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STRUCTURAL INTENSITY CALCULATIONS FOR
COMPLIANT PLATE–BEAM STRUCTURES

CONNECTED BY BEARINGS
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(Received 19 February 1996, and in final form 3 September 1996)

A computational strategy, based on component mobility and modal synthesis
approaches, is described to calculate structural power flow through multi-dimensional
connections such as rolling element bearings and joints. Research issues are discussed in
the context of narrow band frequency analysis methods for vibration energy transmission
and dissipation. Through the example case of a beam (shaft), ball bearings and an elastic
machinery casing plate, the structural intensity calculation procedure is illustrated. A new
pre-synthesis algorithm is outlined which is utilized to determine the effective stiffness of
ball bearings while accounting for the compliance of the neighboring structure. The finite
element method is used to facilitate computations and to generate structural intensity
results in the post-synthesis mode. Sample results are included along with a discussion of
various research issues.
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1. INTRODUCTION

The use of vibratory power as a quantifier of structure-borne noise is gaining wider
acceptance and is emerging as a new trend in the dynamic analysis of structures and
machines [1–4]. For instance, from vibration isolation theory [5] it can be shown that the
power flow between components could be minimized by maximizing the impedance
mismatch between them [6, 7]. However in many realistic machines and structures, an
impedance mismatch may not exist between components, and typically the compliance of
the external casing may be the same order of magnitude as the internal machine [8]. The
purpose of this paper is to address such problems with potential application to a generic
machinery casing which may be treated as a compliant receiver—in this case, a clamped
plate. The rolling element bearings, which are installed in the plate, will also be modelled
with an added but necessary complexity in this paper. Moreover, a new pre-synthesis
algorithm is proposed which calculates the bearing stiffnesses while accounting for the
compliance of the neighboring structure. Also, a post-synthesis algorithm is developed to
compute spatially distributed vibratory power flows, such as structural intensities, and its
technical feasibility is demonstrated with a plate–bearing–beam system. To further
illustrate the difficulties associated with realistic compliant structures, a specific
mathematical model is utilized which simulates shaft–bearing–casing plate systems
(Figure 1). The model developed for the case where the dimension of the casing plate is
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Figure 1. Plate–beam structure with bearing: (a) hole modelled as single node, (b) with finite bearing hole;
A=source (shaft), B=path (bearing), C=receiver (plate).

similar to that of the bearing (Figure 1(a)) requires special attention. The model may be
applied to the simpler case where the dimension of the casing plate is much larger than
that of the bearings (Figure 1(b)). The procedures proposed in this article may be extended
to multijoint, multisource systems, just as the original synthesis procedures were in a
previous paper by Rook and Singh [9]. Narrow band harmonic excitation will be assumed
throughout.

2. LITERATURE REVIEW

Many articles have addressed the calculation of vibratory power flow through structures
[1–9]. However much of the research has been understandably conducted on very simple
structures such as frameworks of one-dimensional beams or of rods [2–4]. The study of
vibratory power flow in more complex structures such as those comprised of plates has
given rise to the use of structural intensity methods [10–13]. For instance, Gavric and Pavic
[10] and Pavic [11] analyzed the intensity for a conservative simply supported plate with
discrete viscous dampers at particular points. It was shown that if modal truncation effects
were avoided, then the intensity field identifies power sources and sinks quite well. Hambric
[12] considered a dissipative cantilever plate with stiffeners using the finite element method.
The intensity field was calculated at the nodes as a product of the forces and velocities,
though it was noted the method resulted in power flow results which were discontinuous
across element boundaries. Pascal et al. [13] studied a square plate with localized damping
and calculated the intensities in the wavenumber domain from experimental vibration
measurements. The divergence of the intensity was demonstrated as an effective means to
visualize dissipation. Bouthier and Bernhard [14, 15] more recently calculated the
structural intensity in plates and membranes using the wave functions for an infinite
medium resulting in ‘‘smoothed’’ response when applied to a finite structure. None of the
above investigators, except Hambric [12], have considered the in-plane motion of the plate
in their calculations.

Consideration of the in-plane motions of the plate becomes important when the joint
is capable of transmitting generalized forces in all directions. The modelling of the rolling
element bearing embedded in a compliant structure consequently becomes important as
well. Much of the prior literature on bearings [16] models the bearing stiffness matrix as
diagonal, containing only translational stiffnesses. However, recently Lim and Singh [17]
proposed a new stiffness matrix formulation which included the off-diagonal terms to
account for transmission of moments. The results from this model were demonstrated on
a simple gearbox system and much improved over those from previous studies. Van
Roosmalen [18] used the same formulation on a more complex gearbox model in order
to predict the system’s modes. All of these studies [16–21] recognized that bearings have
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non-linear static force–deflection characteristics and hence these must be linearized in the
analysis. However, these studies performed the linearization upon the bearings as if they
were rigidly mounted. Yet, Prebil et al. [22] recognized the stiffness of the surrounding
structure affects the static load distribution within the bearings and hence the linearization
of the bearings must be done in conjunction with the rest of the assembly.

3. STRUCTURAL INTENSITIES FOR AN ELASTIC PLATE

The utility of intensity to qualify vibratory power flow is not quite apparent until one
considers 2-D or 3-D structures. For a 2-D structure such as a plate (Figure 2), the time
averaged structural intensity components are given as

Ix = �−sxj u̇j �t , Iy = �−syj u̇j �t , j= x, y, z. (1a, b)

For assumed harmonic solutions, these time averaged intensities (I) may be spatially
integrated over the thickness (z) as follows: also refer to Appendix A for the definition
of symbols:

Ix (x, y; v)=−1
2 Re 0g

+h/2

−h/2

u̇*x sxx + u̇*y sxy + u̇*z sxz dz1
=−1

2 Re 0g
+h/2

−h/2

u̇*x E	 '(oxx + noyy )+ u̇*y G	 oxy + u̇*z G	 oxz dz1,

Iy (x, y; v)=−1
2 Re 0g

+h/2

−h/2

u̇*x syx + u̇*y syy + u̇*z syz dz1
=−1

2 Re 0g
+h/2

−h/2

u̇*x G	 oyx + u̇*y E	 '(oyy + noxx )+ u̇*z G	 oyz dz1, (2)

Figure 2. Plate finite element for structural intensity calculation: W, interior (integration) points.
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where E	 '=E	 /(1− n2), G	 =E	 /(1+ n) and E	 is the complex modulus of elasticity,
E	 =E(1+ ih) or E	 =E(1+ izv) representing structural or viscous damping, respectively.
In the authors’ synthesis procedures [9], one considers only discrete vibratory systems,
therefore the structural intensity will be developed in the context of the finite element
method (FEM). For the sake of simplicity the equations for rectangular plate elements will
be developed though the same concept may be performed for other geometries. From the
Kirchhoff’s thin plate theory [23] including flexure and in-plane motion, the displacements
are

ux = u− z 1w/1x, uy = v− z 1w/1y, uz =w, (3a–c)

where u and v are in-plane motions in the x and y directions, respectively, and w is the
transverse motion. In-plane motions are considered in the present analysis unlike prior
studies [10, 11, 13], since the excitation transmitted through the joint may generally couple
with both the transverse and in-plane degrees of freedom [5]. The elastic strains are given
by

oxx = 1ux /1x, oyy = 1uy /1y, oxy = oyx = 1ux /1y+ 1uy /1x,

oxz = 1ux /1z+ 1uz /1x=0, oyz = 1uy /1z+ 1uz /1y=0. (3d–h)

Since the joints may transmit forces and moments in all directions, the finite element
formulation incorporates both in-plane and flexural motions of the plate. Organizing the
shape functions, S, and displacements, u, according to the four corner nodes (Figure 2)
yields

u1 u1

u2 u2

ux =[Sx
1 , Sx

2 , Sx
3 , Sx

4 ]g
G

G

F

f
u3

h
G

G

J

j

=ST
x u, uy =[Sy

1, Sy
2, Sy

3, Sy
4]g
G

G

F

f
u3

h
G

G

J

j

=ST
y u, (4a, b)

u4 u4

where

Sx
m =

1
lx

[lx SI
m , 0, −z 1SB

3m−2 /1x̄, −z 1SB
3m−1 /1x̄, −z 1SB

3m /1x̄],

Sy
m =

1
ly

[0, ly SI
m , −z 1SB

3m−2 /1ȳ, −z 1SB
3m−1 /1ȳ, −z 1SB

3m /1ȳ],

um = {ux , uy , uz , ux , uy}T
m , m=1, 2, 3, 4. (4c–e)

The in-plane (I) and the out-of-plane bending (B) shape functions above are extracted from
reference [23] as

SI
1 = (1− x̄) (1− ȳ), SI

2 = (1− x̄)ȳ, SI
3 = x̄ȳ, SI

4 = x̄(1− ȳ),

SB
1 = (1+2x̄) (1− x̄)2(1+2ȳ) (1− ȳ)2, SB

2 = (1+2x̄) (1− x̄)2ȳ(1− ȳ)2ly,

SB
3 =−x̄(1− x̄)2(1+2ȳ) (1− ȳ)2lx , SB

4 = (1+2x̄) (1− x̄)2(3−2ȳ)ȳ2,

SB
5 =−(1+2x̄) (1− x̄)2(1− ȳ)ȳ2ly , SB

6 =−x̄(1− x̄)2(3−2ȳ)ȳ2lx ,

SB
7 = (3−2x̄)x̄2(3−2ȳ)ȳ2, SB

8 =−(3−2x̄)x̄2(1− ȳ)ȳ2ly ,

SB
9 = (1− x̄)x̄2(3−2ȳ)ȳ2lx , SB

10 = (3−2x̄)x̄2(1+2ȳ) (1− ȳ)2,

SB
11 = (3−2x̄)x̄2ȳ(1− ȳ)2ly , SB

12 = (1− x̄)x̄2(1+2ȳ) (1− ȳ)2lx , (4f–t)
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and where x̄= x/lx and ȳ= y/ly . Substitution of the strains (3) and shape functions (4)
into the intensity equations (2) yields

Ix (x̄, ȳ; v)= 1
2 Re 0u̇H$ i

vlx ly g
+h/2

−h/2

Sx E	 0ly 1ST
x

1x̄
+ nlx

1ST
y

1ȳ 1
+Sy G	 0lx 1ST

x

1ȳ
+ ly

1ST
y

1x̄ 1 dz%u̇1,

Iy (x̄, ȳ; v)= 1
2 Re 0u̇H$ i

vlx ly g
+h/2

−h/2

Sx G	 0lx 1ST
x

1ȳ
+ ly

1ST
y

1x̄ 1
+Sy E	 0lx 1ST

y

1ȳ
+ nly

1ST
x

1x̄ 1 dz%u̇1. (5a, b)

The units of Ix and Iy are [force/time], or equivalently [energy/(length × time)]. In order
to ease the eventual integration along the thickness, the shape functions will be separated
into components which are constant and those which vary with the thickness:

Sx =(1/lx ) (lx SI
x − zSB

x ), Sy =(1/ly ) (ly SI
y − zSB

y ). (6)

Since the limits of integration in z are symmetric with respect to the neutral plane of the
plate (z=0), only those terms which are proportional to z0 or z2 contribute to the intensity.
As a result the intensities become expressable as inner products:

Ix (x̄, ȳ; v)= 1
2 Re (u̇H(Jx (x̄, ȳ))u̇), Iy (x̄, ȳ; v)= 1

2 Re (u̇H(Jy (x̄, ȳ))u̇), (7a, b)

with respect to the following matrices:

Jx (x̄, ȳ)=
1SB

x

1x̄ 0D1

l3x 1(SB
x )T +

1SI
x

1x̄ 0D2

bl3x1(SI
x )T +

1SB
y

1ȳ 0nbD1

l3y 1(SB
x )T +

1SI
y

1ȳ 0nbD2

l3y 1(SI
x )T

+
1SB

x

1ȳ 0bD3

l3y 1(SB
y )T +

1SI
x

1ȳ 0bD4

l3y 1(SI
y )T +

1SB
y

1x̄ 0bD3

l3y 1(SB
y )T

+
1SI

y

1x̄ 0b2D4

l3y 1(SI
y )T,

Jy (x̄, ȳ)=
1SB

y

1ȳ 0D1

l3y 1(SB
y )T +

1SI
y

1ȳ 0bD2

l3y 1(SI
y )T +

1SB
x

1x̄ 0nD1

bl3x 1(SB
y )T +

1SI
x

1x̄ 0nD2

bl3x 1(SI
y )T

+
1SB

y

1x̄ 0D3

bl3x1(SB
x )T +

1SI
y

1x̄ 0D4

bl3x1(SI
x )T +

1SB
x

1ȳ 0D3

bl3x1(SB
x )T

+
1SI

x

1ȳ 0D4

bl3x1(SI
x )T, (7c, d)



Casing
flexural
waves

Mesh
force

(a) (b) αj

y

z
Point

contacts
with race

y

x

ψj

. .   . 370

where b= ly /lx and D1 =E	 'h3/(12iv), D2 =E	 'hlx ly /(iv), D3 =G	 h3/(12iv) and
D4 =G	 hlx ly /(iv). The above matrices are asymmetric and have the units of
[force× time/length2] or [stress× time]. Furthermore, the inner products defined above
are not positive definite since the intensity vectors may have either positive or negative
components. It is notable that the intensity matrix retains spatial variation in the (x̄, ȳ)
plane. In determining the locations at which the intensities should be calculated, it is
necessary to recall that the intensities are functions of the harmonic stress field. Generally
in finite element methods the requirements on the admissible functions are relaxed such
that only continuity of displacements (continuity) are enforced across the element
boundaries (at the nodes). As a result, strains and stresses may experience jumps or
discontinuities across two adjoining elements. As mentioned earlier, some previous
methods [12] have calculated the intensity as the product of reaction forces and velocities
at the element nodes. Yet it is at these nodes where discontinuities in the stress value would
occur, which is obviously undesirable in the calculation of intensities (1, 2). However, since
smooth interpolating shape functions are used within the element, the strains and stresses
are continuous inside the elements. Therefore, in the present study the intensities will be
evaluated at interior points of the element as shown in Figure 2. The particular choice of
the interior points will be settled shortly.

At this stage the power dissipation density, pd , may be derived. The power dissipation
density is defined such that Pd(v)= fV pd (V; v) dV, where Pd is the total dissipated power.
Recall that the intensity components are defined as in equation (1), so that calculating the
divergence yields

−9 · I=
1Ix

1x
+

1Iy

1y
=

1sxx

1x
u̇x + sxx

1u̇x

1x
+

1sxy

1x
u̇y + sxy

1u̇y

1x

+
1syx

1y
u̇x + syx

1u̇x

1y
+

1syy

1y
u̇y + syy

1u̇y

1y
, (8)

where again sxz =G	 oxz =0 and syz =G	 oyz =0 due to the Kirchhoff plate theory. The
negative sign in equation (8) is chosen as a matter of convenience such that it is positive
for power dissipated and negative for power injected. Utilizing the equilibrium equations
from 2-D elasticity [23] (since sxz =0 and syz =0) which are

1sxx /1x+ 1syx /1y+ qx =0, 1sxy /1x+ 1syy /1y+ qy =0, (9a, b)

Figure 3. Schematic of rolling element bearings: (a) in compliant structure, (b) with outer race fixed.
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with qx and qy denoting the forces per unit volume, and substituting them into equation
(8) yields

pd =−9 · I= sxx ȯxx + sxy ȯxy + syy ȯyy − qx u̇x − qy u̇y . (10)

From the first three terms of equation (10), again one may see that the dissipated power
is related to the strain energy. Since pd was calculated at the interior points of the element,
while the external forces, qx and qy , are applied at the element nodes, the last two terms
in equation (10) make no contribution to the dissipated power at the calculation points.
The power dissipation density for the plate may be calculated as

pd (x̄, ȳ; v)= 1
2 Re 0g

+h/2

−h/2

ȯ*xx E	 '(oxx + noyy )+ ȯ*xy G	 oxy + ȯ*yy E	 '(oyy + noxx ) dz1
= 1

2 Re (u̇H(Pd (x̄, ȳ))u̇), (11)

where the strain-energy equivalence of equation (10) is used to simplify the calculations.
The power dissipation matrix in the inner product above is given by

Pd (x̄, ȳ)=
1SB

x

1x̄ 0D1

l4x 101SB
x

1x̄ 1
T

+
1SI

x

1x̄ 0D2

bl4x101SI
x

1x̄ 1
T

+
1SB

y

1ȳ 0D1

l4y 101SB
y

1ȳ 1
T

+
1SI

y

1ȳ 0bD2

l4y 101SI
y

1ȳ 1
T

+
1SB

x

1x̄ 0nD1

l2x l2y101SB
y

1ȳ 1
T

+
1SB

y

1ȳ 0nD1

l2x l2y101SB
x

1x̄ 1
T

+
1SI

x

1x̄ 0nD2

l2x l2y101SI
y

1ȳ 1
T

+
1SI

y

1ȳ 0nD2

l2x l2y101SI
x

1x̄ 1
T

+01SB
y

1x̄
+

1SB
x

1ȳ 10D3

l2x l2y101SB
y

1x̄
+

1SB
x

1ȳ 1
T

+0zb
1SI

y

1x̄
+zb−1 1SI

x

1ȳ 1
×0D4

l2x l2y10zb
1SI

y

1x̄
+zb−1 1SI

x

1ȳ 1
T

, (13)

which is symmetric and has the units of [stress× time/length]. From observing equations
(11) and (13), one may see that the equivalence of the damping matrix, C, and the power
dissipation is

C= hK=gA

Pd (x̄, ȳ) dA= lx ly s
i, j

Pd (x̄i , ȳj )v̄i v̄j , (14)

where the integration is performed numerically via Gauss integration (x̄i and v̄i are the
Gauss points and weights in the x direction while ȳj and v̄j are the Gauss points and
weights in the y direction). In this finite element formulation, the shape functions are
needed to calculate the system stiffness matrices, K, via Gauss integration as above. It is
seen that the element stiffness matrix (ESM) may be obtained by evaluating the element
dissipation density matrix (EDM), Pd , at the Gauss integration point (x̄i , ȳj ) and summing
those values. Therefore it is computationally efficient to evaluate the element intensity
matrices (EIM) at these points also, though they may certainly be calculated at other points
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Figure 4. Geometry of ball bearing.

as well. The EDM and EIM may be formulated in the post-processing stage of the synthesis
procedure, just as the strain energy, reaction forces etc., are in the common FEM
packages [24]. For example, the velocity field of the receiver can be obtained as in reference
[9], that is

u̇(v)= ivFc G3 (v)G4 (v)Fe (v), (15)

where the matrices

G3 (v)= [Lc −v2I+ivJc +(Lc Fc )T(Kp +ivCp ) (Lc Fc )]−1[(Ls Fs )T(Kp +ivCp ) (Lc Fc )]T

G4 (v)= [(Ls −v2I+ivJs +(Ls Fs )T(Kp +ivCp ) (Ls Fs ))

− (Ls Fs )T(Kp +ivCp ) (Lc Fc )G3 (v)]−1(Le Fs )T,

are functions of the components’ modal frequencies (L) and vectors (F). Then the
appropriate nodal values of the velocity vector u̇ may be used to calculate the structural
intensity and dissipation via equations (7) and (12).

Figure 5. Flowchart of static synthesis procedure used to calculate bearing stiffnesses. q, pre-processor; +,
processor; +, post-processor.
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Figure 6. Models of shaft-bearing-plate system: (a) loading, (b) plate with point hole, (c) plate with finite hole.

As a final point of discussion, it should be noted that active power flow (intensity) may
be present in the following situations: (1) in a conservative medium only when two or more
excitations are out of phase, and (2) in a dissipative medium. Much of the literature has
focused on the first scenario, and when the second situation has been considered it has
generally been done so for lumped dampers [10, 11] rather than continuously distributed
damping as will be considered here.

4. NEW FORMULATION FOR BEARING STIFFNESS MATRIX

Consider flexural waves of a compliant casing plate of finite dimension. Since transverse
loads are being applied to the shaft, capturing the proper bearing characteristics is essential
to explain how the plate being modes are excited. Specifically, the moment coupling
introduced by the bearings is important [16, 17], since they excite the bending waves as
shown in Figure 3. Several investigators have presented stiffness matrices for bearings
[19–21], but only recently have such models included the moment coupling [17, 18]. A
further complication in the calculations is that the bearing stiffnesses must be obtained via
linearization techniques [16–21] since the contact forces in the rolling elements are Hertzian
in nature. Usage of this linearized stiffness in modal analyses requires that the mean loads
are much greater than the alternating loads [17] as will be assumed here. As a further note,
most of the prior formulations [16–21] calculate the bearing stiffnesses by assuming that
the outer race is held fixed (see Figure 3), i.e., that the receiver is rigid. The consequences
of this assumption will be investigated in section 6.

In considering the ball bearings which are assumed to have point contacts between the
ball and the inner/outer races in each element (Figure 3(b)), the theory proposed here is
similar to that presented in reference [17], but is presented in a more concise matrix form.
It also helps in demonstrating the symmetry of the stiffness matrices and is more conducive
to the implementation in continuation techniques [25] which are for parametric studies.
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Ball bearings have two contact angles (Figure 4): (1) a0 which is the undeformed contact
angle (same for all elements) and (2) aj which is the deformed contact angle in the jth
element. From the Hertzian theory the force in the jth element is

Qj =6kdg
j ,

0,
dj e 0,
dj Q 0,7 (16)

where k is the load-deflection coefficient, and dj is the normal compressional deflection in
the jth element. For ball bearings, k1 q(108) N/mg and g=3/2 where q denotes order of
magnitude.

The normal deflection may be expressed as

dj =zj2
j + h2

j − b0 = bj − b0 = nT
j oj − b0 (17)

where jj and hj are the radial and axial deflections respectively and b0 is the undeformed
distance between raceway centers of curvature:

oj =6jj

hj7= b0 6cos a0

sin a07+6drj

daj7= b0 n0 +GT
0j Dj = bjnj (18)

Here drj and daj represent the radial and axial displacements of the jth element, respectively.
Furthermore, n0 and nj are the unit vectors parallel to the undeformed and deformed lines
of contact, respectively. Moreover, Dj = {dx , dy , dz , bx , by}T

j are the relative displacements

Figure 7. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis
procedure for massive plate. Variation is shown versus axial loading, Fz ; no radial loading, Fy , is present. (a)
Radial stiffness, Kuyuy , (b) moment stiffness, Kuxux , (c) moment coupling stiffness, Kuyux . Key: ——, prior techniques
[17–21]; www, proposed technique.
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across the jth element in global Cartesian co-ordinates, and similarly Fj =
{Fx , Fy , Fz , Mx , My}T

j is the generalized force vector for the jth element. Note that uz is not
included since bearings are considered ideally not to oppose torsional rotations of the shaft
(Mz =0). Consequently, in assembling the reaction forces and stiffness matrix for the entire
structure, the bearing contributes nothing to the dimensions associated with Mz and uz .
The transformation matrix between the local (radial, axial) co-ordinates and the global
co-ordinates is given by

cos cj 0

sin cj 0

G0j =G
G

G

G

G

K

k

0 1 G
G

G

G

G

L

l

, (19)

0 rp sin cj

0 −rp cos cj

where cj denotes the angle in the x-y plane which characterizes the position of the jth
element (Figure 4).

The reaction forces in the bearing can be written as

Fj =Qj G0j nj = kdg
j H0j , (20)

where H0j represents the transformation from the normal (deformed) direction on the jth
element to the global cartesian components. Since the bearing force vector is non-linear,
it must be linearized to obtain the elements of the stiffness matrix. By assuming that the
mean loads are larger than the alternating loads, this linearized mean stiffness should yield
a good approximation to the stiffness even under dynamic excitation. Consequently, the
bearing stiffness of the jth element is given by

Kj =
1Fj

1Dj
=Qj

1H0j

1Dj
+

1Qj

1Dj
H0j =Qj G0j

1nj

1Dj
+

1Qj

1Dj
G0j nj . (21)

Notice that the transformed normal vector, H0j , must be linearized as well as the contact
force, Qj , since it depends on the deformed state. Now using the equations

1nj

1Dj
=−

1
bj

nj
1dj

1Dj
+

1
bj

GT
0j ,

1Qj

1Dj
=

g

dj
Qj

1dj

1Dj
,

1dj

1Dj
=(G0j nj )T =HT

0j , (22a–c)

and substituting them into equation (21) yields

Kj =(1/bj )G0j (Qj )GT
0j +([gxj −1]/bj ) (G0j nj ) (Qj ) (G0j nj )T, (23)

which is symmetric and where xj = bj /dj . The stiffness matrix above represents the stiffness
of the jth ball in terms of the global Cartesian co-ordinates. If the jth element is not in
compression, then Kj is an empty matrix due to equation (16). Since this stiffness is in the
global co-ordinates, the stiffness of the entire bearing may be expressed as the simple
summation of the element stiffnesses without any further transformation, i.e., K=aN

j=1 Kj .

5. TREATMENT OF HOLES IN AN ELASTIC PLATE

In previous papers [9, 26] by Rook and Singh, the calculation of vibratory power flows
through joints was facilitated by a component synthesis technique. Since the joints
considered were linear, the primary difficulty was ensuring that modal truncation effects
were minimized. However, as seen in the previous section, bearings may be thought of as
a non-linear joint which adds another level of complexity. As a result, the component
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synthesis technique of references [9, 26] must be augmented with a static synthesis
technique to iteratively solve for the operating point of the bearing in the context of the
assembly as shown in Figure 5. However, as stated in section 4, it will be assumed that
the dynamic deflections are much smaller than the static deflections so that dynamically
the system behaves linearly, thereby restricting the non-linearity to the static analysis for
the sole purpose of estimating flexibility or stiffness terms.

If the geometric dimensions of the bearings are very small compared to the plate flexural
wavelengths at low frequency, then it is reasonable to collapse the bearing onto a single
point. The nodes connected by the bearing stiffness matrix must be coincident to prevent
rotations from inducing translations which ensures that the torsional DOF are
unconstrained. However, if the bearings are large in size compared to the plate, the holes
significantly alter the dynamics of the plate, and therefore this effect must be modelled.
The bearing nodes must again be coincident at the center of the shaft and hole. But the
plate nodes now form a locus of points positioned at a finite (non-zero) radius from the
hole center and these bearing nodes. Therefore the center and periphery nodes must be
physically connected. This connection is achieved with rigid (say 100 times more stiff than
surroundings) beam elements (one at each rolling element’s angular position, cj ) such that
the displacements of the plate are equal to those at the center of the hole (but not on the
shaft).

In the previous section it was shown that the bearing stiffnesses vary with mean reaction
load (23). The new procedure presents an improvement over previous studies [16–21] which
calculate the bearing stiffnesses by fixing the outer raceway. This assumption may be

Figure 8. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis
procedure for compliant plate. Variation is shown versus axial loading, Fz , at end of shaft; no radial loading,
Fy , is present. (a) Radial stiffness, Kuyuy , (b) moment stiffness, Kuxux , (c) moment coupling stiffness, Kuyux . Key
as Figure 7.
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reasonable for fairly rigid casings, but it may be questionable for compliant casings which
are being considered. When the hole is finite, all the rolling element forces act on the source
but they act individually on the plate nodes, i.e. uc and ub

s are of different dimensions:

R= & Kee
s

(Keb
s )T

0T

Keb
s

Kbb
s

0T

0
0
Kc'8u

e
s

ub
s

uc'+ 8Fb
s

−Fe
s

−Fc

Fc 9= 80009, R=Kz uz +Fz . (24a, b)

In the above equations, the source (s) and receiver (c) contributions may be obtained via
a ‘‘super-element’’ or via the Guyan reduction technique. For example, the interface
degrees of freedom (DOF) are retained as the only master DOF, with the internal DOF
becoming the slave DOF. Since the static bearing forces are non-linear with respect to the
relative static displacements across the rolling elements, it is convenient to repose the
equations in terms of these ralative quantities. Consequently, the displacement and force
vectors of (24) are rewritten as

uz = 8u
e
s

ub
s

uc9= &I00 0
I
L

0
0
I'8u

e
s

ub
s

D9=Gz Dz ,

Fz =g
G

G

F

f
Fb

s − s
j

Fcj

−Fe
s

Fc

h
G

G

J

j
= &I00 0

I
0

0
−LT

I '8−Fe
s

Fb
s

Fc 9=(GT
z )−1Gz , (25a, b)

Figure 9. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis
procedure for massive plate. Variation is shown versus radial loading, Fy , at end of shaft; constant axial loading,
Fz , is also present; (a) radial stiffness, Kuyuy , (b) moment stiffness, Kuxux (c) moment coupling stiffness, Kuyux . Key
as Figure 7.
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where

D= {DT
1 , . . . , DT

N}T, D= uc −Lub
s , L=[I, . . . , I]T, Fc = {FT

c1, . . . , FT
cN}T.

Thus the transformed residual becomes

GT
z R=GT

z Kz Gz Dz +Gz = {0, 0, 0}T,

GT
z R= & Kee

s

(Keb
s )T

0T

Keb
s

Kbb
s +LTKc L
(Kc L)T

0
Kc L
Kc '8u

e
s

ub
s

D9+ 8−Fe
s

Fb
s

Fc 9. (26a, b)

The linearized equations are

1

1Dz
(GT

z R)=GT
z Kz Gz +

1Gz

1Dz
= & Kee

s

(Keb
s )T

0T

Keb
s

Kbb
s +LTKc L
(Kc L)T

0
Kc L

Kc +Kp', (27)

where the bearing stiffnesses Kp =diag (K1, . . . , KN ), can be readily obtained from the
above equation once the Newtonian iteration has converged. Since the symmetry in
equation (20) has been preserved and since Kp is symmetric, the Jacobian will also be
symmetric which will allow one to use specialized decomposition routines in order to
achieve significant computational savings. For the case of very small holes the above

Figure 10. Comparison of ball bearing stiffnesses calculated via prior technique and new static synthesis
procedure for compliant plate with radial and axial loading: (a) radial stiffness, Kuyy , (b) moment stiffness, Kuxux ,
(c) moment coupling stiffness, Kuyux . Key as Figure 7.
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T 1.
Bearing parameters used in plate-beam model

Definition Value

Unloaded contact angle, a0 20°
Distance between centers of curvature, b0 6.0(10−3)m
Pitch radius, rp 2.175(10−2) m
Load deflection exponent, g 1.5
Load deflection coefficient, k 2.0(108)N/m1.5

procedure may be simplified by collapsing the rolling element locations onto a single node.
This modification is realized by letting uc be a vector containing the six DOF of the single
bearing node, and replacing L with an identity matrix I of dimension 6.

The above technique is illustrated in the following discussion utilizing a plate–beam
structure with a 114·3 mm×228·6 mm×6·35 mm aluminum plate and a 19 mm diameter
and 200 m long beam (Figure 6 and Table 1). The use of the static synthesis procedure,
in conjunction with the rolling element bearing theory is very promising as seen in Figure 7.
Here the original estimates of the ball bearing stiffnesses and those calculated using the
new procedure are compared. For this example, only an axial period, Fz , is applied. As
expected, there is no difference between the plate and the shaft since they are very stiff
in this case. However when the plate and shaft are more compliant, the bearing stiffness
values decrease as seen in Figure 8. This decrease is due to the fact that now there are
conceptually three springs in series (shaft–bearing–plate) which lowers the displacements
across the bearing, and hence makes it more compliant. In Figure 9, a radial preload, Fy ,
(transverse to the shaft) is present in addition to the axial preload. Again for the fairly
rigid plate and shaft system, the synthesis result matches well with the original theory.
However, for this combined loading situation, there is significant difference (up to 10%)
between the two methods when the plate and shaft are fairly compliant (Figure 10). In
particular, the difference in the moment coupling term in light of its importance in power

Figure 11. Comparison of input powers calculated using different bearing stiffnesses. Key: ——, prior
technique [17]; —·—·—, new technique.
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transmission (Figure 10c) is reason enough to use the new procedure. Figure 11 compares
the calculated power using the proposed bearing linearization versus the prior method and
shows considerable difference across the entire frequency range between the results of the
two methods.

Though not shown here, the results of the synthesis procedure for finite holes approach
those for point holes in the limit as the hole radius goes to zero, as expected. In general,
one may state that use of the new static synthesis procedure for practical structures
becomes important when either the hole size is significant and the plate is compliant or
there is combined loading on the system (i.e., axial and radial preloads).

6. STRUCTURAL INTENSITY

Before investigating the intensity and dissipation patterns for the whole assembly as
given by equations (7) and (12), these should be illustrated first for the individual free
receiver component plate mode shapes. Using these modal patterns will help later in
interpreting results of the assembly. Consider the plate–beam structure with the small hole
and with a transverse excitation Fy =1·0 at the free end of the beam. The plate considered
will be a fully clamped plate to emphasize the capability of the present approach over
previous methods, many of which required the closed form solution of a simply supported
plate.

Figure 12. Power flows in plate–beam structure with plate clamped on all edges. (a) Effect of modal truncation:
——, no truncation (Ns=50, Nc =115); –·–·–, Ns =30, Nc =70; . . . . . , Ns =10, Nc =25. (b) Modal dissipation
efficiencies of receiver plate: ——, first elastic mode; –·–·–, second elastic mode; . . . . , third elastic mode. Here
Ns denotes number of modes retained in the source structure (beam) and Nc denotes number of modes retained
in the receiver structure (plate).
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The plate is modelled such that all of the edges are resting on stiffness supports; the
springs are 100 times stiffer than the adjoining structure and are connected to all DOF
along these edges. The effect of modal truncation upon the system input power is shown
in Figure 12(a). One can see that the algorithms outlined in a previous paper [26] are very
successful in minimizing modal truncation effects, even for very severe truncation.
Figure 12(b) shows the modal dissipation efficiencies of the receiver plate for this case. Only
the three modes which contribute the most over this frequency range are shown for the

Figure 13. Characteristics of first elastic plate mode (clamped on all edges); see Figure 12: (a) mode shape,
(b) power dissipation density, (c) structural intensity, (d) mode shape with strain energy contours (ANSYS).
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sake of brevity; the modal analysis is not truncated to these three modes, rather the model
has 35 modes (e.g., attachment and constrained modes [26]). Note that the second mode
dissipates the most power over much of this frequency range. The reason will become
apparent after the following discussion of Figures 13–15. Each of these figures show (a)
the mode shape, (b) the power dissipation density (pd (x̄, ȳ; vn )), (c) the structural intensity
(I(x̄, ȳ; vn )) and (d) the strain energy, for each of the receiver modes shown in Figure 12(b).
These plots clearly show the advantage of the spatial information yielded by such

Figure 14. Characteristics of second elastic plate mode (clamped on all edges); see Figure 12: (a) mode shape,
(b) power dissipation density, (c) structural intensity, (d) mode shape with strain energy contours (ANSYS).
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quantities. From Figures 13(b) and (d), one may see that the maximum modal power
dissipation indeed coincides with the locations of maximum modal strain energy, i.e., at
the anti-nodes of the mode shape. Also note that no power is dissipated at (or transmitted
across) the fixed edges of the plate since u̇= 0 at these boundaries. One should however
recall that none of the power quantities are actually calculated on the boundary; rather
they are calculated at interior points which may be arbitrarily near the boundary (nodes).
The structural intensity pattern in Figure 13(c) shows that the intensity field vectors

Figure 15. Characteristics of third elastic plate mode (clamped on all edges); see Figure 12: (a) mode shape,
(b) power dissipation density, (c) structural intensity, (d) mode shape with strain energy contours (ANSYS).
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Figure 16. Response of system at 3200 Hz with plate clamped on all edges; see Figure 12: (a) displacement
of plate, (b) power dissipation density, (c) structural intensity.

converge towards the power sinks, which are identified with Figures 13(a) and (b). Similar
results are shown in Figure 14 for the second plate mode. Observing the mode shape in
Figure 14(a) reveals why this mode dominates in terms of dissipation efficiencies
(Figure 12(b)). In a previous paper [26], it was shown that for the plate–beam structure
with a transverse excitation at the end of the source shaft, the moment path at the
joint–receiver interface dominates. Consequently one expects that the receiver modes
which exhibit non-zero rotations at this interface are more important, as is the case with
the second mode here.

One may further notice that although the system is symmetric, some of the patterns
exhibit a small amount of asymmetry. This asymmetry is likely due to the multiple
numerical tranformations required by our algorithm in order to minimize the modal
truncation [26], which may somewhat degrade the symmetry in the computational process.
It should be pointed out that even results from a heavily documented commercial software
such as ANSYS [24] are sometimes slightly asymmetric for this problem (see Figures 14(d)
and 15(d)).

The reason that the other two modes are significant at some frequencies is because
they characterize high power dissipation in the vicinity of the plate center (joint
location) which may occur in the plate–beam assembly. The response for the structure
at 3200 Hz (Figure 16) demonstrates the high dissipation in the vicinity of the joint
location.

7. CONCLUDING REMARKS

Two different static synthesis procedures were developed and comparatively evaluated.
One approach treats the ball bearings as being localized at a single node, while the other
considers the bearings to be installed in a finite hole. The latter approach proved to be
essential in estimating the stiffnesses of rolling element bearings in the case of compliant
plates with sizeable holes, particularly when vibratory power flow quantities are of interest.
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An entirely new ‘‘post-processor’’ for structural intensity calculations in the context of
the finite element method (FEM) has been developed which takes the form of an element
structural intensity matrix (EIM) and element power dissipation matrix (EDM) for plate
elements. With these elements, the intensity pattern may be computed for any structure
modelled with plate elements in FEM. This development presents a distinct improvement
since currently no such techniques are believed to be available in the literature; most of
the calculation of intensities has been confined to very simple structures by using analytical
solutions. This method has been shown to deal with plates (for both flexural and in-plane
motions) with clamped rather than simply supported boundary conditions; the method has
been successfully utilized with other boundary conditions in reference [27]. Furthermore,
the benefits of using such quantities to diagnose locations of maximum power dissipation
have been shown. As a consequence, the proposed techniques should assist an investigation
that attempts to evaluate the effectiveness of localized or ‘‘patch’’ damping treatments
[27, 28].

Future research may consider extension of the elemental intensity matrix and dissipation
matrix to shell elements and their incorporation into existing commercial software.
Tapered roller bearings should also be considered. Treating the bearings as parameter
uncertainties characterized by probabilistic distributions [29] may be investigated.
Furthermore, for the case where the alternating load may be of the same order of
magnitude as the mean load, development of an iterative dynamic synthesis procedure (i.e.,
Newton–Raphson) for the non-linear bearings may be required to complement the static
synthesis procedure.
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APPENDIX A: LIST OF SYMBOLS

C damping matrix
D flexural stiffness of plate
D elasticity matrix
E modulus of elasticity
f frequency
F force
F force vector
G shear modulus
G transformed forces
h thickness
H co-ordinate transformation matrix
I structural intensity
I identity matrix
J element intensity matrix (EIM)
j bearing element index

k stiffness
K stiffness matrix
l length
L Boolean selection matrix
M mass matrix
n normal vector
N number of modes retained in modal

synthesis
p dissipated power density
P power flow
P element dissipation matrix (EDM)
q force per unit volume
Q non-linear restoring force
R radius
S shape functions
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t time
u displacement in x direction
u vector of displacements
v displacement in y direction
V volume
w displacement in z direction
x, y, z spatial co-ordinates

a contact angle
b length ratio
d relative displacement
D relative displacement vector
o strain
f phase angle
F modal vector (eigen-vector) matrix
g relative rotational angle
G transformation matrix
h dissipation factor; axial displacement
k load deflection coefficient
l eigenvalue
u angular or rotational displacement
r mass density
n Poisson’s ratio
v̄ Gauss integration weighting factors
v circular frequency
j non-dimensional length
J modal dissipation matrix
c angular position of bearing element
z damping ratio
R residual

Superscripts
b boundary degrees of freedom
B bending component
d dissipated

H Hermitian
i interior degrees of freedom
I in-plane component
t transmitted
T transpose
x x component
y y component
˜ complex quantity
¯ non-dimensional quantity
Subscripts
c receiver
e excitation
j index
m index
p path/joint
s source
0 undeformed case

Operators
diag diagonal matrix
Re real part
Im imaginary part
* conjugate
q order of magnitude
1 differential operator for strains
u̇ time derivative of u
9 gradient
� �t time average

Abbreviations
DOF degrees of freedom
EDM element dissipation matrix
EIM element intensity matrix
FEM finite element method


