
procedure finds the largest singular value first and then successively finds the next largest.
The magnitude of the singular values are used in one of two different procedures to
estimate the rank. The concept that is used is that the singular values should go to zero
when the rank of the matrix is exceeded. For theoretical data, this will happen exactly.
For measured data, due to random errors and small inconsistencies in the data, the
singular values will not become zero but will be very small. Therefore, the rate of change
of the singular values is used as an indicator rather than the absolute values. In one
approach, each singular value is divided by the first (largest) to form a normalized ratio.
This normalized ratio is treated much like the error chart and the appropriate rank
(model order) is chosen when the normalized ratio approaches an asymptote. In another
similar approach, each singular value is divided by the previous singular value forming a
normalized ratio that will be approximately equal to one if the successive singular values
are not changing magnitude. When a rapid decrease in the magnitude of the singular
value occurs, the ratio of successive singular values drops (or peaks if the inverse of the
ratio is plotted) as an indicator of rank (model order) of the system. Figure 6 shows
examples of these rank estimate procedures.

4. CURRENT MODAL IDENTIFICATION METHODS

Using the concepts developed in the previous section, the most commonly used modal
identification methods are summarized in Table 2. The high order model is typically used

10

10

10—2 1 | 1 | 1
0 1000 2000 3000

Frequency (Hz)

Figure 6. Complex mode indication function.
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TABLE 2

Summary of modal parameter estimation algorithms

Domain Matrix polynomial order Coefficients
A A A
r Al N A

Algorithm Time Freq Zero Low High Scalar Matrix
CEA [ J [ J [ J

LSCE ) ) )

PTD o [ ] N; x N;
ITD ) ) N, x N,
MRITD [ ] [ ] N, x N,
ERA o o N, x N,
PFD [ ] [ ] N, x N,
SFD ) ) N, x N,
MRFD [ ] [ ] N, x N,
RFP ) ) o Both
OP ] (] () Both
CMIF o o N, X N;

for those cases where the system is undersampled in the spatial domain. For example, the
limiting case is when only one measurement is made on the structure. For this case, the
left side of the general linear equation corresponds to a scalar polynomial equation with
the order equal to or greater than the number of desired modal frequencies. This type of
high order model will yield significant numerical problems for the frequency domain case,
unless the model order and/or frequency information is severely limited.

The low order model is used for those cases where the spatial information is complete.
In other words, the number of physical co-ordinates is greater than the number of desired
modal frequencies. For this case, the order of the left side of the general linear equations

—~
)
Rasd

107

10°

(b) ‘ ‘
0 20 40 60
Approximate number of poles

Figure 7. Model order determination: rank estimation. (a) Normalized singular values and (b) ratio of
successive singular values for model order 15.

107t
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(10) or (13) is equal to one or two. Low order model methods are numerically stable in
both time and frequency domain formulations but require more spatial data acquired in
a consistent fashion.

The zero order model corresponds to a case where the temporal information is
neglected and only the spatial information is used. These methods directly estimate the
modal vectors as a first step. In general, these methods are programmed to process data
at a single temporal condition (frequency or time). In this case, the method is essentially
equivalent to the SDOF methods which have been used with frequency response
functions. In other words, the zeroth order matrix polynomial model compared to the
higher order matrix polynomial models is similar to the comparison between the SDOF
and MDOF methods used historically in modal parameter estimation.

5. SUMMARY—FUTURE TRENDS

Modal parameter estimation is probably one of the most misunderstood aspects of the
experimental modal analysis process. Since most modal parameter estimation methods
are mathematically intimidating, many users do not fully understand the ramifications of
the decisions made during the measurement stages as well as later in the modal parameter
estimation process. Ideally, by consolidating the conceptual approach and unifying the
theoretical development of modal identification algorithms, increased understanding,
with respect to general advantages and disadvantages of different algorithms, can be
achieved. This sort of overview of modal parameter estimation can be used simply as a
guide toward further study and understanding of the details of the individual modal
identification algorithms.

Immediate future trends in modal identification will respond to those situations that
cannot be adequately solved today. First of all, specific attention will be given to
methodology needed to estimate modal parameters for heavily damped systems, particu-
larly systems with significant modal density. Second, since the measured data used for
most modal identification algorithms yields a highly overdetermined solution, increased
attention will be given to estimating the statistical information that describes the
uncertainty associated with each modal parameter estimate. Finally, in order to address
needs of traditional modal identification and needs of control-structure interaction,
modal identification algorithms need to be developed that can easily incorporate known
or fixed modal parameters into a solution for remaining unknown modal parameters.

REFERENCES

1. R.J. ALLEMANG and D. L. BRowN 1987 Experimental Modal Analysis and Dynamic Component
Synthesis, USAF Technical Report, Contract No. F33615-83-C-3218, AFWAL-TR-87-3069, 3.
Modal parameter estimation.

2. D. L. BROWN, R. J. ALLEMANG, R. D. ZIMMERMAN and M. MERGEAY 1979 SAE Paper Number
790221, SAE Transactions 88, 828-846. Parameter estimation techniques for modal analysis.

3. H. VoLp, J. KUNDRAT, T. RocKLIN and R. RUSSELL 1982 SAE Transactions 91, 815-821. A
multi-input modal estimation algorithm for mini-computers.

4. H. VoLbp and T. ROCKLIN 1982 Proceedings of the International Modal Analysis Conference,
542-548. The numerical implementation of a multi-input modal estimation algorithm for
mini-computers.

5. K. Fukuzono 1986 M.S. Thesis, Dept. of Mechanical and Industrial Engineering, University
of Cincinnati. Investigation of multiple-reference Ibrahim time domain modal parameter
estimation technique.



318 R. J. ALLEMANG AND D. L. BROWN

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. R. IBraHmM and E. C. MikuLcik 1977 Shock and Vibration Bulletin 47,
183-198. A method for the direct identification of vibration parameters from the free response.
J.-N. JuanG and R. S. Paprpa 1985 AIAA Journal of Guidance, Control and Dynamics 8,
620-627. An eigensystem realization algorithm for modal parameter identification and model
reduction.

. R. W. LoNGMAN and J.-N. JUANG 1989 AIAA Journal of Guidance, Control and Dynamics 12,

647-652. Recursive form of the eigensystem realization algorithm for system identification.
P. EBERSBACH and H. IRRETIER 1989 Journal of Analytical and Experimental Modal Analysis 4,
109—116. On the application of modal parameter estimation using frequency domain algorithms.
F. LEMBREGTS, J. L. LEURIDAN and H. VAN BRUSSEL 1989 Mechanical Systems and Signal
Processing 4, 65-76. Frequency domain direct parameter identification for modal analysis: state
space formulation.

F. LEONARD 1988 Journal of Analytical and Experimental Modal Analysis 3, 69—76. ZMODAL.:
a new modal identification technique.

J. LEURIDAN 1984 Doctoral Dissertation, University of Cincinnati. Some direct parameter model
identification methods applicable for multiple input modal analysis.

H. G. NATKE 1988 Probabilistic Engineering Mechanics 3, 28-35. Updating computational
models in the frequency domain based on measured data: a survey.

L. ZHaNG, H. KanDa, D. L. BRowN and R. J. ALLEMANG 1985 ASME Paper No. 85-DET-106.
A polyreference frequency domain method for modal parameter identification.

R. N. CorpoLINO 1981 SAE Paper No. 811046. A simultaneous frequency domain technique
for estimation of modal parameters from measured data.

R. R. CraiG, A. J. KurbpiLa and H. M. KM 1990 Journal of Analytical and Experimental
Modal Analysis 5, 169-183. State-space formulation of multi-shaker modal analysis.

VAN DER AUWERAER, H. SNOEYS R. and LEURIDAN J. M. ASME Journal of Vibration, Acoustics,
Stress and Reliability in Design A Global Frequency Domain Modal Parameter Estimation
Technique for Mini-Computers.

M. RicHARDSON and D. L. FORMENTI 1982 Proceedings of the International Modal Analysis
Conference, 167-182. Parameter estimation from frequency response measurements using
rational fraction polynomials.

C. Y. SHH 1989 Doctoral Dissertation, University of Cincinnati. Investigation of numerical
conditioning in the frequency domain modal parameter estimation methods.

H. VoLp 1986 Proceedings of the International Seminar on Modal Analysis, Katholieke
University of Leuven, Belgium. Orthogonal polynomials in the polyreference method.

C. Y. SHH, Y. G. Tsugl, R. J. ALLEMANG and D. L. BROWN 1988 Mechanical System and
Signal Processing 2, 367-377. Complex mode indication function and its application to spatial
domain parameter estimation.

. E. 1. Jury 1964 Theory and Application of the z-Transform Method. New York: John Wiley.
. J. H. WILKINSON 1965 The Algebraic Eigenvalue Problem. Oxford University Press, pp. 12, 13.

I. T. JoLLIFFE 1986 Principal Component Analysis. New York: Springer-Verlag.

. G. STRANG 1988 Linear Algebra and Its Applications. San Diego: Harcourt Brace Jovanovich;

third edition.

. L. LyuNG 1987 System Identification: theory for the user. Englewood Cliffs, N.J.: Prentice-Hall.
. C. L. LawsonN and R. J. HANSON 1974 Solving Least Squares Problems. Englewood Cliffs, N.J.:

Prentice-Hall.

. R. WiLLiams, J. CROWLEY and H. VoLD 1985 Proceedings of the International Modal Analysis

Conference, pp. 66-70. The multivariable mode indicator function in modal analysis.

APPENDIX A: MODAL FREQUENCY PARTICIPATION—TIME DOMAIN

ALGORITHMS
Typical algorithms:
High order algorithms Low order algorithms
complex exponential (CE) Ibrahim time domain (ITD)
least squares complex exponential (LSCE) multiple-reference time domain
polyreference time domain (PTD) (MRITD)

eigensystem realization algorithm
(ERA)
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General linear equation formulation:
High order
m = 2N/N; or mN; = 2N
matrix coefficients (N, x N;) when N,> N,
measurement matrix [h(z#)] needs to be transposed when N> N,

Low order
m=1 or m =2 with 2N, = 2N
matrix coefficients (2N, x 2N, or N, X N,) when N,> N,
measurement matrix [h(#)] needs to be transposed when N,> N,

Basic equation:

]
[[h(z)] [h(z)] -~ [h(z )] : = —[h(z,)], (A.D)

[O(m, l]

where

h(t )y, x vy =i (tie)  Wo(tivk) ha(tice) - hy(tieo)]

APPENDIX B: MODAL FREQUENCY PARTICIPATION—
FREQUENCY DOMAIN ALGORITHMS

Typical algorithms:

High order Low order
Rational fraction polynomial (RFP) simultaneous frequency domain
(SFD)
Orthogonal polynomial (OP) multi-reference frequency domain
(MRFD)

frequency domain equivalent to
ITD, MRITD, ERA

polyreference frequency domain
(PFD)

General linear equation formulation:
High order
m = 2N/N; or mN; = 2N
matrix coefficients (&V; x N;) when N,> N;
measurement matrix [H(wy)] needs to be transposed when N;> N,
Low order
m=1 or m =2 with 2N, = 2N
matrix coefficients (2N, x 2N, or N, X N,) when N,> N,
measurement matrix [H(w;)] needs to be transposed when N,> N,
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Basic equation:

[20]
[ou]

~ ~ [ m— 1]
([H] [R]] a[ sl |~ — (joo)"[H()], (B.1)

(]

(8]

where
[A] = [[H(wo)(o) [H(o)] (o) TH(eo)] - - - (o)~ ' [H(eo)],
[R] = [—[R] — (j)'[R] — (oo )’[R] - - - — (oo [RI],
[H(@o)ly, v, = [Hp(@)] [Hp(o)] - [Hy(@d] - [Hy (@],

[Rly,«n,=[00] [0] --- [I] --- [O]]

APPENDIX C: COMPANION MATRIX—MODEL PARTICIPATION VECTORS

Companion matrix solution:

[ —lot-1]  —[ow-a] =[] - o —[o] —[ou]  —[o] ]
[1] [0] [0] c e 0] [0] [0]
[0] 1] [0] e [0] [0] [0]
C] = [?] [?] [?1 [?] [?] [?] ’
[0] [0] [0] e [0] [0] [0]
[0] [0] [0] R | | [0] [0]
[0] [0] [0] e ]0] [ [0]
(C.1)
[CHX} = A{X}, [CI{X} = A[I{X}. (C2,3)

The eigenvectors that can be found from the eigenvalue—eigenvector solution utilizing the
companion matrix may, or may not, be useful in terms of modal parameters. The
eigenvector that is found, associated with each eigenvalue, is of length model order times
matrix coefficient size. In fact, the unique (meaningful) portion of the eigenvector is of
length equal to the size of the coeflicient matrices and is repeated in the eigenvector a
model order number of times. Each time the unique portion of the eigenvector is
repeated, the unique portion is multiplied by a scalar multiple of the associated modal
frequency.
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Therefore, the eigenvectors of the companion matrix have the form

2y,

2 b
2w,
20,

{0}, (C.4)

where {¢}, is the rth eigenvector of the companion matrix [C] associated with eigenvalue
2., and {{y}, is the rth modal vector of the physical system associated with modal
frequency 4,.

APPENDIX D: MODAL RESIDUE—MODAL SCALING ALGORITHMS
Time domain estimation (multiple references):
{hpq([i)}f\/,- x1 = [L]N,- x 2N re;vflti_IZN x zw{\p}gw x1s (D. 1)

where N, = number of time points, N, = 2N; the above equation is repeated N, times,

h, (1) (e 0 0 0
hpz([i) 0 e).zz, 0 0

(@)} = 3 hs() 5 =] 0 0 e 0 (D.2.3)
h,, (1) 0 0 0 et ]

The residues are calculated from the modal participation vectors L and the modal
coefficients  (A4,, = L,{,). Note that if one column ¢ of the modal participation matrix
L is normalized to unity, the modal coefficients that are found will be equal to the
residues for that reference 4,, .

W Ly Lo Ls -+ Loy
Yp Ly Ln Lyx -+ Ly

W} = 7% > [L,] = Ly Ly Ly -+ Lay (D4,5)
Ypon | Lyva Lya Lyz -+ Lo

APPENDIX E: MODAL RESIDUE—MODAL SCALING ALGORITHMS

Frequency domain estimation (multiple references):

1 T
{Hpq (U)i)}N,- x1 = [L]N,v x 2N|—m_lzw x 2N {‘l’}zN x 15 (El)
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where N, = number of spectral lines, N, > 2N; the above equation is repeated N, times.

Hnl(wi)
Hy(w))
{Hﬁq(wi)} = H (i) >

H/)q (w,)

/G, — A1) 0 0
0  1Goi—7%) 0

o — 7

Jwi

0 0 0

1/(jw; — Zaw) ]

(E.2)

(E.3)

The residues are calculated from the modal participation vectors L and the modal
coefficients  (A4,, = L, ). Note that if one column ¢ of the modal participation matrix
L is normalized to unity, the modal coefficients that are found will be equal to the

residues for that reference A4, .

l,bpl Ll 1 LIZ
lp!’Z L Ly
{\I’l”} = lplﬂ 5 [Lr‘zj] = L31 L32

l,prN LNII LN,z

L 12N
L22N
L32N

(E4,95)



