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Conventional Passive Constrained Layer Damping (PCLD) treatments with visco-elastic
cores are provided with built-in sensing and actuation capabilities to actively control and
enhance their vibration damping characteristics. The control gains of the resulting Active
Constrained Layer Damping (ACLD) treatments are selected, in this paper, for fully treated
beams using the theory of robust controls. In this regard, an optimal controller is designed
to accommodate the uncertainties of the ACLD parameters, particularly those of the
visco-elastic cores which arise from the variation of the operating temperature and
frequency. The controller is also designed to reject the effects of the noise and external
disturbances. The theoretical performance of beams treated with the optimally controlled
ACLD treatment is determined at different excitation frequencies and operating
temperatures. Comparisons are made with the performance of beams treated with PCLD
treatments. The results obtained emphasize the potential of the optimally designed ACLD
as an effective means for providing broadband attenuation capabilities over a wide range
of operating temperatures as compared to PCLD treatments.
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1. INTRODUCTION

ACLD treatments have been successfully utilized as effective means for damping out the
vibration of various flexible structures (Agnes and Napolitano [1], Azvine et al. [2], Baz
[3, 4], Baz and Ro [5–9], Edberg and Bicos [10], Plump and Hubbard [11], Shen [12] and
Van Nostrand et al. [13]. Such effectiveness is attributed to the high energy dissipation
characteristics of the ACLD treatments as compared to conventional constrained damping
layers (Baz [3, 4] and Chen and Baz [14]). Furthermore, the ACLD treatments combine
the simplicity and reliability of passive damping with the low weight and high efficiency
of active controls to attain high damping characteristics over broad frequency bands.
These characteristics are particularly suitable for suppressing the vibration of critical
systems where damping to weight ratio is very important.

The effectiveness of the ACLD treatments is validated experimentally and theoretically
using simple proportional and/or derivative feedback of the transverse deflection or the
slope of the deflection line of the base structure. The control gains have generally been
selected arbitrarily to be small enough to avoid instability problems, computed based on
the stability bounds developed by Shen [12] for full ACLD treatments or determined using
the optimal control strategies devised by Baz and Ro [9] for partial ACLD treatments.
In all these attempts, no effort has been exerted to accommodate the uncertainties in
the ACLD parameters, particularly those of the viscoelastic cores which arise from the
variation of the operating temperature and frequency. Also, in all these studies the
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controllers are designed without any provisions for rejecting the effects that the external
disturbances have on the ACLD/beam system.

Therefore, the main objective of the present study is to select the control gains using
the theory of robust controls in order to ensure global stability of the ACLD treatment
in the presence of parametric uncertainties which may result from variation of the
properties of the viscoelastic core of the ACLD due to its operation over wide temperature
and frequency ranges. At the same time, the control gains are selected such that the
disturbance rejection capabilities of the ACLD treatments are maximized over a desired
frequency band.

To achieve such an objective a distributed parameter model is developed using
Hamilton’s principle to describe the dynamics of beams which are fully treated with ACLD
treatments. The model is then used to develop closed form transfer functions of the ACLD
treatments which are, in turn, used to select the gains of a robust controller in the frequency
domain. The small gain theorem (Dorato et al. [15], Dahleh and Diaz-Bobillo [16] and
Boyd and Barratt [17]) is utilized, in this regard, to ensure stability in the presence of
uncertainty in these transfer functions. The gains are also selected to minimize the
H2 -norm of the transfer functions between the external disturbances and the deflections
at critical locations along the structure to guarantee optimal disturbance rejection
capabilities.

The paper is, therefore, organized in seven sections. In section 1 a brief introduction is
given. The concept of active constrained layer damping is presented in section 2. The
variational model of ACLD is developed in section 3. In section 4 the transfer functions
of ACLD treatment are developed and in section 5 the robust controller is devised. The
performance characteristics of ACLD with the optimal robust controller is presented in
section 6 and compared with that of conventional PCLD. Section 7 gives a brief summary
of the conclusions.

2. THE CONCEPT OF ACTIVE CONSTRAINED LAYER DAMPING

ACLD treatment consists of a conventional passive constrained layer damping which
is augmented with efficient active control means to control the strain of the constrained
layer, in response to the structural vibrations as shown in Figure 1. The visco-elastic
damping layer is sandwiched between two piezo-electric layers. The three-layer composite
ACLD when bonded to the beam acts as a smart constraining layer damping treatment
with built-in sensing and actuation capabilities. The sensing, as indicated by the sensor
voltage Vs , is provided by the piezo-electric layer which is directly bonded to the beam
surface. The actuation is generated by the other piezo-electric layer which acts as an active
constraining layer that is initiated by the control voltage Vc . With appropriate strain
control, through proper manipulation of Vs , structural vibration can be damped out.

Figure 1. Schematic drawing of the active constrained layer damping.
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Figure 2. (a) Main parameters of a beam treated with the ACLD; (b) undeflected, (c) deflected.

3. VARIATIONAL MODELLING OF ACTIVE CONSTRAINED LAYER DAMPING

3.1.     

Figure 2 shows a schematic drawing of the ACLD treatment of a sandwich beam. It
is assumed that the shear strains in both the piezo-electric sensor/actuator layers and in
the base beam, together with the longitudinal stresses in the visco-elastic core, are
negligible. The transverse displacements w of all points on any cross-section of
the sandwiched beam are considered to be equal. Furthermore, the piezo-electric
sensor/actuator layers and the base beam are assumed to be elastic and dissipate no energy
whereas the core is assumed to be linearly visco-elastic. Also, it is assumed that the
thickness and modulus of elasticity of the sensor are negligible compared to those of the
base beam.

From the geometry of Figure 2, the shear strain g in the core is given by

g=[hwx +(u1 − u3)]/h2, h= h2 + h1 /2+ h3 /2, (1)

where u1 and u3 are the longitudinal deflections of the piezo-actuator layer and beam/sensor
layer respectively. Also, w denotes the transverse deflection of the beam system. Subscript
x denotes partial differentiation with respect to x and h1, h2 and h3 define the thicknesses
of the piezo-actuator, the visco-elastic layer, the piezosensor/base beam system
respectively.
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3.2.  

The equations and boundary conditions governing the operation of the beam/ACLD
system are obtained by applying Hamilton’s principle (Meirovitch [18]):

g
t2

t1

d0KE− s
3

i=1

Ui 1 dt+g
t2

t1

d0 s
2

j=1

Wj 1 dt=0, (2)

where d( · ) denotes the first variation in the quantity inside the parentheses. Also, KE,
Ui’s and Wj’s are defined as

KE(kinetic energy)=1/2m g
L

0

w2
t dx, (3)

U1 (extension energy)=1/2K1 g
L

0

u2
1x

dx+1/2K3 g
L

0

u2
3x

dx, (4)

U2 (bending energy)=1/2Dt g
L

0

w2
xx dx, U3 (shear energy)=1/2G'2 h2 g

L

0

g2 dx, (5, 6)

W1 (work done by piezoforces)=K1 g
L

0

op u1x dx, (7)

W2 (work dissipated in the visco-elastic core)=−h2 g
L

0

td g dx, (8)

where m is the mass/unit width and unit length of the sandwiched beam, L is the beam
length, K1 =E1 h1 and K3 =E3 h3 with E1 and E3 denoting Young’s modulus of the
piezo-actuator layer and beam/sensor system. Also, Dt =(E1 I1 +E3 I3)/unit width, with
E1 I1 and E3 I3 denoting the flexural rigidity of piezo-actuator and the beam/sensor layer,
respectively. The storage shear modulus of the visco-elastic layer is G'2 and op is the strain
induced in the piezo-electric constraining layer. In this study, op is assumed constant over
the entire constraining layer. In equation (8), td is the dissipative shear stress developed
by the viscoelastic core. It is given by

td =(G'2 h/v)gt =i(G'2 h)g, (9)

where h, v and i denote the loss factor of the visco-elastic core, the frequency and z−1,
respectively.

The resulting equations of the beam/ACLD system, in dimensionless form, are

ū1xx = a(ū1 − ū3 + h�w̄x ), ū3xx = ar(−ū1 + ū3 − h�rw̄x ), (10, 11)

w̄xxxx = v̄2w̄ + b(ū1x − ū3x + h�w̄xx )=0, (12)

where a=G2 L2/(K1 h2), b=G2 hL3/(h2 Dt ), v̄2 =mv2L4/Dt , h�= h/L, ū1 = u1 /L, ū3 =
u3 /L, w̄=w/L, x=x/L, r=K1 /K3 and G2 =G'2 (1+ ih).

For a cantilevered beam, Hamilton’s principle indicates that the above equations are
subject to the following boundary conditions:

at x=0: ū1 (0)=0, ū3 (0)=0, w̄(0)=0, w̄x (0)=0, (13)
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at x=1: ū1x (1)= op , ū3x (1)=0, w̄xx (1)=0,

w̄xxx (1)− b[(ū1 (1)− ū3 (1)+ hw̄x (1)]=P, (14)

where P= pL2/Dt with p denoting a transverse end load.
It is important here to note that combining equations (10)–(12) by eliminating ū1 and

ū3 yields a sixth order partial differential equation in the transverse deflection of the
beam/ACLD system. The resulting equation is exactly the same as that developed by Mead
and Markus [19] to describe the dynamics of a beam treated with conventional PCLD.
However, the boundary condition ū1x (1) is modified to account for the control action
generated by the strain op induced by the active constraining layer at the free end of the
beam (i.e., at x=1) (Baz [4]).

However, in the present study equations (10)–(12) are manipulated differently to obtain
the spatial state space representation of the ACLD/system which is then used to develop
the system transfer functions as shown in section 4.

4. TRANSFER FUNCTIONS OF THE ACLD/BEAM SYSTEM

4.1. 

The transfer function approach has been utilized recently to study the stability of ACLD
treatments with certain parameters (Shen [12]). The approach has also been adopted in
1986 by Alberts et al. [20] to define the stability limits for rotating beams treated with
passive constrained layer damping of fixed parameters. In the present study, the transfer
function approach is employed to design the controller of the ACLD treatments, in the
frequency domain, in order to ensure stability in the presence of parameter uncertainty
and guarantee optimal disturbance rejection capabilities.

4.2.   

Equations (10)–(12) are rewritten in the matrix form

Zx =AZ, (15)

where Z=[u1, u3, w, wx , u1x , u3x , wxx , wxxx ]T is the spatial state vector of the ACLD/beam
system and A is

K L0 0 0 0 1 0 0 0
G G

0 0 0 0 0 1 0 0G G
0 0 0 1 0 0 0 0G G

G G0 0 0 0 0 0 1 0
G GA=

a −a 0 ah� 0 0 0 0
. (16)

G G
−ar ar 0 −ah�r 0 0 0 0G G

0 0 0 0 0 0 0 1G G
0 0 v̄2 0 b −b bh� 0k l

The solution of equation (13) gives the spatial state vector Z at the beam free end as

Z(1)=eAZ(0). (17)
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Incorporating the boundary conditions of equations (13) and (14) and rearranging the
results yields the following two sets of equations:

K L K L K L K Lu1 (1) u1x (0) op u1x (0)
G G G G G G G Gu3 (1) u3x (0) 0 u3x (0)
G G G G G G G G

w(1)
=A1 wxx (0)

,
0

=A2 wxx (0)
, (18, 19)

G G G G G G G G
wx (1) wxxx (0) P wxxx (0)k l k l k l k l

where A1 and A2 are given by

K Lf6 − (c+ bh�)f4 − v̄2f2 −af4 + av̄2f ah�f4 ah�f3

G G
+cv̄2fG G

−cf4 + cv̄2f f6 − (a+ bh�)f4 − v̄2f2 −ch�f4 −ch�f3G G
G GA1 = +av̄2f
G G

bf3 −bf3 −(a+ c)f3 + f5 −(a+c)f2 + f4G G
bf4 −bf4 −(a+ c)f4 + f6 −(a+c)f3 + f5k l

and

K Lf7 − (c+ bh�)f5 − v̄2f3 −af5 + av̄2f1 ah�f5 ah�f4

G G+ cv̄2f1G G
−cf5 + cv̄2f1 f7 − (a+ bh�)f5 − v̄2f3 −ch�f5 −ch�f4G G

G G+ av̄2f1

G G
A2 =

bf5 −bf5 −(a+c)f5+f7 −(a+c)f4+f6G G
bv̄2f2 −bv̄2f2 −(a+c)v̄2f2 −(a+ c)f5 + f7G G

+ v̄2f4 − bh�f5k l
with f is defined as f(x=1), where f(x) is given by

f(x)=L−1[1/{s2[s6 − (a+ c+ bh�)s4 − v̄2s2 + v̄2(a+ c)]]= (1/v̄2(a+ c))x+ s
6

i=1

Ri edi x

(20)

and

fi =[dif(x)/dxi]x=1, i=1, . . . , 7.

In equation (20), Ri and di are the residues and the roots of the partial fraction expansion
of the polynomial [s6 − (a+ c+ bh�)s4 − v̄2s2 + v̄2(a+ c)] with s the spatial Laplace
operator and c= ar.

Equations (18) and (19) are combined by eliminating the unknown boundary conditions
at the fixed end, to give

K L K L K Lū1 (1) op Gu1 op Gu1 p
G G G G G Gū3 (1) 0 Gu3 op Gu3 p opK LG G G G G Gk lw̄(1)

=A1 A−1
2 0

=
Gwop Gwp P

. (21)
G G G G G G

w̄x (1) P Gwx op Gwx pk l k l k l
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Equation (21) gives the output deflections [ū1, ū3, w̄, w̄x ] at the free end in terms of the
input control action (op ) and the external disturbance (P). Such input/output relationships
are represented by the appropriate transfer functions Gi j’s between the output i and the
input j. These transfer functions are used, in section 5, to design a controller that can
generate the control action op such that it stabilizes the ACLD/beam system in the presence
of parametric uncertainty and guarantee optimal rejection of the disturbance P.

5. DEVELOPMENT OF THE ROBUST CONTROLLER

5.1. 

Figure 3 shows a block diagram of a robust controller with transfer function K that
stabilizes the ACLD/beam system with transfer function G in the presence of multiplicative
parameter uncertainty D when the system is subjected to an external disturbance p. In
Figure 3, wr is a desirable reference transverse deflection which ideally is set equal to zero.

5.2.    

5.2.1. Stability
The small gain theorem (Dorato et al. [15], Dahleh and Diaz-Bobillo [16] and Boyd and

Barratt [17] is utilized to select the controller K to ensure stability in the presence of
uncertainty D due to the effect of the operating temperature and frequency on the
properties of the visco-elastic cores. Mathematically, the stability is guaranteed if the
following small gain inequality is satisfied:

=D =Q 1/=GK(I+GK)−1==1/=T =, (22)

where D=supu [(G�−G)/G]; q is the set of all operating temperatures. In equation (22),
G and G� denote the nominal and the actual transfer functions of the ACLD/beam system
computed at the nominal design temperature and any other operating temperature q

respectively. For illustrative purposes and without any loss of generality, G and G� are
selected in this study to be the nominal and actual transfer functions Gwop and G�wop

between the control action op and the transverse deflection w(1). Also, T denotes the
complementary sensitivity transfer function.

5.2.2. Disturbance rejection
The controller transfer function K is selected also to minimize the H2 norm of the

transfer function Gwp between the external disturbance P and the transverse deflection w

Figure 3. Block diagram of controller, ACLD system with uncertainty and external disturbance.
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at the free end of the beam to guarantee optimal disturbance rejection capabilities.
Mathematically, this H2 norm is defined as

>Gwp>2
2 =1/2p g

a

0

G*wpGwp dv, (23)

with G*wp denoting the complex conjugate transpose of Gwp.

5.2.3. Controller optimal transfer function
Mathematically, the problem of finding the controller optimal transfer function K is

formulated as

Find controller transfer function K

to minimize >Gwp>2
2 (24)

such that =D =Q 1/=GK(I+GK)−1=E e
The Powell conjugate direction augmented with the penalty function method is used to

search for the optimal coefficients of the numerator and denominator of the controller
transfer function K (Rao [21], Boyd and Barratt [17]).

6. PERFORMANCE OF THE ACLD WITH THE ROBUST CONTROLLER

6.1. 

The effectiveness of the robust control of the ACLD treatment is demonstrated using
a cantilevered steel beam which is 1·0 m long, 1·25 cm thick and 10 cm wide. The beam
is treated with an acrylic base visco-elastic material which is 1·50 cm thick. The visco-elastic
material used is Dow Corning Sylgard 188 whose shear modulus and loss factor are shown
in Figures 4(a) and 4(b) respectively at different operating temperatures and frequencies
(Nashif et al. [22]). The figures demonstrate clearly that the complex modulus of the
visco-elastic core varies dramatically, by more than ten fold, when the operating
temperature is varied from 75°F by 225°F and the frequency is scanned over a 2500 Hz
bandwidth. Such pronounced changes in the properties of the viscoelastic layer introduce
significant uncertainties in the parameters of the ACLD/beam system.

The viscoelastic core is sandwiched between two ceramic piezo-electric films (PTS-1195,
Piezo-electric Products, Meutchen, NJ) whose thickness h1, Young’s modulus E1 and
piezo-electric strain constant are 0·625 cm, 63 GN/m2 and 18·6×10−11 m/V. This results
in the following values for the main parameters: r=K1 /K3 =0·15, h=0·035 m,
Dt =3·55E4 Nm and m=182 kg/m.

6.2. -    / 

Figure 5(a) shows the effect of the operating temperature and frequency on the
magnitude of the open loop transfer function Gwop of the ACLD/beam system. It is evident
that the nominal transfer function Gwop , set at 75°F, is significantly different from the
actual transfer functions G�wop at 50°F or 100°F. The normalized differences between the
nominal and actual transfer functions define the parameter uncertainties D50 and D100 of
the system as shown in Figure 5(b) with Dq =[(G�q −G)/G].
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Figure 4. Complex modulus of the viscoelastic core: (a) shear modulus, (b) loss factor; ——, 50°F; – – –, 75°F;
—, 100°F.

Figure 5. Effect of temperature and frequency on (a) open-loop transfer function (- - - -, G75; —, G50; ——,
G100) and (b) parameter uncertainty (- - - -, D 50; —, D 100).
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T 1

Stability limits and >Gwp>2
2 for P, I and D controllers

Controller Uncontrolled P I D

stable gainE — 0·01 0·05 0·001
>Gwp>2

2 0·108 0·108 0·086 0·134

6.3.    ,    

The use of simple P, I or D control actions, each separate or combined, to control the
uncertain ACLD/beam system is found to be ineffective as suggested by the results
summarized in Table 1.

Table 1 indicates that in order to ensure stability, in the presence of the set uncertainties,
the control gains become very small to produce any pronounced control action as in the
case of the P and I controllers. In the case of the D controller, the stable performance of
the closed loop is found to be even worse than that of the open loop.

6.4.     

A simple controller is suggested with the transfer function

K= g(s+ a0)/s2, (25)

where the gain g and the parameter a0 are determined optimally according to the
formulation given by equation (24). Such simple controller is selected to maintain the
simplicity and hence the practicality of implementation of the ACLD treatments in real
systems.

Figure 6 shows the stability boundary and the iso-H2 norm contours plotted on the
(g− a0)-plane. Displayed also in the figure is the optimal combination of g and a0 at which

Figure 6. The stability boundary and the iso-H2 norm contours of the ACLD/beam system in the
(g− a0)-plane.
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Figure 7. Graphical representation of the small gain inequality (- - - -, D 50; —, D 100; ——————, 1/T).

the H2 norm (>Gwp>2
2) attains a minimum. At this optimal design point g=0·0875, a0 =6

and H2 norm is 0·047 which is 44% of that of the uncontrolled system.
It is important here to note that the devised optimal controller design satisfies the small

gain theory inequality (22) as indicated in Figure 7. Also, such a design has favorable
sensitivity S and co-sensitivity T characteristics as shown in Figure 8. The sensitivity is
very low at low frequencies to ensure good disturbance rejection capabilities and the
co-sensitivity become slow at higher frequencies to guarantee suppression of measurement
noise (Dahlaeh and Diaz-Bobillo [16] and Boyd and Barratt [17]).

Figure 9 shows the performance of the optimal controller at 50°F, 75°F and 100°F. It
is evident that the controller has been effective in damping out the vibration of the
ACLD/beam system within its bandwidth.

7. CONCLUSIONS

This paper has presented a variational formulation of the dynamics of beams which are
fully treated with active constrained layer damping treatments. The equations and the
boundary conditions governing the performance of this class of surface treatment are
presented using Hamilton’s principle. These equations are used to derive expressions for

Figure 8. The sensitivity and co-sensitivity of the optimal controller; ——, s; - - - -,, T.
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Figure 9. Performance of robust controller at different temperatures: (a) 50°F, (b) 75°F, and (c) 100°F. —,
Uncontrolled; - - - -, controlled.

distributed parameter transfer functions of the ACLD/beam system and devise a robust
control strategy which is stable in the presence of parameter uncertainty. In this manner
and as no mode truncations are involved, the stability of the controller is guaranteed for
all the modes of vibration. Furthermore, the developed control strategy ensures
also optimal disturbance rejection capabilities. A numerical example is presented to
demonstrate the effectiveness of the robust controller in damping out structural vibrations
when the ACLD/beam system operates over wide temperature and frequency ranges.
Under similar operating circumstances, it is found that simple P, I and D controllers fail
in producing any significant vibration control when the stability constraints are imposed
over the entire range of operation.

It is important here to note that although in the present study a low order controller
is used to illustrate the utility of the robust control concepts in the control of ACLD/beam
systems, a higher order controller can equally be devised to damp out the vibration over
wider frequency ranges. The low order controller is selected, however, to maintain the
simplicity and hence the practicality of implementation of the ACLD treatments in real
systems.

Also, to extend the applicability of the developed robust controller to account for
general disturbance spectra, appropriate frequency dependent weighting transfer functions
Ws can be used to put bounds on the sensitivity S as outlined by Lewis [23], Boyd and
Barratt [17] and Shahian and Hassul [24]. Similar weighting transfer functions WT can be
set to impose constraints on the co-sensitivity T to account for the frequency spectra of
the sensor dynamics and the measurement noise. In this manner, the weighting transfer
functions Ws and WT are used to shape the sensitivity S and co-sensitivity T characteristics
in the frequency domain. These frequency dependent constraints should be added to the
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optimal controller problem, given by equation (24), before the search is carried out for
the controller optimal transfer function K.
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NOMENCLATURE

a G2 L2/(K1 h2)
A system matrix (equation (16))
b G2 hL3/(h2 Dt )
c ar
Dt combined flexural rigidity of sandwiched

beam/unit width
E1,3 moduli of elasticity of piezo-actuator and

beam
f spatial function (equation (20))
fi ith derivative of f
g control gain
G transfer function of ACLD/beam system
Gi j transfer function of ACLD/beam system

between input j and output i
G2 complex shear modulus of the visco-elas-

tic core
h1,2,3 thicknesses of piezo-actuator, visco-

elastic core and beam
i z−1
k1,3 E1 h1 and E3 h3

K transfer function of controller
KE kinetic energy
L beam length
m mass of sandwiched beam/unit length and

unit width
p transverse load applied to free end of

beam
P pL2/Dt

r K1 /K3

Ri residues of partial fraction expansion
s spatial Laplace operator
S sensitivity function (=1− T)
t time
T co-sensitivity function
u1,3 longitudinal deflection of neutral axes of

piezo-actuator and beam layer
Ui potential energy
w transverse deflection of sandwiched beam
wr reference transverse deflection
Wi work done
Ws,T weighting matrices to shape S and T

characteristics
x position along beam
Z spatial state-space vector

Greek symbols
g shear strain of visco-elastic core
d( · ) first variation
di roots of characteristic equation of

ACLD/beam system
D parameter uncertainty (equation (21))
op strains of piezo-actuator
h loss factor
q temperature
td dissipative shear stress
v frequency


