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When investigating the acoustic or vibrational behaviour of a two- or three-dimensional
system, the classical approach is to compute the response as a sum over all contributing
modes. In this paper the modal summation of a two-dimensional system is rearranged,
taking into account the physical nature of the modes. The modes are grouped according
to the direction in which their constituent waves propagate, and are shown to be
represented as an array of image line sources. Closed form expressions for the input
impedance and the system’s transfer impedances are obtained for each mode group. The
modal summation is then performed over all contributing mode groups. A line source
model is thus generated which approximates to the exact point source model. The closed
form solutions obtained enable damping in the medium and at the boundaries to be taken
into consideration. For heavy damping, the line source or modal models are shown to be
in error. An alternative formulation, which allows for the time delay for line sources to
be set up, is presented, with some justification. Results are presented of an experimental
validation of the unmodified theory, as it relates to a rigid-walled two-dimensional
enclosure. Measurements of input and transfer impedances were made in an air-filled,
perspex enclosure. The effect of damping, evenly distributed throughout the enclosure, was
investigated. In general, the measured input and transfer impedances show good agreement
with the theoretical predictions.
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1. INTRODUCTION

The acoustic or vibrational behaviour of two- and three-dimensional systems is of
considerable interest in many branches of engineering and physics. In recent years,
particularly in the automotive and aerospace industries, much attention has been paid to
reducing sound levels in three-dimensional enclosures or to reducing the vibration
transmission in plates. Although a considerable amount can often be done to reduce sound
and vibration at source, an understanding of the manner of wave propagation enables
appropriate design decisions to be made at an early stage. Most acoustic spaces are of
non-uniform geometry, and many have large absorption on the surfaces or within the
volume, making accurate analysis impossible by any means. There are possibilities of using
approximate methods, in which either extremely light or heavy damping is assumed, but
these necessarily require many assumptions and provide answers which sometimes lack
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detail. The intention here, therefore, is to provide some physical understanding of the
relationships between modal and free field behaviour inside a rectangular two-dimensional
system by using a model which can include absorption in the medium and at the
boundaries, and ultimately provide causal time response information. This will thereby
assist possible modification of existing modelling methods. The example chosen here is an
acoustic system; however, results are in terms of wavenumber to permit application to all
wave types whether non-dispersive or dispersive.

There are a variety of approaches which can be used for the acoustic modelling of a
fluid-filled cavity. One alternative is to use the finite element technique [1]. This is generally
useful only at low frequencies, and although work has been carried out on regular and
irregular shaped cavities to determine the natural frequencies and mode shapes [2–5],
even for a rectangular cavity, to the authors’ knowledge, no attempt has ever been
made to model the damping of each mode. The three most common approaches used in
room acoustics, traditional reverberation time methods [6–8], ray tracing [9–13], and
image sources [14, 15] are all generally high frequency techniques. The acoustic field
usually is assumed to be diffuse: i.e., wave interference is neglected by assuming that
their mean intensities are additive. Another approximate approach to this type of
problem is Statistical Energy Analysis (S.E.A.) [16], but again, this leads to the
requirement, as with the room acoustics approaches, that the acoustic field is effectively
diffuse.

The relationship between modal behaviour and boundary absorption has been
investigated previously for one-dimensional systems [17, 18] and closed form solutions
were provided in which the attenuation and phase change around a return path are
the controlling parameters. This analysis is extended here for a corner-excited, two-
dimensional, rectangular cavity in which the wave field is decomposed into a set of
one-dimensional systems, each with a certain associated path length and attenuation. These
two-dimensional parameters are found by first representing the two-dimensional wave field
as an array of point image sources. Line arrays of point sources are then approximated
as continuous line sources, the direction of which describes one of the equivalent
one-dimensional systems. The input and transfer impedances of the line source model
correspond to that of the usual modal model [19] for very light damping, indicating that
the modal model assumes line sources.

The line source model initially presented is successful for light and even for moderate
damping, and can accommodate angle dependent reflection coefficients (if the walls are
locally reacting), and with different values on each wall. However, the model is limited to
systems described by uncoupled, orthogonal modes, and where the image source model
may be applied. Furthermore, if the damping becomes very heavy, the line source
assumption is shown to break down, and both the modal model and one-dimensional
model as presented become invalid. A modified theory is presented to deal with the heavy
damping case, based on the argument that a mode is not set up until wavefronts from an
array of point sources have travelled far enough for the combined wavefront to become
plane.

Similar results have been derived for three-dimensional acoustic spaces [20]. The main
extensions here to this work are the following: the modal summation equivalence to a
one-dimensional system; the summation of one-dimensional systems; and a more rigorous
treatment of boundary absorption.

Finally, some experimental work is presented, designed to test the unmodified theory,
namely a moderately damped two-dimensional enclosure. The transfer functions between
pressure and source velocity that were measured were, in general, in good agreement with
those predicted from the one-dimensional system sum.
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2. MODES IN A TWO-DIMENSIONAL RECTANGULAR CAVITY

The wavenumber vector grid for a hard walled rectangular cavity is described. This is
used to identify the directions and modal densities of the equivalent one-dimensional
systems. Wavenumbers, rather than frequencies, are used predominantly here as the
outcome of the analyses can then be used for plates with either dispersive or non-dispersive
waves.

2.1.     

Consider a rigid walled rectangular cavity with sides of length lx and ly . A potential
function c(x, y) of the form [19]

c(x, y)= cos kx x cos ky y (2.1)

satisfies the boundary conditions. Resonance frequencies, vN , have associated
wavenumbers kN ,

k2
N = k2

x + k2
y , (2.2)

where kx = np/lx and ky =mp/ly . The potential function (2.1) can be re-expressed as the
sum of four travelling waves with direction vectors 2(kx x2 ky y) where x and y are unit
vectors in the x and y directions respectively:

c(x, y)= 1
4 [ei(kx x+ ky y) + e−i(kx x+ ky y) + ei(kx x− ky y) + e−i(kx x− ky y)]. (2.3)

Each mode can be thought of as a point on a two-dimensional wavenumber vector grid
[19, 21], as shown in Figure 1. The x and y component wavenumbers for a mode are the
projected distances of the grid point along the x- and y-axes respectively. The resultant
wavenumber is the length of the wave vector and the direction of the principal travelling
wave (that in the first quadrant) is the direction of the wave vector. The direction of the
travelling waves, fp , is defined by the ratio of the two component wavenumbers:

tan fp =2mlx /nly . (2.4)

2.2.   

It is possible to assemble the modes on the two-dimensional grid into groups, each with
vectors of the same direction. This is shown in Figure 2. All the modes in one group lie
on a straight line starting at the origin and are evenly spaced along that line. Any one mode

Figure 1. Two-dimensional wavenumber vector grid.
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Figure 2. Mode groups on the wavenumber vector grid.

(apart from the (0, 0) mode at the origin) can belong to one mode group only. There are
two distinct types of mode group. The (1, 0) and the (0, 1) group which lie along the axes
in the wave vector grid are one-dimensional mode groups. The modes in these groups
comprise only two travelling waves which propagate parallel to one side of the cavity and
produce a one-dimensional mode shape. The modes belonging to the remaining mode
groups comprise four travelling wave directions, at an oblique angle to the axes, producing
a two-dimensional mode shape. A modal density, which is simply related to the spacing
between the modes on a single line, or vector, can be attributed to each mode group of
either type. If the angular resonance frequency of the first mode in a group is vM0, then
the associated wavenumber is kM0 where

k2
M0 = (np/lx )2 + (mp/ly )2. (2.5)

The higher resonances of this group are simply integer multiples, qp , of kM0, giving the
modal density in terms of modes per wavenumber as 1/kM0. The resonance wavenumber
at the qp th mode is therefore

kM = qp kM0. (2.6)

The wavelength of the first mode in the group is lM0 =2p/kM0.

3. TWO-DIMENSIONAL CAVITY REPRESENTED AS A SET OF
ONE-DIMENSIONAL SYSTEMS

The corner-excited cavity is represented by an infinite periodic cavity of point image
sources which are then regarded as a network of line sources. The equivalent
one-dimensional systems are obtained from these line sources. The transfer functions of
a single line source are calculated and these are combined to give the total transfer
functions of the cavity.
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Figure 3. A mode in two dimensions with image sources. –––, Wavefront; :, sound ray; (, source; w, receiver
position.

3.1.     - 

Consider the general fundamental (n, m) mode and all the modes in the same group
(2n, 2m; 3n, 3m; etc.) of a rigid walled rectangular cavity with sides lx and ly as depicted
in Figure 3. A compact volume source is located in one corner of the cavity. The resultant
wave field can be thought of as due to the summation of the real source and an infinite
number of image sources of equal strength, spaced in a regular grid pattern on the x-y
plane [22]. The spacing of the sources in the x and y directions are 2lx and 2ly respectively.
Although the volume source excites the fluid in all directions, consider only the four
propagation directions associated uniquely with a single mode group.

First, consider the opposing two propagation directions given by fp and fp − p. For
any given mode group, the sources may be arranged in line perpendicular to these
directions. The sources are evenly spaced a distance DM on each line, and the source lines
themselves are spaced evenly by the wavelength, lM0 of the first mode in a particular group,
qp =1. Resonances occur in a group when a plane wave from one line source, seen in
Figure 4, arrives in phase at the adjacent line source of the same group, or when

qp l=2lM , qp =1, 2, 3, . . . . (3.1)

qp is the mode counter, l is the wavelength at a particular frequency, and lM is the length
of the equivalent one-dimensional system, which may now be introduced and is described
by the line sources.

Figure 4. Source representation of a two-dimensional cavity and the line source distribution for the
one-dimensional system generated, - - - - , Wavefronts; (, 2D system sources; q, 2D cavity; ;, 1D system.
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Figure 5. The second one-dimensional system generated. Key as Figure 4.

The periodicity of the image sources causes each equivalent one-dimensional system to
have the same area (A= lx ly ) as the original two-dimensional cavity, as seen in Figure 4.
The source spacing along each line is therefore

DM =4A/lM0. (3.2)

The considerations above allow for two waves in the group. The other two waves would
generate a second system identical to the first, but mirrored about the x- or y-axis as shown
in Figure 5. The second system has the same properties as the first and does not have to
be considered separately.

One-dimensional systems are therefore simply obtained, subject to the requirement that
an array of point sources can be thought of as a line source. The limitations of this
representation are considered later in section 4.

3.2.     - 

The transfer impedance of an end-excited one-dimensional system is now generated from
the sum of a set of image sources, which correspond to line sources in the two-dimensional
model.

Figure 6 shows an image source representation of a one-dimensional cavity of length
l. A velocity source is placed at x=0 and a reflection coefficient r̄= r eio describes the
boundary at x=1. The medium has some inherent dissipation mechanism described by
a loss factor h, which is accommodated by a complex wavenumber, k. For a non-dispersive
medium, k1 =k = (1− ih/2), while for flexural waves k1 =k = (1− ih/4), it being assumed
that h�1. The medium has a characteristic impedance rcS (S being the cross-sectional
area), which is mainly real if h�1, as is assumed here.

The source has a velocity u0 eivt, causing a right going wave of normalized pressure
p(x)/u0 = rc e−ikx. The eivt dependence is suppressed. The image sources each radiate the
same pressure in both directions, modified by the reflection coefficient as indicated in the
figure. The normalized force or transfer impedance Z(x) at any point x is the sum of all
the source contributions,

Figure 6. Image source description of a one-dimensional system.
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Z(x)= rcS e−ikx(1+ a+ a2 + · · · )+ rcS eikxa(1+ a+ a2 + · · · ), (3.3)

where a= r̄ e−2ikl is the total attenuation and phase change in a wave travelling 2l. A
geometric sum gives the transfer impedance to any point x as

Z(x)= [(rcS/(1− a)](e−ikx + eikxa). (3.4)

The input impedance at x=0 is

Z(0)= rcS(1+ a)/(1− a) (3.5)

and the transfer impedance to point x= l is

Z(l)=2rcS e−ikl/(1− a). (3.6)

Equation (3.4) can be rearranged as

Z(x)= rcS(2a cos kx/(1− a)+ e−ikx), (3.7)

showing, for zero damping, the modal and the travelling wave components clearly
identified as the first and second terms. The usual modal solutions described by the cos kx
term omit the travelling wave term, as it is insignificant for light damping. However, when
the damping becomes so large that the attenuation or =a =:0, only the travelling wave
remains. The intention here is to use these wave impedance functions so that they preserve
the time delay information under all damping conditions.

If the excitation area, S0 is not equal to the cross-section, S, continuity of pressure p,
and volume velocity, S0 u0 are still preserved unchanged. From equation (3.4),

p(x)/u0 = [rcS0 /S(1− a)] (e−ikx + a eikx). (3.8)

The input impedance Z(0) is obtained by setting the force F0 =S0 p(0) and setting x=0:

Z0 = rc[S2
0 /S( 1− a)] (1+ a). (3.9)

If the two-dimensional cavity is depth t, then from Figure 4 and equation (3.2) it can be
seen that the cross-sectional area S is given by

S=DM t/2=2At/lM0 =2V/lM0. (3.10)

The excitation area is the same for all source arrangements, so the input impedance ZM (0)
from equation (3.9) is

ZM (0)=Z00 (S0 lM0 /2V)/[(1+ aM )/(1− aM )], (3.11)

where the wave factor a is altered, aM = r̄ e−iklM0, and the characteristic impedance
Z00 = rcS0. The reflection coefficient r̄ now represents the average value for a wave
travelling one circuit of the enclosure, making multiple reflections from each wall. The
number of reflections off each surface is a function of the angle of the wave and is described
in section 4.2.

The impedance given in equation (3.11) is for a single one-dimensional equivalent
system. Each two-dimensional mode group comprises two one-dimensional systems, and
therefore the impedance is given by twice equation (3.11). The impedance for a
one-dimensional mode group is given directly by equation (3.11).

For illustration, equation (3.11) may be written in complex form for the particular case
of a rigid boundary, i.e., r̄=1, by separating the attenuation component from the wave
component by setting

aM = =aM = (cos uM +i sin uM ),
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Figure 7. Real part of the impedance of a single mode group.

where uM =−klM0 and =aM ==e−h(k/2)lM0 (h is the loss factor; here non-dispersive waves are
assumed) giving

ZM (0)=Z00
S0 lM0

2V
1− =aM =2 +2i=aM = sin uM

1+ =aM =2 −2=aM = cos uM
. (3.12)

The real component of this function is plotted in Figure 7 for various values of the
attenuation function =aM =.

The resonances occur when cos u=1, causing an increase from the mean by a factor
of (1+ =aM =)/(1− =aM =). The troughs occur when cos u=−1, dropping below the mean
by the same factor. The most interesting feature is that the mean value Z�M (0),
corresponding to the constant on the left, decreases with decreasing system length, or
alternatively, upon using equation (3.10), increasing source distance DM :

Z�M (0)= rc2S2
0 /DM t. (3.13)

By use of the line source argument the transfer impedance to any point within the
enclosure can be found from the perpendicular distance xM , seen in Figure 3, from the
source line through the origin. If the distance from the nearest source line is x:

x= xM − qlM0, q=0, 1, 2, . . . , (3.14)

where q counts the number of source lines in the interval x. In Figure 3, q=1. The pressure
at position xM is obtained from equations (3.8) and (3.10) by setting the reflection
coefficient to unity, when all the sources are of equal strength. Then, for a single equivalent
one-dimensional system

p(xM )/u0 = (2Z00 /DM t) [(e−ikx + aM eikx)/(1− aM )], (3.15)

and aM = r̄ e−iklm . For the wave groups (n, 0) and (0, m) the pressure is given directly by
equation (3.15). For the two-dimensional mode groups, the pressure is twice this value.
The pressure at any point from all the wave sets would be given from a summation over
all sets.

This means of calculating the transfer function has been rigorously derived from the
modal expansion in section 2. However, a curiosity is revealed in Figure 3, where a source
line actually crosses the enclosure, giving a response at the same instance as that of the
true point source, without allowing for the travel time from the true source. The
implication is that the modal expansion, and this one-dimensional expansion, give acaudal
results, and cannot be relied upon in the time domain.

The modal approach or line source description can be applied with confidence only when
it is certain that an array of image sources can be regarded as a line source. This is discussed
further in section 4.
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3.3.     

Equivalence of the image source model and the modal solution has long been
established for the case of a rigid-walled, lossless, rectangular enclosure [23]. The source
line model presented here, which include losses, can now also be compared with the
classical modal model. Morse [19] derived an expression for the pressure at any point
inside a rectangular cavity due to a volume velocity source. Ignoring the damping term
and restricting the result to two dimensions, the pressure at a corner at frequency
v, due to a source at the same corner is given by a simple summation of orthogonal
modes,

p0 =
rc2Q0

V
s
n,m

−ion om v

v2 −v2
n,m

, (3.16)

where vn,m are the modal frequencies, o0 =1, o1 = o2, . . . ,=2, Q0 is the volume velocity
source strength at the corner and V is the cavity volume.

Substituting for Q0 in terms of a plane velocity source u0 acting over an area S0, and
expressing the angular frequency, v, in terms of the wavenumber, k, gives

p0 =
ircu0 S0

V
s
n,m

on om k
k2

n,m − k2. (3.17)

This sum can be calculated for each mode group separately as no mode other than the
(0, 0) mode belongs to more than one group.

For a single mode group, with the (0, 0) mode excluded, the summation can be rewritten
by using equation (2.6) as

s
n,m

on om k
k2

n,m − k2 =
1

k2
M0

s
a

qp =1

on om k
q2

p −(k/kM0)2. (3.18)

Performing this summation [24] gives

s
a

qp =1

on om k
k2

M − k2 =
on om

2kM0 0−p cot
kp

kM0
+

kM0

k 1. (3.19)

Returning to equation (3.17), one finds that the total pressure due to each mode group
alone, excluding the (0, 0) mode, is then

p0 =
−ircu0 S0

V
on om

2 0lM0

2
cot

klM0

2
−

1
k1. (3.20)

When klM0 /2�1, i.e., before the first resonance, the pressure goes to zero as the M=0
term has been excluded. (In fact, the (0, 0) mode dominates the response at zero frequency,
with zero wavenumber, and is a volume stiffness for a rigid-walled enclosure, and a rigid
mass for a pressure-release boundary.) At higher wavenumbers, the second term can be
excluded and the expression becomes

ZM (0)=−i
Z00

2V
S0 lM0

on om

2
cot

klM0

2
. (3.2)

For a one-dimensional group, (n, 0) or (0, m), on om =2, and equation (3.21) becomes the
same as equation (3.11) for light damping. For (n, m) modes, the impedance becomes twice
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equation (3.11) as on om =4. A one-dimensional system with line sources is thus shown to
be identical to a modal sum.

3.4.        - 

The input impedances of the various mode groups have been established, and can be
summed to give the input impedance of a two-dimensional cavity. This requires calculation
of the terms in equation (3.21) for each mode separately, and the summation performed
numerically for any enclosure of interest. In this section however, a closed form expression
for the total average input impedance is derived. This requires knowledge of the lM0 term
for each mode group, i.e., the modal density for each group.

Consider the three different types of mode group: the (0, 0) mode, the usual
one-dimensional modes (n, 0), (0, m), and finally the majority of the modes (n, m),
n, m$ 0. An exact expression for the number of mode groups, M, in this last category
cannot be derived in general terms, and has to be calculated numerically for each set of
enclosure dimensions. However, an average rate at which new one-dimensional mode
groups begin, dM/dk can be calculated.

If in Figure 1, the radius is increased by dk, an area pkdk/2 is encompassed, leading
to an increase in modes dN, each of elemental area p2/A, giving the usual modal density
dN/dk as

dN/dk=Ak/2p, (3.22)

where N is the mode count at k for (n, m) modes. At wavenumber k the mode count N
is composed of M different mode groups. (dM/dk)dk new groups start in the interval dk.
Each of these new groups has, by definition, a modal density of 1/kM0 =1/k. Therefore
the rate of change of modal density d2N/dk2 must be the product of the increase of new
groups and their modal density, or

d2N/dk2 = (1/k) dM/dk. (3.23)

The rate of increase of new mode groups is given from equations (3.22) and (3.23) as

dM/dk=AK/2p. (3.24)
This is the same rate as for the usual mode count in equation (3.22), which from a mode
count perspective alone suggests no advantage in the grouping system. However, some
differences are seen from the following impedance considerations. The average impedance
of a single mode group of modal density kM is given from equation (3.21), upon setting
on om =4, as

Z�M (0)=Z00 (S0 /V) (2p/kM ). (3.25)

The influence of a new group decreases with the starting wavenumber, kM . The increase
in average impedance dZ�(0) from all new wave groups in a band is

Re {dZ�(0)}=Z00 (S0 /V) (2p/k) (dM/dk)dk, (3.26)

which, on substituting from equation (3.24) gives

Re {dZ�(0)/dk}=Z00 S0 A/V. (3.27)

The real part of the mean point impedance is therefore

Re {Z�(0)}=Z00 (S0 /V) (Ak+ lx + ly ). (3.28)
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The lx and ly terms are added as these refer to the (n, 0) and (0, m) groups. For
non-dispersive waves, this equation tends to four times the value for a point source in an
infinite two-dimensional space, for which the impedance is given [25] as

Re {Z�(0)}= rvS2
0 . (3.29)

The factor of four occurs because of the four sources at the corner at the origin. The form
of the impedance of equation (3.28) is shown in Figure 8. At zero wavenumber, there is
no real impedance as the enclosure behaves as a spring (for rigid boundaries), and the
higher order modes have not yet cut on. Equation (3.28) gives a non-zero value at zero
frequency because it is an average value including the higher modes. When k= kb , the
(n, 0) and (0, m) mode groups begin causing a large step contribution, which is constant
at all wavenumbers as indicated. Only two mode groups are required to describe these very
important sets of modes. The transfer impedance in heavily damped media tend to be
dominated by these ‘least damped’ modes, which have the shortest length across the cavity.

When k= kp , the angled wave groups cut on. The increase in group start frequency is
balanced by a decreasing contribution from each group causing the total impedance to
increase with k. If no new groups were included in the summation beyond kf , the
impedance would start to drop below the true value, as indicated in the figure, but does
not go to zero. The result is, however, accurate until k= kf , unlike when a modal sum
is used and many more modes are required at higher wavenumbers for accuracy.

4. MODIFIED TRANSFER FUNCTIONS

In equation (3.15) a transfer function was presented which corresponded to that used
in the classical modal approach. Some reservations were noted on the grounds that the
source lines used actually crossed the enclosure, giving an instantaneous response at remote
positions with no time delay allowance. The problem is that for some conditions, a linear
array of point sources spaced DM apart cannot be regarded as a line source. This is a typical
problem of arrays, but it is shown, for example in [20], that provided the perpendicular
distance from the point source line is greater than the spacing, DM , the wavefront is almost
plane and so it appears to be generated by a line source. However, if the observer point
is less than DM from the sources the line source model is not valid, and the line source
joining a particular linear array of point sources must be disregarded, because in the time
domain the spherically spreading wavefront from a point source will not have reached the
position of the equivalent line source. If there is light damping, most of the waves
interfering to form modal patterns are derived from distant image sources whose influence
is accurately represented by plane wave fronts, and so the modal representation and the
one-dimensional approach developed are valid. However, when the damping becomes

Figure 8. Real part of the point-impedance for a two-dimensional system.
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heavy, the contribution from the true point source is larger than all other contributions
and the enclosure behaves more like a free field. This case cannot be modelled with the
method presented in section 3, but the purpose here is to present some justification for
a modified model which will also accommodate the heavy damping case. To achieve this,
the link between point sources and equivalent line sources must be established, and the
reflection coefficients for wall absorption calculated.

4.1.   

In reference [20] it was argued that the path length before wavefronts became plane was
of the order of the source spacing DM . Another similar definition is provided here, also
using the time domain argument used in reference [20]. Consider an array of impulsive
sources each giving energy E0 over a small time duration DT . The peak radiated velocity
u at any point r, shown in Figure 9, is given by

E0 = (p2/rc)2pr d(t− r/c)DT (4.1)

where the velocity u is related to the peak pressure by p= rcu.
Although arbitrary, one criterion for regarding the wavefront as plane is when the axial

component of intensity at the intersection of wavefronts at point A in Figure 9 is the same
as that normal to the source at point C. A second criterion is that A is sufficiently close
to C for the wavefront to be approximately straight. The first criterion is met when

2u2 cos2 b= u2, (4.2)

which gives an angle of b= p/4, and r=DM /z2. The pulse width in the time domain is
spread to AC. The distance AC is 0 0·3r which gives a wavefront approaching plane.

It is now possible to show how exclusion of all the line sources with exception of those
with sufficiently small source spacings DM can properly account for the close image source
contribution to the sound field. The pressure from a line array with point sources can be
calculated by noting that all the energy E0 from a single source concentrates over a distance
DM in the plane wavefront at large distances; i.e.,

E0 = (2p2/rc)DT d(t− r/c)DM . (4.3)

The factor of 2 allows for wavefronts in both directions spreading from the source line.
The peak pressure from a single line source is given from equation (4.3) as

p=zrcE0 /2DM . (4.4)

Figure 9. Wavefronts close to the image source lines. - - - - , Assumed wavefront.
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Figure 10. Line source representation of early image sources, (, Image sources; ----, line sources.

The peak pressure from a single point source at a distance r is given from equation (4.1) as

p=zrcE0 /2pr . (4.5)

Consider an arbitrary rectangle of aspect ratio tan b, shown in Figure 10. bQ p/4, and
the source spacing DM =2ly .

Only the line sources indicated contribute to the first arrival of a wave from the origin,
O, to the far corner A. The pressure from the two line sources is given from equation (4.4)
as

pl =zrcE0 /r sin b . (4.6)

The pressure from the four nearest image sources is given from equation (4.5) as

pi =1·6zpcE0 /r . (4.7)

The ratio of the two results is shown in Figure 11, and lies between 1·35 and 0·8, giving
equal responses when b= p/7·8. The aspect angle b lies between the limits of a square
enclosure (b= p/4) and one with an aspect ratio of approximately 5 (b= p/16). At larger
aspect ratios (or smaller values of b), more point sources will contribute to the first arrival
and so the comparison is inappropriate. This demonstrates that the complete contribution
of the near sources can be attributed to the usual one-dimensional wave groups (n, 0) and
(0, m). In the summation for the complete enclosure, all the line sources within a distance
of DM /z2 are therefore not included. The DM /z2 criterion also allows estimates to be
made for the limiting case of the square enclosure.

4.2.      

The general formulation, for example in equation (3.11), requires a single value r̄ to
describe the absorption by boundaries, of waves making a return journey over a distance
lM . In practice this involves a combination of the mean reflection coefficients of four walls,

Figure 11. Ratio of line source and image source first arrival amplitude.
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Figure 12. Image sources modified by reflection coefficient.

r1x , r2x , and r1y , r2y for wave components normal to the x and y directions, as shown in
Figure 12. If a one-dimensional system as shown in Figure 6 has reflection coefficients r1

and r2 on the terminations at x=0 and x=1, then the equivalent reflection coefficient
of one return journey is r̄x = r1x r2x . The four reflection coefficients for the four walls
considered here can thus be reduced to two: rx , ry , as in Figure 12, for wave components
in the x and y directions respectively.

The source counters in the x and y directions are m and n such that 2mlx = x, 2nly = y.
It is worth noting that the n, m integers are the same as those used in equation (2.2), only
now they are associated with lengths rather than wavenumbers. m becomes the length
counter in the x direction, and n the length counter in the y direction. The normalized
source strength R at image (m, n) is therefore

R= rm
x rn

y . (4.8)

The wavefront arriving at the origin from a line source passing through this point will have
a source strength of the value given in equation (4.8). R will appear as a continuous
function for distant sources because of the merging contribution

R= rx/2ls
x ry/2ly

y (4.9)

from sources in a line. If the path distance to this line source from the origin is s, and
the source line spacing is lM0,

s= qlM0, q=0, 1, 2, 3, . . . , (4.10)

the true source strength can be written with an angle dependence fp ,

R=(r̄M )q, (4.11)

where r̄M is the reflection coefficient for these parallel source lines for mode groups M,

r̄M =((rx )cosfp /cosb(ry )sinfp /sinb)lM0/2d (4.12)

where fp is given in equation (2.4). d seen in Figure 12 is the diagonal of the enclosure,
which is at angle b. This is a slightly confusing result because it suggests that even for angle
independent reflection coefficients rx , ry the modal reflection coefficient r̄M is a function of
both wave angle fp and the modal source line spacing. This would not occur in a
one-dimensional system where the wave angle and source spacing are constant. However,



 -   651

for two dimensions, changes in wave direction bring in a varying number of reflections
from the x and y surfaces, thus altering the net contribution in equation (4.9).

If the wall reflection coefficients themselves are functions of the angle of incidence fp ,
i.e., ry = ry (fp ) and rx = ry (p/2−fp ), then these values can be inserted directly into
equation (4.12). Inspection of equation (4.12) would suggest that, as the source line spacing
lM0 decreases, i.e., for high order mode groups, the reflection coefficient would actually
become closer to unity, giving less attenuation than for the lower order groups. If no
account is taken of the distance travelled before a mode is established, as is suggested here,
then it would appear that high order modes would be very significant, which is not the
usual experience. However, because the wave group must travel a distance s=DM /z2
before becoming established as a mode in the enclosure, a factor of r̄qM

M is applied to all
of the incoming waves, where qM is the number of line sources in the interval DM /z2: i.e.,

qM =(1/z2) (DM /lM0)=Ak2
M /z2p2. (4.13)

This actually gives very heavy attenuation for the high order waves before they are
established as a mode. These relations, established from image source considerations, have
not yet been confirmed by observation, as in the accompanying experimental work a rigid
walled enclosure where rx = ry =1 was used.

4.3.  - 

The one-dimensional model in Figure 6 can be modified to exclude all line sources that
are closer than DM /z2 from the origin. The source integer q describes the nearest source
line to be included, where q=0 would correspond to a line source at the origin. The
transfer impedance at any point x, excluding sources with integers less than q is obtained
from a sum similar to that of equation (3.2).

Zq (x)= rcS(aq + aq+1 + · · ·)(e−ikx +eikx), qe 1, (4.14)

or

Zq (x)= rcS[2aq/(1− a)] cos kx. (4.15)

If q=0, the travelling wave from the origin is included:

Z0 (x)=Z1 (x)+ rcS e−ikx. (4.16)

By following the same procedure in section 3, the pressure response at distance xM from
the source line at the origin in Figure 3 for the Mth wave group is found to be given from
equations (4.15) and (3.15) as

p(xM )/u0 = (Z00 /DM t) [(2aqM
M /(1− aM )] cos kxM , (4.17)

where aM = r̄M e−iklM0, r̄M is given in equation (4.12)
The nearest source line to be included is the integer qM : qM e (1/z2) (DM /lM0). qM is the

lowest value possible by the criterion, which always excludes the first outgoing wave from
the source. This outgoing wave can be described in two separate spatial zones as follows.

(i) If the observation point in the cavity at a distance r from the origin is rQDmin /z2
where Dmin is the minimum source spacing (e.g., 2ly in Figure 10) then only the true source
is contributing significantly and a point source term can be added to the mode group sum;
the total response is then

p(r)
u0

=Z00X k
2pr

e−ikr +Z00 s
M

on om

DM t
aqM

M

1− aM
cos kxM , qM e 1, (4.18)
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on om =2 for the (n, 0) and (0, m) groups and on om =4 for the (n, m) mode
groups.

(ii) If the observation point in the cavity at a distance r from the origin is rqDmin /z2,
then the line source from the origin can contribute accurately as shown in section 4.1 and
the total response includes the qM =0 term: i.e.,

p(r)
u0

=Z00
2

DM t
e−ikxM +Z00 s

M

on om

DM t
aqM

M

1− aM
cos kxM , qM e 1. (4.19)

The two cases differ only in the first term, which will be significant only for very heavy
damping, or for enclosures with large aspect ratios. The travelling wave term in equation
(4.19) corresponds to the plane wave from the shortest length of the cavity. For a square
cavity this must be multiplied by two, although the formulation would only be valid for
the corner furthest from the origin.

The summation only has to include mode groups up to the upper wavenumber limit of
k. For heavy damping only the free field term from the point source survives. For light
damping, the modulus of aqM will be close to unity giving the usual modal behaviour, yet
with a phase delay e−iklM0qM appropriate to each group of waves. This equation should be
effective for both time and frequency representations of rectangular enclosures with either
uniform wall absorption or medium absorption.

5. GENERAL APPLICATION

In the preceding theory only a very idealized example of a corner-excited, rectangular
enclosure with absorbent boundaries has been considered. The intention was to obtain a
physical understanding of the behaviour of this class of system, permitting a simplified
analysis for non-ideal cases. However, a few observations can be made concerning
the broader application of: a source not at the corner; three dimensions; and degenerate
modes.

If the source is not located at the corner, the modal attenuation and path length are
undisturbed. However, the fundamental equation (3.3) for the one-dimensional system will
be slightly altered by an additional multiplicative interference term. For a rigid-walled
enclosure this modifying factor would be expected to be cos kx x0 cos ky y0, where x0, y0 is
the location of the source relative to the corner.

In principle, all the analyses carried out on a two-dimensional enclosure can be extended
to model three-dimensional fields. A fully three-dimensional (oblique) mode in a
three-dimensional rectangular enclosure comprises four pairs of opposing travelling waves.
Each pair may be modelled as a one-dimensional system. Tangential (two-dimensional)
modes may be modelled exactly as presented here, with the one-dimensional (axial) modes
being treated accordingly.

Degenerate modes (distinct modes occurring at the same frequency) pose no significant
problems for a non-square enclosure as they are handled separately in their respective
groups. For a square enclosure, the modal density will be half that expected, so the
impedance should be doubled.

6. EXPERIMENTS

Some experiments are reported here which were designed to conform to the unmodified
theory, namely a moderately damped two-dimensional enclosure. An air-filled cavity was
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Figure 13. Two-dimensional perspex cavity.

used, with adjustable boundary positions and variable damping within the acoustic space.
The cavity was made from two thick parallel perspex plates separated by a small gap across
which the acoustic pressure was assumed to be constant. The boundaries were acoustically
rigid. The cavity could be excited at one corner and the pressure measured at any point
within.

6.1.  

The cavity used for all the experimental measurements is shown in Figures 13–15. It was
made from two large 25 mm thick perspex sheets of area 1 m×0·235 m separated by
25 mm square section perspex bars, giving a 25 mm air gap, which should mean that
the cavity permits two-dimensional modes only until 06·8 kHz. It was thought that
the thick perspex walls would provide a reflection coefficient close to unity. A gap was
left in one corner to accommodate a small rectangular section perspex piston of face
area 25 mm×50 mm. The piston was instrumented with a light weight accelerometer on
the inside surface. A small microphone could be positioned at any point inside the cavity.

With the microphone positioned close to the inner surface of the piston, the piston
was excited with a stepped sine wave from 100 Hz to 3500 Hz (fully three-dimensional

Figure 14. Two-dimensional perspex cavity; microphone in position for measurement of input impedance.
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Figure 15. Two-dimensional perspex cavity; close-up of piston, accelerometer and microphone.

modes have not yet cut on at this upper frequency). The normalized measured input
impedance was computed from the accelerometer and microphone data. This
procedure was repeated with the microphone placed at each of three remaining corners
of the cavity in turn, and the measured transfer impedance to those points was also
calculated.

All the tests were repeated with the base of the cavity lined with (a) woodchip wallpaper;
(b) 3 mm thickness felt. The effect of lining the cavity base was to introduce damping which
was distributed evenly throughout the cavity area. This was done to simulate damping
within the fluid itself.

6.2.      

The input impedance at one corner of the cavity was calculated, as was the transfer
impedance to the remaining three corners. The modal damping for the three chosen
conditions was also determined. Comparison between the experimental measurements and
the theoretical predictions was made up to a frequency of 1500 Hz. Equations (3.11) and
(3.15) were used to calculate the input and transfer impedances respectively, the result
being doubled for two-dimensional mode groups. Identification of the modal frequencies
and mode groups was carried out numerically using equation (2.2).

6.2.1. Input impedance
Plots of the real and imaginary parts of the measured normalized input impedance for

zero added damping, medium added damping (paper base), and high added damping (felt
base) are shown in Figures 16(a–c). For the zero and medium added damping, visual
identification of the individual modes up to a frequency of approximately 1500 Hz was
possible, and these have been labelled on the graphs. (n, m) refers to the number of half
wavelengths in the length (x) and width (y) directions. Above this frequency the overlap
of the modes becomes too high to render the identification accurate. For the high added
damping, visual mode identification was only found to be possible for the first few modes
and the first three are labelled.

The impedance for the first mode group between 0–700 Hz, given in equation (3.21),
setting on om =2, takes a theoretical mean value for (n, 0) modes of

Z�M =Z00 S0 c/2VfM0 1 36Z00 /fM0 1 0.1 (6.1)

c is the speed of sound, V is the cavity volume, and fM0 is the frequency of the first resonance
in the group (170 Hz in this case for the (1, 0) group), and Z00 is rcS0. This average line
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Figure 16. Normalized measured input impedance. (a) No added damping; (b) medium added damping (paper
base); (c) high added damping (felt base).

is drawn in Figure 16(c) and its contribution can be seen relative to the total impedance
over the whole frequency range. The next mode group to contribute is the (0, m) group
beginning at fM0 =723 Hz. The frequency average value for these modes is given from
equation (6.1) as 00·025. The first two-dimensional group (2, 1) begins close by at 743 Hz,
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taking a mean value of approximately twice this, i.e., 00·05 (on om =4). These groups,
along with further (n, 1) groups, control the response until 1457 Hz when the (1, 2) group
begins.

Figure 16(c) also shows the expected value of the real part of the input impedance which
is given in equation (3.28) as

Re {Z�(0)}=Z00 (S0 /ct)2pf, (6.2)

where t is the cavity depth.
This mean value is based on a high frequency assumption and is seen to be

acceptable even at low frequencies. It can be seen, however, that above 1500 Hz the
measured response ceases to climb as predicted. This is probably because the source has
ceased to behave as a point source. A quarter wavelength will extend to the outer edge
of the source piston, i.e., l=4d, where d is the piston diameter, at 1700 Hz. A quarter
wavelength criterion has to be applied rather than a half wavelength as would be usual
because the presence of the rigid boundary doubles the effective source length. At 3400 Hz
a half wavelength extends across the piston giving the cancellation trends seen in
Figures 16.

The imaginary parts of the impedance oscillate about the zero of each mode group but
there is an increasing negative trend with increasing frequency. This is to be expected, as
a pulsating cylinder in an infinite medium [25] has a stiffness controlled imaginary
component of impedance, which is negative.

The damping can be seen to progressively increase in Figures 16(a), 16(b) and 16(c) as
would be expected. The measured values of modal loss factor calculated from the half
power points are shown in Table 1. For no added damping, the (n, 0) modes seem to have
a loss factor of approximately 0·01, which is about twice the mean value for the (n, m)
modes. When the paper was added, the damping of the (n, 0) modes increased to about
0·02. The (n, m) values increased by a similar amount to about 0·01. The felt produced
such a large increase that only the (n, 0) modes were measurable at a damping of about
0·065. The measured and predicted input impedances for each damping level are shown

T 1

Measured modal loss factors

Loss factors
Modal Mode ZXXXXXXXXXXXCXXXXXXXXXXXV

frequency (Hz) numbers (n, m) No damping Medium damping High damping

170 1, 0 0·0148 0·0260 0·0676
340 2, 0 0·0112 0·0196 0·0674
510 3, 0 0·0104 0·0196 0·0625
680 4, 0 0·0118 0·0181 —
723 0, 1 0·0060 — —
743 1, 1 0·0064 0·0122 —
799 2, 1 0·0061 0·0122 —
850 5, 0 0·0134 0·0214 —
885 3, 1 0·0056 0·0108 —
993 4, 1 0·0057 0·0116 —

1020 6, 0 — — —
1116 5, 1 0·0051 0·0099 —
1190 7, 0 0·0065 0·0122 —
1250 6, 1 0·0049 0·0098 —
1360 8, 0 0·0047 0·0098 —
1392 7, 1 0·0044 0·0088 —
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in Figure 17. As can be seen, the theoretical predictions show good agreement with the
measured data at all three damping levels. The frequencies at which the modes occur and
the peak levels have, in general, been reproduced.

In the predictions, a different modal loss factor was used for each mode group, the group
modal loss factor chosen being equal to the average of the measured modal loss factors
for that group where more than one modal loss factor was measured (for the (1, 0) group),

Figure 17. Normalized input impedance; comparison between measurements and predictions. (a) Zero added
damping; (b) medium added damping (paper base): (c) high added damping (felt base). ——, Measurement,
- - - - - , prediction.
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and equal to the measured modal loss factor for groups where only one modal loss factor
was measured. For the modes in the (1, 0) group, the measured modal loss factor tends
to decrease with frequency. Therefore, for the lower modes in the group, the loss factor
used in the predictions was too low, and for the higher modes within the group, it was
too high. For all damping levels, this results in an overestimate of the peak heights for
the lower modes in the group, and an underestimate of the peak heights for the higher
modes in the group. This is evident in the graphs. However, even for the modes where
the loss factor used in the predictions was equal to the measured loss factor (the (1, 1),
(2, 1), (3, 1), (4, 1), (5, 1), (6, 1), and (7, 1) mode groups for zero and medium damping),
in general, the predictions give an overestimate of the peak heights. This may be due to
two causes.

(i) The boundary reflection coefficients in the measurement system are probably not
unity, and this will lead to prediction errors. As can be seen from the graphs, these errors
tend to decrease with the addition of damping. With added damping the fluid losses
become large compared with the boundary losses (which remain unchanged on adding
damping), so ignoring the boundary losses becomes less significant.

(ii) The discrepancies between the measurements and the predictions tend to increase
with frequency. This may be caused because of the omission here of the real part of the
attenuation term aqM

M in equations (4.13) and (4.18). From Figures 17(a) and 17(b) it can
be seen that, for similar frequencies, the peak heights for new mode groups cutting on
((1, 1), (2, 1), (3, 1), (4, 1), etc.) are more in error than the peak heights of modes belonging
to older groups (modes (4, 0), (5, 0), (6, 0), (7, 0)). The effect of the attenuation term was
calculated for new mode groups occurring at 01 kHz for loss factors 0·005, 0·01 and 0·065,
corresponding to the average values for the (n, m) modes for the three cavity linings. For
the untreated cavity the attenuation is 00·9; for the paper-lined cavity 00·8; and for the
felt-lined cavity 00·3. For the light and medium damping cases, inclusion of these values
would give slightly improved estimates. Inclusion of the corresponding term for the high
damping case does not improve the estimates in the same manner. However, this may have
been due to too high a loss factor (based on the first three modes only) being used for
the (n, m) modes. Unfortunately, for all damping cases, insufficient tests were done to
demonstrate this phenomenon conclusively.

For the high added damping, the measured modal frequencies were slighly lower than
the predicted ones. The addition of the felt layer to the cavity base may not only have
increased the potential for damping (manifested in an increase in modal loss factor), but
it may also have introduced an added mass to the cavity due to coupling with the felt.
This would effect a reduction in sound speed within the cavity which would lower the
modal frequencies, which was not included in the theoretical model. The comparison
shown in Figure 17((c) was therefore made between the measured data and a prediction
which assumed a much lower sound speed, based on the modal frequencies of the first three
measured modes. However, normalization is with respect to the original sound speed.

6.2.2. Transfer impedance
Plots of the real and imaginary parts of the transfer impedance to the corner x=0,

y=1y are shown in Figures 18(a–c) for the zero, medium, and high added damping cases.
In addition, the transfer impedances to the remaining two corners are shown in
Figures 18(d) and 18(e) for the high damping case. The measurement and predictions are
shown.

As for the input impedance, for all damping levels the modal frequencies have, in general
been reproduced. The fact that the small errors tend to increase with frequency suggests
that an appropriate value for the sound speed within the cavity was not used in the
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Figure 18. Normalized Transfer Impedance; comparison between measurements and predictions. (a) Zero
added damping; (b) medium added damping (paper base); (c) high added damping (felt base); (d) high added
damping (felt base); (e) high added damping (felt base). ——, Measurement; - - - - - , prediction. For (a), (b) and
(c) transfer is to corner x=0, y= ly ; for (d) transfer is to corner x= lx , y= ly ; for (a) transfer is to corner
x= lx , y=0.
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predictions. This was unfortunately unavoidable due to the long duration of the
experimental runs when the temperature (and hence sound speed) may have varied
considerably.

For all transfer corners, at all damping levels, the signs of the peaks in both the real
and imaginary parts of the transfer impedance have been reproduced correctly. This
indicates that the phase terms in the impedance expressions derived earlier (equation
(3.15)) are correct. However, the formulation which has been used does not reflect the time
delay required for a line source to be set up. This is evident when the peak heights are
investigated. The peak heights have not been reproduced exactly, and are in general lower
in the measured data than in the predictions. As for the input impedance, this may be
caused because of the omission here of the term aqM

M in equation (4.18). As for the input
impedance comparisons, the agreement between the measured data and the predictions
improves for the higher damping cases. This again could be due to the fact that the
boundaries do not have a unity reflection coefficient as was first assumed. With increased
fluid damping, the relative importance of the boundary losses decreases, so the accuracy
of the predictions improves.

7. CONCLUSIONS

This paper has investigated the basic nature of modes within a two-dimensional, damped
vibratory system. An image source representation was used to model a corner-excited,
rectangular system with either boundary or medium damping. Reduction of the point
sources to arrays of line sources permitted the enclosure wave field to be modelled as a
set of finite one-dimensional systems. Each one-dimensional system was shown to represent
exactly a harmonic set of conventional modes. This demonstrated that the usual modal
representation of a point source within a two-dimensional system assumes excitation by
a lattice of line sources, and that furthermore, the image source model and the classical
modal solution are related in a simple manner. Such a lattice excites the enclosure
simultaneously giving acausal behavior. This problem is noticeable only with heavy
damping when the wave field is dominated by the true point source, rather than the modes
generated by distant image sources. The limitations of mode expansion with increased
damping are thus clearly demonstrated and a physical interpretation provided.

The modal density of the equivalent one-dimensional systems and the point impedance
were calculated and corresponded to expectation. Simple closed form expressions for the
input impedance and corner transfer impedances were derived, thus demonstrating the
power of the model in calculating transfer functions. This model has the advantage over
the conventional modal model because it can more accurately represent damping and
requires fewer terms for convergence. In addition, a possible way of dealing with angle
dependent wall absorption is offered.

The acausal problem was resolved by excluding line sources which were closer than the
spacing between two image sources on that line, on the basis that the wavefront from this
set of sources would not be plane, and that a line representation would give a response
before the arrival of the true wavefront. The outcome of the model is that mode groups
that start at low wavenumbers suffer least attenuation and will dominate the transmission
to other points, in the presence of damping in the medium or at the boundaries.

Finally, measurements were made on a rigid-walled, two-dimensional, rectangular, air
filled cavity, excited at one corner, in order to validate the unmodified model. Both the
input impedance and the transfer impedance to the corners of the cavity were investigated.
The effect of damping, evenly distributed throughout the cavity, was also assessed. At all
three damping levels investigated, the input and transfer impedance measurements showed
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good agreement with theoretical predictions. Some estimates were made of the attenuation
expected from the modified model, and although the outcome was of the correct order,
there was insufficient data to demonstrate the attenuation phenomenon conclusively.

REFERENCES

1. J. R. W 1974 The Mathematics of Finite Elements and Applications. London: Academic
Press.

2. M. P, G. H. K and R. J. P 1977 Journal of Sound and Vibration 53, 71–82.
The acoustic modes of a rectangular cavity containing a rigid, incomplete partition.

3. M. P, J. L and G. H. K 1976 Journal of Sound and Vibration 45, 495–502. A finite
element method for determining the acoustic modes of irregular shaped cavities.

4. A. C 1972 Journal of Sound and Vibration 23, 331–339. The use of simple
three-dimensional acoustic finite elements for determining the natural modes and frequencies of
complex shaped enclosures.

5. T. S and K. I 1973 Journal of Sound and Vibration 29, 67–76. The analysis of the
acoustic field in irregularity shaped rooms by the finite element method.

6. M. T and S. Y 1981 Journal of the Acoustical Society of America 70,
1674–1678. Approximate formula of the averaged sound energy decay curve in a rectangular
reverberant room.

7. H. K 1973 Room Acoustics. London: Applied Science Publishers.
8. E. H. D 1978 Journal of the Acoustical Society of America 64, 181–191. Reverberation

time, absorption and impedance.
9. A. K, S. S� and S. S� 1968 Journal of Sound and Vibration 8, 118–125.

Calculating the room response by the use of a ray tracing technique.
10. G. B and R. S 1984 Applied Acoustics 17, 365–378. Evaluation of sound

absorbing coefficients in a reverberant room by computer-ray simulation.
11. A. M. O and J. L. B 1989 Journal of the Acoustical Society of America 85, 787–796

Modelling of sound propagation in fitted workshops using ray tracing.
12. J. J. E 1982 Acustica 51, 288–295. Sound field distribution using randomly traced

sound ray techniques.
13. M. T 1982 Archives of Acoustics 7(3–4), 173–182. A geometrical-numerical method for

the determination of the acoustic field properties related to the directions of reflected waves.
14. B. M. G and D. K. J 1972 Acustica 26, 24–32. A simple image method for calculating

the distribution of sound pressure levels within an enclosure.
15. M. G and F. S 1979 Journal of Sound and Vibration 63, 97–108. Prediction of sound

fields in rooms of arbitrary shape: validity of the image sources method.
16. R. H. L 1975 Statistical Energy Analysis of dynamical systems: theory and applications. MIT

Press.
17. J. M. M and R. J. P 1990 Journal of Sound and Vibration 143, 183–197.

A low-frequency anechoic lining for underwater use.
18. J. M. M 1992 Ph.D. Thesis, Southampton University. Acoustic power flow in fluid

filled tubes and cavities.
19. P. M. M 1936, 1948 Vibration and Sound. New York: McGraw-Hill.
20. C. G. M 1952 Acustica 2, 49–64. Standing wave patterns in studio acoustics.
21. F. J. F 1985 Sound and Structural Vibration: Radiation, Transmission and Response. London:

Academic Press.
22. C. L. M 1986 in Noise and Vibration (edited by R. G. White and J. G. Walker). Theory

of acoustics (II). Chichester: Ellis Horwood.
23. J. B. A and D. A. B 1979 Journal of the Acoustical Society of America 65, 943–950.

Image method for efficiently simulating small-room acoustics.
24. I. S. G and I. M. R 1980 Tables of Integrals, Series and Products. London:

Academic Press.
25. S. N. R 1963 The Theory of Sound. London: Pergamon Press.


