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The work on vibration control of machines and structures incorporating viscoelastic
materials in suitable arrangements, is highlighted for situations involving vibration
excitations over a broad frequency range. The principle involved is that of vibratory energy
dissipation due to damping as a result of deformation of viscoelastic materials. The
characteristics of viscoelastic materials have to be suitably modelled in view of their
dependence on several factors like type of dynamic excitation, temperature, strain, etc. The
main objective of the paper is to review some of the salient work, done at I.I.T. Delhi,
relating to constrained layer damping for structures, optimisation studies and support
damping for rotor systems. Some results, which have either not been published or are not
easily available, are also included. Brief reference to related work, carried out at other
places, is also made, the list being by no means exhaustive, due to space constraints. Efforts
have been made to predict the future trends in theoretical and experimental work in the
analysis, optimisation and use of viscoelastically damped structures.
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1. INTRODUCTION

The use of viscoelastic damping is beneficial in situations involving a wide range of
excitation frequencies. There are two types of basic configurations as in Figure 1 where
the vibratory energy is dissipated due to direct strains in the case of unconstrained
viscoelastic materials bonded to the elastic layer and predominantly shear strains in the
constrained viscoelastic materials. Some of the high polymers are known to exhibit
viscoelastic behaviour.

The structural elements to which additive damping is applied, may be in the form of
beams, plates, rings, shells etc. Analysis of such elements subjected to vibratory excitations,
have been carried out since the early sixties assuming viscoelastic materials (VEMs) to be
linear. For any mode n, the system loss factor hs is obtained from the response solution
equations like

[−mv2 + k(1+ ihs )]qn = fn , (1)

where fn is the generalised excitation and qn , the corresponding displacement. In the above,
m and k refer to the generalised mass and stiffness respectively. In much of the work, the
variation of hs or khs is reported for various geometrical and physical parameters. A review
of the work is reported in references [1–3]. The VEMs may be used in the form of discrete
dampers, absorbers or, alternatively, the surface of the structural member may be partially
covered instead of being fully covered. There have been applications in aerospace,
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Figure 1. Basic configurations for viscoelastic damping. (a) Unconstrained and (b) constrained treatment.

automotive, machine tools, ships, turbines, electronic and optical equipment etc., [4–7].
These are essentially passive dampers and a number of developments have been reported
at ‘‘damping’’ conferences, periodically organised since the conference in 1978 on
‘‘damping technology in the 1980s’’ at Dayton, Ohio. There has also been considerable
work in the active control of vibrations and it has been felt that an optimal blend of passive
damping and active control is useful. The present paper deals with developments and
future trends in analysis and optimisation of viscoelastically damped structures. Some of
the work pertaining to constrained layer damping treatment for structures, optimisation
and analysis of rotor systems with support damping, carried out at I.I.T. Delhi, has been
reviewed with brief reference to the related work in other places. A comprehensive review
is not attempted, due to space constraints and the fact that it is available in other texts
[3, 4].

2. VISCOELASTIC MATERIAL CHARACTERISATION

If a viscoelastic material (VEM) becomes strained due to harmonic stress, the strain is
not in phase but lags behind by an angle u, which is a measure of the damping in the
material. A common method of representation of damping is by the loss factor h of the
material which equals tan u. h is also equal to the ratio of energy dissipated to that stored
in the material. The ratio of stress to strain in a VEM, under harmonic excitation
conditions is represented by complex moduli E(1+ ib) and G(1+ ih) in direct and shear
strain, respectively. These properties are seen to depend on frequency, temperature and
strain. The plots of in-phase shear modulus G and loss factor h in shear for plasticized
P.V.C. are shown in Figure 2. In Figure 2(a), these are plotted against frequency f for
varying temperatures while in Figure 2(b), the plots are for different values of shear strain
amplitude. These were measured in direct shear of the viscoelastic specimen with the
dynamic force applied by an electro–dynamic vibrator, for varying frequencies. The shear
strain amplitude was varied at different frequencies by the power amplifier of the vibrator.

The temperature–frequency superposition principle [8] forms the basis of reduction of
the three dimensional relation between the in-phase modulus (or loss factor), frequency
and temperature to a two dimensional one. This involves the use of the reduced frequency
or the reduced temperature, which combines the effects of frequency and temperature by
the use of factors known as shift factors. These factors are often found empirically [4, 9].

Since the complex modulus representation is applicable for harmonic vibrations only,
a different representation is needed for transient and other types of excitations. One of the
techniques uses the differential operator form of the relationship between stress and strain,
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Figure 2. Dynamic properties of plasticized P.V.C. (a) h for varying temperature as function of frequency,
(b) G and h as function of shear strain at 20.5° temperature. Dashed lines in (a) refer to loss factor (h).

the constants of which are found from the plots of complex modulus against frequency,
for a given temperature [10]. One of the recent developments is to use the fractional
calculus approach for modelling the behaviour of viscoelastic materials. This involves
use of derivatives of fractional order and is reported to represent accurately the
observed dynamic properties over a wide range of frequencies [11–13]. These are seen
to be extensions of the classical exponential models of viscoelastic relaxation [14] and
have been applied in a limited number of cases of viscoelastically damped structural
elements.

3. ANALYSIS

For damping and response analysis of viscoelastically damped structural elements, the
governing equations need to be formulated and solved. For harmonic excitation, the
correspondence principle of viscoelasticity is used whereby the solution for viscoelastically
damped cases can be obtained from that of the corresponding elastic one, by using complex
moduli in place of elastic ones. For complex structures, the work on the finite element
method (FEM) has been referred to, in addition to that on structural dynamic modification
(SDM), or reanalysis. For non-harmonic excitations, an operator form of the stress–strain
law has been used in section 3.4.
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3.1.      

Figure 3 shows the constrained type beam with an assumed displacement variation
across the thickness. It is assumed that layers 1 and 3 bend as Bernoulli–Euler beams with
ū1 = ū3 =w', w being transverse displacement and ', the differentiation with respect to x
for shear in layers 1 and 3, is ignored; w is assumed constant at a section. Both shear and
direct strains are accounted for in core 2 and the material of core 2 is assumed as linear
or strain independent and no slip is assumed at the interfaces.

The shear angle g2 in the core is

ā−w'= (u1 − u3)/t2 − (w'/t2)a, (2)

where ti is the thickness of layer i (i=1, 2, 3), a= t2 + (t1 + t3)/2 and ui is the longitudinal
displacement of the middle of layer i (i=1, 3).

The expression for strain energy U of the beam, assuming all layers as elastic, is given
by

U=g
L

0 $s2 g2
2 + r1 u'21 + r3 u'23 + (q1 + q3) (w0)2 + c2 6(u'21 + u'23 + u'1 u'3

+
(w0)2

4
(t2

1 + t2
3 − t1 t3)+ u'1 w00t3

2
− t1 1+ u'3 w00t3 −

t1

217% dx, (3)

where s= 1
2 bG2 t2 k2, qi =(b/24)Ei t3

i , ri =(b/2)Ei ti , c2 = bE2 t2 /6, L=length, b=width,
Ei =Young’s modulus of layer i, G2 = shear modulus of layer 2, k2 = shear coefficient. The
kinetic energy T due to longitudinal, rotational and transverse displacements is

T=g
L

0 $r2 (ẇ)2 +
br1 t1

2
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br3 t3
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2
+ (ẇ')2o1 1

2

+
br2 t2

24
(u̇1 − u̇3 ẇ'o2)2% dx, (4)

where o1 = (t3 − t1)/4, o2 = (t1 + t3)/2, ( ˙ ) is differentiation with respect to time t, ri =mass
density of layer i and r=mass per unit length.

Figure 3. Constrained type viscoelastically damped arrangement.
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The energy V due to the excitation of intensity f (x) sin vt is

V=g
L

0

f (x) sin vtw dx. (5)

Using Hamilton’s principle, three governing equations and boundary conditions can be
obtained [15, 16]. The solution for simply supported ends is assumed as

w= s
a

n=1

wn sin
npx
L

sin vt, ui = s
a

n=1

uin cos
npx
L

sin vt, (i=1, 3). (6)

Also, f (x) is written as

s
a

n=1

fn sin
npx
L

.

Substituting equations (6) in the governing equations and also using G2 (1+ ih2) in place
of G2, one can get equations for displacements, hs and khs . Three families of modes are
obtained for each value of n viz. flexural, extensional and thickness shear [16] for which
system loss factors can be found.

If only transverse inertia effects are included and the extensional effect of core 2 is
ignored, the governing equations are

b
12

(E1 t3
1 +E3 t3

3)w2− bt2 G2
a
t2 0w0 a

t2
−

E1 t1 +E3 t3

E3 t3

u'1
t21+ rẅ = f (x) sin vt, (7)

bG2 m'0w'a
t2

−
u1 m'

t2 1+D�u01 =0, u1 =−u3 /m, (8, 9)

where

m=(E1 t1)/(E3 t3), m'=1+m, D�= b(E1 t1 +E3 t3 m2).

From the above equations, a sixth order equation in w or u1 may be obtained which
is identical to that in reference [17, 18]. The expression for hs is also identical to that by
Ross et al. [19]. hs is seen to be dependent on shear parameter c2,3 =G2 /[E3 t2

3(np/L)2], ui, j

(where ui, j = ti /tj ) and ai, j =Ei /Ej , i=1, 2 and j=3. Figure 4 shows the variation of hs

with c2,3 and u2,3. It is seen that the value of the system damping loss factor is optimum
for only one value of c2,3 and any change due to change in n viz. modal number or G2

(changing with frequency or temperature) would change the value of hs . Efforts have been
made to reduce the variation by using multicored systems [20] as in Figure 5 or
multilayered arrangements using different viscoelastic materials.

A general analysis, applicable to any number of layers, with alternate elastic and
viscoelastic layers, is reported in reference [21] and results for system loss factor for
constant weight, size and static stiffness are reported in reference [22]. There is in general
an increase in maximum system loss factor with an increase in the number of layers.

Refinements in the analysis continue to be made. If shear effect is considered in layers
1 and 3, five governing equations are obtained as given in Appendix A. The formulation
is in terms of displacement u2 of the middle layer 2, rotations ū1, ū2, ū3 of the sections in
layers 1, 2, 3 respectively, and transverse displacement w at a section. A comparison of
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Figure 4. Variation of system loss factor hs with c2,3; u1,3 =0·1, h2 =0·1, a1,3 =1·0.

values of hs and khs obtained from these equations after including only transverse inertia
terms, with those from equations (7–9), is given in Table 1. There is a large difference at
higher values of G2 and np/L if the shear effect in layers 1 and 3 is ignored.

Mead [23] carried out a detailed comparison of the equations for flexural vibrations of
damped sandwich beams. A sixth order equation in transverse displacement w is obtained
from [17, 18] which is similar to that obtained from equations (7–9). However, Yan and
Dowell [24] obtained a fourth order equation in w for the same problem. The difference
was attributed to the fact that in reference [24], an assumption of uniform shear stress
through the depth of the whole sandwich was made, which is not strictly applicable
especially for a soft and thin core. The solution of governing equations for damped

Figure 5. Comparison of three and four layer arrangements u1,4 = u2,4 =0·5, h2 = h3 = b3 =1, a3,4 =0·01,
a1,4 =0·33. Curves a: u2,3 =2·5; curves b: u3,4 =5. Three layers, G3/G2 =1000.
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T 1

Influence of shear effect in layers 1 and 3

G2 (N/cm2)
ZXXXXXXXXXXXCXXXXXXXXXXXV

765 7650 76 500

np/L/cm 0·224 0·9 0·224 0·9 0·22 0·9
4

% difference in hs 0·26 7·4 1·1 8·2 1·9 15·9
% difference in khs 1·4 21·1 2·4 22·4 4·1 35·4

sandwich beams for various boundary conditions is given in reference [25, 26]. In reference
[27], an approximate solution for finding the forced response to harmonic excitation is
given for fixed–fixed and cantilever type boundary conditions, using the Rayleigh–Ritz
method and correspondence principle of viscoelasticity.

In a recent work [28], a refinement of the equations by taking variation of w across
thickness and slippage at the interfaces has been done and is applicable to thick and flexible
core materials. Not much work appears to have been done on the non-linear effects in
stress–strain relations in the viscoelastic core and on the development of closed form
simplified solutions for different boundary condition cases from various types of structural
elements.

3.2.    

Studies have been conducted on beams with constrained layer treatment which is not
applied on the entire length of the beam. It was shown in reference [29] that a stiff
viscoelastic layer gives a higher system loss factor for the case of a partially covered beam,
compared to a fully covered one. Plunkett and Lee [30] have carried out an analysis for
determining optimum length of the constraining layer, which may give a high value of
maximum system damping. Markus [31] reported an analysis for finding the system loss
factor for partially covered simply supported beams with constrained viscoelastic
treatment, assuming the mode shape as that of the untreated beam. For the mode under
consideration, the system loss factor was expressed as the ratio of energy dissipated per
cycle to the maximum strain energy stored during the cycle of the harmonic motion.

Damping analysis of partially covered beams with constrained viscoelastic layer
treatment, as in Figure 6(a), has been reported in reference [32]. Results of two
formulations, based on approximate simplified methods viz. Markus’s method and the
Rayleigh–Ritz method, are compared with those obtained by exact solution of equations
of motion and a reasonable agreement is seen. Results from reference [33] for various
locations and percentage coverage are shown in Figures 6(b) and 6(c). It is seen from the
former that a central coverage gives higher values of hs for the first mode while the latter
figure shows that for suitably chosen parameters, higher values of hs may be obtained for
a partially covered beam compared to that obtained for a fully covered one. This may not
be true for some other values of chosen parameters like shear modulus G2 of the viscoelastic
material. The parameters chosen for Figure 6(b) are: L=1·08 m, t3 =0·005 m, u1,3 =0·1,
u2,3 =0·5, a1,3 =1, E3 =2·07×1011 N/m2, h2 =0·38. The parameters chosen for Figure 6(c)
are identical except that G2 =2×107 N/m2. In arrangement 1, the added layers start from
the left end of the beam while for arrangement 2, the distance a=(L−Pa )/4. In
arrangement 3, the added layers are symmetrical about the centre of the beam.

Some of the recent work includes determination of damping characteristics of partially
covered five layered beams with alternate elastic and viscoelastic layers, using strain energy
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analysis [34]. Further, Mantenna et al. [35] have carried out experimental and analytical
studies, the latter being based on FEM and modal strain energy technique, for the case
of a composite material laminated beam, with constrained viscoelastic layer treatment.

3.3.       

The analysis of structural elements other than the beams with viscoelastic damping
treatment has been carried out by several authors. The work for rectangular plates with
damping treatment is reported in references [16, 33, 36, 37], for doubly curved panels in
reference [38] and for cylindrical shells in references [39, 40]. Reference may be made to
a recent publication [3] for additional references on the above topics.

3.3.1. Finite element method
Finite element methods have been developed by several researchers [41–44] for use on

complex structures. The algebra involved is cumbersome and obtaining solutions is
time-consuming in view of the large number of nodal displacements and number of
elements needed, especially for analysis at high frequencies.

The effectiveness of damping treatment may be determined by the complex eigenvalue
method or the modal strain energy (MSE) method. The MSE method [43] assumes that
the real normal modes of the undamped system may be used for the damped structure and
that the modal loss factor may be found from the summation of the product of material
loss factor of each element and the fraction of elastic strain energy in that element. This

Figure 6. Partially covered beam characteristics. (a) Partially covered sandwich beam; (b) variation of hs with
core shear modulus; coverage—40%, mode 1; (c) resonance frequency and associated system loss factor with
the coverage percentages; ——, v; – – –, hs ; +, 1; ×, 2; W, 3. Mode 1.
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method has been found to be less time consuming compared to the complex eigenvalue
method and is based on the approach earlier suggested by Ungar and Kerwin [45].

3.3.2. Structural dynamic modification method
Structural dynamic modification or re-analysis techniques are methods for efficient

evaluation of modified dynamic characteristics of a complex system, using characteristics
of the unmodified system. Chen et al. [46] have given a matrix perturbation method for
vibration modal analysis. Shen and Stevens [47] used perturbation techniques for studying
the influence of additive unconstrained damping treatment on the eigenvalues and system
damping. The method is computationally efficient and useful where a number of damping
configurations have to be tried for the purpose of design. In references [48, 49], this method
has been applied to fully and partially covered constrained beams, with viscoelastic
damping, and to complex structures of ‘F’ and inverted ‘L’ types, for determining
eigenfrequencies and modal loss factors, with the additive treatment taken as a
modification of the original untreated structure. The eigenvalues of the untreated system
have been estimated by expressing the increments in eigen parameters in terms of
increments in stiffness and mass matrices of the system, during modification.

The perturbation method has also been used for response re-analysis of both
unconstrained and constrained types of viscoelastically damped beams and complicated
structures, made up of beams [50, 51]. For the constrained types of viscoelastically damped
beams, the original and modified matrices, are of different order and order reduction of
matrices for the modified beams is achieved by Guyan’s reduction [52].

3.4.  

Since complex modulus representation can only be used for VEMs for harmonic
excitation, a differential operator form has been employed for shock and random
excitations. A 4-element model shown in Figure 7(a) is seen to represent the characteristics
of PVC till about 400 Hz [53]. Its shear modulus is represented by

G(D)= (B+ gD+fD2)/(1+ aD), (10)

Figure 7. Response of damped and undamped beams to shock excitation (t= p/1500 s, V=20 cm/s,
L=50 cm, b=5 cm, t1/t3 =1, t2/t3 =0·5, r1 = r3 =0·28×10−5 kgs2/cm4, r2 = r3/2, E1 =E3 =7×106 N/cm2,
t3 =0·25 cm), (a) Four element viscoelastic model. (b) Half sine wave pulse acceleration. (c) Time history of shock
response w̄c ; – – –, undamped; ——, damped.
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where

D=d/dt, a= c3 /k3, B= k1, g= c2 + c3 + k1 c3 /k3, f= c2 c3 /k3.

Typical results for w̄c =w/L at the centre of a simply supported beam with viscoelastic
core, with both ends subjected to a half sine pulse as in Figure 7(b), are given in Figure 7(c).
The results [54] are compared with an identical undamped beam with shear modulus k1,
which may be treated as the static modulus of the VEM. The values of constants chosen
for the viscoelastic material are: k1 =350 N/cm2, k3 =845 N/cm2, c2 =0·282 Ns/cm2,
c3 =0·225 Ns/cm2. It is seen that the use of VEM, for the core, not only reduces the peak
response but also results in decay of vibrations. Some of the studies concerning
unconstrained and constrained type damped structures, subjected to shock excitation, are
reported in reference [55, 56].

4. MULTI-PARAMETER OPTIMISATION STUDIES

In view of the large number of parameters involved in viscoelastically damped systems,
it is desirable to carry out multi-parameter optimisation, with specified geometrical and
physical constraints and to arrive at a dynamically optimum configuration.

Lunden [57] carried out optimisation studies to find optimum distribution of
unconstrained distributed damping on beams and frames, with the objective of minimising
resonant vibrations, subject to constraints on weight or cost of the additive damping, with
constraints on the loss factor of the available material. An unconstrained minimisation
function with exterior penalty terms is formulated and a sequential unconstrained
minimisation technique to allow for constraints is used. It is seen that the redistribution
of uniform additive damping in an optimum non-uniform way would reduce the response
by 40 to 60% for the same weight or cost of additive treatment.

Lall et al. [58] have carried out multi-parameter optimum design studies for a sandwich
plate with constrained viscoelastic core. The objective functions chosen were the modal
system loss factor and displacement response, with design variables as the layer material
densities, thicknesses and temperature. Linear relationship between material density and
Young’s modulus of Krokosky [59] were employed in addition to the temperature–fre-
quency dependence principle [60], for simplification. In reference [61], optimisation studies
were carried out in order to determine the optimum parameters of a four element model,
used to represent the viscoelastic characteristics of the core for the sandwich plate. From
the above, the in-phase shear modulus and loss factor of the viscoelastic material were
plotted against frequency, giving the desired complex shear modulus variation for the
material.

Results of optimisation studies [33] for optimum parameters of a partially covered plate
of Figure 8, with constrained VEM, are compared in Table 2 for additive damping at
locations 1 and 13 on the plate with a fully covered plate for the same total mass. F.C.
refers to fully covered plate and PCL-1 refers to partially covered location 1. Similarly
PCL-13 is for location 13 in the Figure. For the base plate, the parameters are
L=W=0·4 m, thickness t3 of the base plate=0·005 m, that of the viscoelastic layer
t2 =0·0025 m and that of the constraining layer t1 =0·0005 m. For the VEM, the in-phase
shear modulus=4×106 N/m2 and the loss factor=0·38. The Young’s modulus of the
base and constraining layers=2·07×1011 N/m2 and Poisson’s ratio=0·334. The
objective function was to maximize the system loss factor hm,n for the m, nth mode, with
design parameters as PL , PW , t1 and t2, with the patch coverage area restricted to 40% of
the base plate area and the added mass of the patch being equal to that for the fully covered
case. It is seen from Table 2 that for the same total mass of the added layers, depending
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Figure 8. Various locations for additive damping on a plate.

on the mode under consideration, one may, by optimum choice of parameters, obtain a
higher system loss factor hm,n for the partially covered plate than for a fully covered one
[33].

Optimal constrained layer damping of beams, constrained by viscoelastic layers, has also
been determined for sandwich beams with viscoelastic core [62], with layer thicknesses as
design variables. Recently [63], studies have been reported for partially covered beams with
constrained layer damping, taking nodal co-ordinates of the finite element model used as
the design variables.

5. ROTOR SYSTEMS WITH VISCOELASTIC SUPPORTS

External viscoelastic damping at the supports of rotating systems, can be quite effective
in controlling the dynamic response of the system [64]. Analysis of a Jeffcott rotor, with
ball bearings at each end and with viscoelastic supports, showed that the imbalance
response can be reduced considerably for an optimum value of stiffness and a high value
of the material loss factor [65]. It has also been shown [66–68] that the stability limit of
the rotor–shaft system, in case of instability due to material damping of the system or due
to hydrodynamic bearings at the ends, can be improved by using suitable viscoelastic
support parameters. The stability analysis has been carried out, using the operator form
of the constitutive equations, corresponding to a four element type of model of the
viscoelastic material.

The results of a simple algorithm [69, 70] to get desired characteristics of viscoelastic
supports of a simple Jeffcott rotor are shown in Figure 9. The support stiffness parameter
b1 =K/Ks , where K is in-phase stiffness of support, with loss factor h, and Ks is the shaft
stiffness at the disc location. The parameters for Figure 9 are M1 /M2 =0·2, Kb /Ks =2;
M1 is the support mass, M2 being the disc mass and Kb is the bearing stiffness; dR =v/vn ,
v being the angular speed of the rotor and vn is the undamped natural frequency of the
rotor–shaft system, having rigid supports. RD is the ratio of amplitude of vibration of disc
to the eccentricity of the disc.

The algorithm is based on the location of the two resonance frequencies dR1 and dR2 as
in Figure 9(b). For each value of dR , values of b1 and h are tried so that dR3 and dR4 are
ec, the comparison constant, which is suitably chosen in the algorithm so that the two
resonant frequencies are located as above. The other possibilities viz. (1) dR3 Q c and
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Figure 9. Results for a rotor with viscoelastic supports. (a) Viscoelastic supports; (b) typical imbalance
response; (c) imbalance response of rotor for frequency independent and dependent parameters; (d) frequency
dependent support parameters; – – –, h; ——, b1.

dR4 q c, (2) dR3 q c and dR4 Q c, and (3) dR3 Q c and dR4 Q c, are discarded. The imbalance
response of a frequency-dependent VEM (with characteristics as in Figure 9(d)) is seen to
be lower than that of a frequency-independent VEM at the supports, as shown in
Figure 9(c). For the latter case b1 =0·02, h=0·5. Depending on the initial chosen values
of b1 and h, different characteristics of the support material may be obtained.

Figure 10. Composites with electro-rheological materials.
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6. USE OF INTELLIGENT TREATMENTS

Some of the recent developments involve the use of intelligent treatments whose
damping characteristics can change in response to the applied voltage. Figure 10 shows
an arrangement using electro-rheological (ER) materials which are currently being
explored. Stiffness and damping properties of ER materials can be controlled by voltage
V applied through feedback devices. The structures of this type are called ultra-advanced
intelligent composite materials [71].

Another novel arrangement uses active piezoelectric layers on both sides of a viscoelastic
core which are attached to the base layer. One of the active layer acts as a sensor whose
output after amplification is applied to the active constrained layer, giving added damping
due to increased shear strain in the core [72]. Such damping treatments are called intelligent
constrained layer (ICL) or active constrained layer (ACL) treatments in which constrained
layer damping and active feedback control are integrated. Shen [73] has recently studied
the control characteristics of such an arrangement.

7. EMERGING TRENDS AND FUTURE WORK

These are expected to be as follows:
(1) There will be greater emphasis on built-in damping at the design stage rather than

providing it as an afterthought, thus treating damping as a design parameter [74].
(2) Keeping in view the reliability and economic considerations, a combination of

passive damping and active devices for continuous flexible systems, may be used.
(3) Further attention may be devoted to analysis for refinement of theories to

incorporate non-linear viscoelastic models, shock and random excitations, development of
approximate closed form solutions for structural elements with additive viscoelastic
damping and analysis of machinery isolation systems incorporating high damping VEMs.

(4) Work on development of viscoelastic materials, with less variation of dynamic
properties, over a wide range of temperatures and frequencies, in addition to work on
development of intelligent materials giving desired dynamic stiffness and damping over
prescribed frequency and temperature ranges and analysis of structures with the above,
is likely to be emphasised.

(5) Optimisation studies of the dynamic response, covering a large frequency range over
a number of modes, need to be carried out. Dynamic optimum design studies on complex
systems involving sensitivity analysis and re-analysis should also be of interest.

(6) Analytical evaluation of reduction in noise radiation from structures with additive
damping and exposed to a dynamic environment does not appear to have been carried out
and should be of interest.
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APPENDIX A: SHEAR EFFECT CONSIDERED IN LAYERS 1 AND 3
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2 $ū� 1 t3
1

2
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3ū03 + t2
3u02 +

t2 t2
3

2
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k1 G1 t1 (ū'1 +w0)+ k3 G3 t3 (ū'3 +w0)+ k2 G2 t2 (ū'2 +w0)

= (r1 t1 + r2 t2 + r3 t3)ẅ − f (x) sin vt. (A.5)

Boundary conditions for simply supported beam are

ū'1 = ū'2 = ū'3 = u'2 =0, w=0. (A.6)


