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Theoretical and experimental investigations into the acoustic performance of noise
barriers in a refracting atmosphere are presented. The theory is based on the conformal
transformation. It can be shown that the sound field in a refracting atmosphere with an
exponential sound speed profile above a flat impedance ground is identical to the sound
field in the homogeneous medium above a cylindrically curved impedance surface. The
sound fields behind noise barriers can then be computed accurately by means of the
Boundary Element Method (BEM). In addition, a scale model study has been conducted
for experimental investigations of the sound diffraction behind thin barriers above
cylindrically curved surfaces. These experimental results validate the proposed numerical
scheme. Finally, the BEM is extended to predict the sound fields, in both the upward and
downward refracting atmosphere, behind a thin barrier up to a range of 110 m. Also the
numerical predictions based on the BEM are compared with other published experimental
results.
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1. INTRODUCTION

In the past 30 years, noise control by barriers has become increasingly common as an
effective measure for environmental protection against transportation and other noise
sources by blocking the ‘‘line-of-sight’’ between source and receiver. The noise levels are
significantly reduced because only a small proportion of sound energy is received by the
‘‘listener’’ via diffraction over the top of (or the end of) a barrier. The introduction of and
reports on the use of barriers for the control of traffic noise can be dated back to the 1960s
in the U.K. [1–3], and in other countries (see, for example, references [4–7]). More recently,
the installation of noise barriers on the M25 between junctions 10 and 11 has been reported
by Johnston [8]. To date, much effort has been devoted to predict the sound levels behind
barriers by means of theoretical studies, scale-model experiments and other more costly
full scale field measurements [9]. In the past, rules and charts have been devised which
combine theoretical approximations and field experience heuristically [4]. These rules or
charts aid the practical design of noise barriers. Much of this early theoretical work is
based on classical diffraction theory (see, for example, references [10, 11]). More recent
theoretical work allows the presence of an impedance ground, the use of sound-absorbent
materials on the barrier surface [12, 13], and finite length barriers [14, 15]. Also a
computationally intensive scheme known as the boundary element method (BEM) has
been used widely [16] in recent years due to the advent of digital computers.

Despite extensive literature and research in this area, it is commonly found that the
insertion loss of barriers measured outdoors is often much lower than predicted by theory
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or measured with models in anechoic chambers [1, 7]. The discrepancies are in part due
to the influence of meteorological conditions, as in most previous theoretical studies the
effects of turbulence, wind and temperature gradients were ignored. In this context, there
is a need to redress the balance by investigating the meteorological influence on the
performance of noise barriers. Hence the work reported here is a study of the degradation
of a barrier’s performance under the influence of adverse meteorological conditions. The
effects of atmospheric turbulence are ignored in the current study. This information is
particularly useful in drafting guidelines for the design of noise barriers.

The propagation of sound over an impedance ground containing a barrier and in an
inhomogeneous atmosphere is an important topic of study. In predicting such propagation,
two numerical approaches have been suggested in the literature. If the atmosphere is
homogeneous, the boundary element method (BEM) is more suitable than the parabolic
equation (PE) method for tackling the problem. The BEM approach takes back-scattering
into account while the PE method ignores the back-scattered field. If the atmosphere is
inhomogeneous then the PE method is superior but only as long as there is no significant
back-scatter. Typical examples of such situations are the case of the sound field in front
of a tall barrier, steep hills or tree belts. Real atmospheric environments will be
inhomogeneous and may involve insignificant back-scatter. Nevertheless, Salomons [17]
has used the PE method and a semi-empirical ray-based scheme to predict the sound field
behind noise barriers in the refracting atmosphere. However, in this paper, the BEM
scheme is used to predict the meteorological influence on the acoustic performance of noise
barriers. Numerical results are validated by laboratory experiments and the scheme is used
to predict the sound field behind a thin barrier in a refracting atmosphere.

2. THEORETICAL FORMULATION AND ITS VALIDATION

The model considered is that of a sound field due to a point source above a ground
surface with or without a barrier. The atmosphere is assumed to be vertically stratified such
that the effective sound speed profile depends only on the vertical height, z, above the
ground. The effect of atmospheric turbulence has been ignored in the present study.
Suppose that the source is located at (0, 0, hs ) and the barrier is a two-dimensional one
with uniform cross-section along its length which is parallel to the y-axis as shown in
Figure 1. Furthermore, the barrier may be considered as a hard screen with a negligible
thickness, maximum height of hb , and located at a distance xb from the source. The analysis
is restricted to a two-dimensional situation with a flat ground at z=0. Without loss of

Figure 1. Sketch illustrating a two-dimensional barrier with uniform cross-section along its length parallel to
the y-axis inserting between a source and receiver.
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generality, it is assumed that the source and receiver are situated on the plane y=0. The
source and receiver are separated by the barrier with the receiver located at (xr , 0, hr ) with
xr q xb . The sound field at the receiver can be determined by solving the two-dimensional
Helmholtz equation

12p/1x2 + 12p/1z2 + k2(z)p=−d(x)d(z− hs ), (1)

where p(x, z) is the acoustic pressure, k(z)0 2pf/c(z), is the wavenumber, f is the source
frequency, c(z) is the effective sound speed and the time dependent factor exp(−ivt) is
understood. In addition to the governing Helmholtz equation, the acoustic pressure is also
subjected to the following boundary conditions: (1) the impedance boundary condition,
at z=0,

1p/1z+ik0 b(x)p=0; (2a)

(2) the barrier boundary condition, at x= xb and 0E zE hb ,

1p/1x+ik0 bb p=0; (2b)

(3) the Sommerfeld radiation condition as r:a, where r=zx2 + z2,

zr (1p/1r−ik0 p)=0. (2c)

Here, in equations (2a)–(c), k0 0 k(0) is the reference wavenumber, bb is the specific
normalized admittance of the barrier (which is zero for a hard barrier), and b(x) is the
specific normalized admittance of the ground which may vary as a function of x at the
plane of z=0.

A rigorous numerical approach is to be used to compute the sound fields by means of
the boundary element method (BEM). The approach is based on the application of the
boundary integral equation method to the governing Helmholtz equation [18]. A major
drawback of the application of the BEM is that it requires the general solution, or the
so-called Green function, for equation (1) in the absence of barriers. A closed form analytic
solution for an arbitrary sound speed gradient is difficult to derive. To date, closed form
analytic solutions exist only for a homogeneous medium and for a limited class of well
defined sound speed profiles. An example of such well-known solutions is that of a linear
sound speed profile. Li et al. [19] have developed the BEM to compute the scattering of
sound due to a Gaussian bump or trough for such a sound speed profile. However, their
analytic Green function involves modified Bessel functions and Legendre functions of the
second kind that are rather complicated and difficult to compute accurately. Thus, it is
desirable to use the existing BEM program code [18] (that is only suitable for a
homogeneous medium) to assess the effect of the refracting atmosphere on the performance
of noise barriers. To this end, one can use a conformal transformation that allows one
to transform equation (1) to a simplified form: i.e., for a medium with a constant
wavenumber k at the expense of ‘‘distorting’’ the boundary surfaces. This may lead to a
somewhat more complicated boundary condition. Since numerical solutions are sought,
the added complication in the boundary condition will not, in principle, pose any
numerical difficulty in computing the sound field.

In a recent study, Li et al. [20] have rigorously investigated the acoustic analogy for the
sound field above a cylindrical convex curve surface in a homogeneous atmosphere and
that above a flat ground in an upward refracting atmosphere. One assumes an exponential
sound speed profile in which the wavenumber, k(z), in equation (1) can be expressed as

k(z)= k0 exp(z/Rc ), (3)



z

S

0

r

Rc

ϕs

. .   . 666

where Rc is the radius of curvature of launched rays. This form is particularly useful
because it approximates a linearly decreasing sound speed for small z/Rc ,

c(z)1 c(0) (1− z/Rc ),

where c(z) is the speed of sound. By means of a conformal transformation [21] one can
set

X=Rc exp(z/Rc ) cos (x/Rc +8s ), Z=Rc exp(z/Rc ) sin (x/Rc +8s ), (4)

where 8s is an arbitrary constant angle specified in Figure 2. Upon introducing a Jacobian
factor, J[0 =1(X, Z)/1(x, z) =], it is straightforward to show the following identities:

J= b1(X, Z)
1(x, z) b=exp(2z/Rc ),

12p
1x2 +

12p
1z2 = J×012p

1X2 +
12p
1Z21, (5a, b)

and

d(x− xs )d(z− zs)= Jd(X−Xs )d(Z−Zs ), (5c)

where the source position, (Xs , Zs ) is determined according to equation (4) (with x= xs =0
and z= hs ) to give Rc exp(hs /Rc ) cos 8s and Rc exp(hs /Rc ) sin 8s , respectively. Substitution
of equations (5b) and (5c) into equation (1) leads to

12p/1X2 + 12p/1Z2 + k2
0p=−d(X−Xs )d(Z−Zs ), (6)

because J is factored out as it is present in every term. The corresponding boundary
conditions, see equations (2a)–(2c), are transformed to the following: (1) the impedance
boundary condition, at R=Rc ,

1p/1R+ik0 bp=0; (7a)

(2) the barrier boundary condition, at U=Ub and Rc ERERb ,

1p/1x+ik0 bb (U)p=0; (7b)

Figure 2. Illustration of a conformal transformation system.
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(3) the Sommerfeld radiation condition, as R:a,

zR (1p/1R−ik0 p)=0, (7c)

where (R, U) is the polar co-ordinate of the field point in the transformed space: i.e.,

R=zX2 +Z2 =Rc exp(z/Rc ), U=tan−1 (Z/X)= (x/Rc )+8s . (8a, b)

The quantity Rb 0Rc exp(hb /Rc ) is the corresponding radius of the maximum height of
the barrier.

In typical outdoor conditions, Rc is of the order of 1 km. It is reasonable to assume

Figure 3. Sketch illustrating the analogy between: (a) upwardly curved ray path above a flat boundary and
straight line propagation above a convex surface; (b) downwardly curved ray path above a flat boundary and
straight line propagation above a concave surface, in the presence of a barrier (reflected waves not shown).
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Rc�max (hs , hr , hb ). Furthermore, attention can be restricted to a relative short range, Xr

such that Rc is greater Xr . Then one obtains the approximations

R1Rc + z and Rb 1Rc + hb . (9)
Therefore the posed problem is equivalent to the calculation of the sound field due to a
point source of unit strength in a homogeneous medium. The source is placed above a large
convex circular cylinder and the barrier is located along a radial length of a constant polar
angle. See Figure 3(a) for the configuration.

Similarly, the corresponding acoustic analogy exists for the sound field above a
cylindrical concave curve surface in a homogeneous atmosphere and that above a flat
ground in a downward refracting atmosphere. One can use the analogous analysis as above
with the effective sound speed given by

c(z)= c(0) exp(z/Rc ), (10)

that approximates a linearly increasing sound speed gradient of c(0) [1+Z/Rc ]. It is
straightforward to show the problem posed is equivalent to the computation of the sound
field due to a point source in a homogeneous medium above a cylindrical concave curve
surface, see Figure 3(b). The BEM has proved to be an efficient and accurate numerical
tool for solving the class of problem described above: i.e., the sound field above a curved
boundary surface in a homogeneous medium. Its numerical procedure is fairly standard
and the details have been described elsewhere [18].

Figure 4. Excess attenuation calculated by the BEM and CERL-FFP with Rc =2·5 m, se =38 kPa s−1 m−2,
ae =15 m−1, hs =0·1 m and hb =0. (a) Upward refracting medium, for a frequency of 4 kHz and hr =0·0 m; (b)
downward refracting medium, for a frequency of 2·9 kHz and hr =1·2 m. Circles and dotted lines: BEM
calculations; stars: CERL-FFP calculations.
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To validate the use of BEM in the refracting atmosphere, one can first compare the
numerical results according to the BEM and the fast field program (FFP) [22]. In these
calculations, it is assumed that there is no barrier between the source and receiver: i.e.,
hb =0. Figures 4(a) and (b) are, respectively, the plots for the prediction of the sound field
in an upward and a downward refracting atmosphere. A two-parameter variable porosity
model [23] for ground admittance, b, is used throughout the paper, with

b=
1

0·436(1+ i)zse /f+19·48ae /f
, (11)

where se and ae are the effective flow resistivity and effective rate of change of porosity
with depth. The radius of curvature of the curve surface, Rc is chosen to be 2·5 m and two

Figure 5. Excess attenuation versus frequency obtained behind a barrier on a rigid concave surface with
Rc =20 m, hb =0·8 m, xsb =4 m and hs =0·1 m. (a) hr =0·05 m, xr =5 m; (b) hr =0·15 m, xr =6 m; and (c)
hr =0·1 m, xr =7 m. Circles: BEM calculations; dotted lines: measurements [26].
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frequencies, 4 and 2·9 kHz, are used in the calculations. In addition, the ground impedance
surface is chosen with se =38 kPa s−1 m−2 and ae =15 m−1. Note that similar parameter
values for the ground impedance have also been found in an outdoor measurement of
grassland at an airfield [24]. The fast field program is based on the computation of an
inverse Hankel transform [22] for the exponential sound speed profile. A strong gradient
with Rc of 20 m and a relatively soft ground are used in these calculations. The choice of
these parameters reflects the radius and the impedance of the curve surfaces used in
subsequent laboratory measurements. A weaker gradient means a larger radius of
curvature and hence more ‘‘elements’’ are required in the BEM computations. Figure 4(a),
shows comparisons for the upward refracting atmosphere with the source frequency of
4 kHz, and the source and receiver heights at 0·1 and 0·0 m, respectively. Figure 4(b)
displays the numerical results for the downward refracting atmosphere with the source
frequency of 2·9 kHz, and the source and receiver heights at 0·1 and 1·2 m, respectively.
Generally speaking, the agreements between the numerical solutions due to the BEM and
the FFP solutions are excellent for both the upward and the downward refracting medium.
The agreements are less satisfactory for a high source or receiver height and for a longer
range (these numerical comparisons will not be shown here) because of the inherent
approximations; see equation (9).

Next, numerical results are presented as calculated by the BEM for a barrier on a rigid
concave surface. These numerical results are used to compare with an earlier experimental
and theoretical studies by Gabillet et al. [25] in which a Gaussian beam approach is used

Figure 6. Excess attenuation obtained above an absorbing ground with se =20 kPa s−1 m−2, ae =60 m−1 and
gradients of 32·9×10−3 m−1. hs =2 m, hr =1 m, hb =2·5 m. Dotted lines: Rasmussen’s measurements; circles:
the BEM calculations. (a) Upwind, xsb =40 m and xbm =20 m; (b) downwind, xsb =20 m and xbm =40 m.
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to predict the sound field in a downward refracting atmosphere. In their experimental
measurements, Gabillet et al. used a barrier height of 0·15 m, a curved surface radius, Rc

of 20 m and a source height of 0·1 m. Figure 5 shows the BEM calculations (circles) and
their measured spectra (dotted lines) that are taken directly from Figure 15 of reference
[25]. The numerical results are presented in terms of excess attenuation, equivalent to their
relative sound pressure levels. Figure 5(a) shows the results for the range of 5 m and
receiver height of 0·05 m. Here, in this example, the receiver is located deep in the shadow
zone of the barrier. Figure 5(b) shows the results for the range of 6 m and receiver height
of 0·15 m. The receiver is located in close proximity to the limiting ray of the shadow
boundary in this case. Finally, Figure 5(c) displays results obtained for the receiver further
away from the barrier with the range of 7 m and receiver height of 0·1 m. In all cases, there
are excellent agreements between the BEM predictions and the Gabillet et al. experimental
measurements. Their Gaussian beam predictions are not shown in Figures 5(a)–(c) for the
clarity of presentation.

Numerical results calculated by the BEM for a barrier in the refracting atmosphere are
also presented, to compare them with Rasmussen’s scale model measurements conducted
in a wind tunnel for upwind and downwind conditions [26]. In his experimental analyses,
Rasmussen represented the wind velocity gradients by a set of linear profiles. Figures 6(a)
and 6(b) show his experimental results and the predictions based on the BEM approach.
In our numerical analyses, the BEM with a constant effective sound velocity gradient of
2·9×10−3 m−1 was used. The other parameters, such as source height, receiver height,
range (they are respectively, 2, 1 and 60 m) and the ground impedance (two-parameter
variable porosity model with se =20 kPa s−1 m−2 and ae =60 m−1), are identical to those
used by Rasmussen. In these figures, the dotted curves are taken directly from Figures 9
and 10 of reference [26], while the circles are the BEM calculations. The numerical result
are presented in terms of excess attenuation, equivalent to the sound-pressure level re free
field used in reference [26]. In spite of the use of the approximate constant sound speed
gradient, the agreement is very good in both upwind and downwind situations between
the present BEM predictions and Rasmussen’s measured frequency spectra.

From these comparisons with other results, it is obvious that the BEM is a valid and
accurate numerical tool to study the acoustic performance of noise barriers in the presence
of temperature gradients. Furthermore, it is enlightening to confirm that a cylindrical
curved surface may be used as a convenient alternative to the use of a wind tunnel [26, 27]
in the current study. The following section is devoted to experimental investigations of the
sound field in the refracting atmosphere behind a barrier.

3. SCALE MODEL EXPERIMENTS

A series of model experiments was conducted with a scale of 1 : 8. To simulate the
refracting atmosphere in an indoor environment, two types of cylindrical curved (a concave
and a convex) surfaces were required in the experiments. Both surfaces were constructed
by overlying sheets of masonite attached to corresponding wooden frames. Both frames
consist of a long cylinder with a constant cross-sectional area and have a radius of
curvature of 2·5 m. The convex curved surface corresponds to the external surface of a
cylinder while the concave curved surface corresponds to the internal surface of a cylinder.
They were built to have a centerline of 2·5 m, a span of 1·8 m and a height of 0·45 m. A
carpet felt with a thickness of 16 mm was laid on top of the wooden frames in order to
simulate an impedance ground. The carpet felt was secured to the wooden frame by using
double sided tapes to eliminate the possible transmission path between the wooden surface
and the felt. In an early acoustical characterization of the carpet felt, it was found that
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Figure 7. Excess attenuation obtained for a frequency of 500 Hz over flat surfaces in the presence of a barrier.
Points: the boundary element method calculations; circles and cross: experimental measurements. hs =0·16 m,
hr =0·05 m, hb =0·80 m, xsb =(a) 1·0 m, (b) 2·0 m, (c) 3·0 m, and (d) 4·0 m.
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the two-parameter variable porosity model with se =38 kPa s m−2 and ae =15 m−1

allowed best agreements between the theoretical predictions and experimental
characterizations [28]. These parameters are substituted into equation (11) in order to
determine the specific normalized admittance of the ground surface. To compare with the
barrier attenuation in the homogeneous atmosphere, measurements were conducted also
over a rigid flat board and a felt-covered flat board.

The curved surfaces and the flat board were placed, in turn, in an anechoic chamber
of dimension 3×3×3 m. A quarter-inch condenser microphone fitted with pre-amplifier
was used to measure the sound pressure levels. A Tannoy speaker fitted with a 3-cm
internal diameter long tube of 90 cm was used as a point monopole source. A PC-based
system analyser, Maximum Length Sequence System Analyzer (MLSSA), was used
both as the generator for the speakers and as the analyser for subsequent signal
processing.

A long thin edge stainless steel sheet of thickness 3 mm and height of 0·1 m was used
to simulate a thin barrier that is placed on the top of the convex or concave surfaces. The
barrier was perpendicular to the centerline of the curved surfaces. The bottom edge of the
barrier was sealed by using Bostik blu-tackTM in order to avoid the possible ‘‘leakage’’ of
sound through the gap between the barrier and curved surfaces.

As the diffraction of sound depends strongly upon the source/receiver geometry, the
source and receiver heights were kept constant in all measurements with scaled heights of
hs =0·16 m and hr =0·005 m (the actual source and receiver heights were 20 and 6·4 mm,
respectively). Initial measurements were conducted in the absence of the barrier over the
flat board, and the curved surfaces. Different measurements were then made with
the barrier inserted at scaled distances of 1, 2, 3 and 4 m from the source. The height of
the scaled barrier was 0·8 m (the actual barrier height was 0·1 m). A scaled frequency of
500 Hz was used (the actual frequency of the noise source was 4 kHz) in the measurements.
The parameters for the source/receiver geometry and frequencies were adjusted to reflect
the fact that scale model experiments were conducted.

A scale factor of 1 : 8 was used in the study but there was no corresponding scaling for
the impedance of the ground surface. The specific normalized admittance of the ground
was determined to be 0·3524–0·3715i for 500 Hz. The use of a scale model enables an
efficient and accurate use of the BEM to be made in the computation of the sound fields
behind the barrier. Note that a scaled frequency of 375 Hz (actual frequency of 3 kHz)
has also been used in the measurements. Nevertheless, the experimental results show a
rather similar trend. Consequently, these experimental results are not reported here for
brevity. Details of these measurements can be found elsewhere [28].

4. EXPERIMENTAL RESULTS AND COMPARISON WITH BEM PREDICTIONS

Hothersall et al. [16] have conducted extensive measurements to validate the BEM for
a similar problem of a barrier over a flat ground. In the present situation, a flat board
was used as our first test case in order to confirm the validity of the scale model used in
the experimental investigations. In the following plots, excess attenuation (EA) is defined
as the sound field above an impedance ground relative to the sound field in the absence
of any boundary plane. Figure 7 shows the measurements and BEM predictions above flat
rigid and absorbing ground surfaces and with the barrier situated at various distances from
the source. Figure 7 shows typical results above the flat surface for a source frequency of
500 Hz in these particular examples. In general, the agreement between the experimental
measurements and the BEM predictions is excellent. This, in turn, validates use of the scale
model in the measurements.
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Figure 8. Excess attenuation obtained for a frequency of 500 Hz over convex surfaces in the presence of a
barrier. Points: the boundary element method calculations; circles and pulses: experimental measurements.
hs =0·16 m, hr =0·05 m, hb =0·80 m, xsb =(a) 1·0 m, (b) 2·0 m, (c) 3·0 m, and (d) 4·0 m.
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Figure 9. Excess attenuation obtained for a frequency of 500 Hz over concave surfaces in the presence of a
barrier. Points: the boundary element method calculations; circles and pulses: experimental measurements.
hs =0·16 m, hr =0·05 m, hb =0·80 m, xsb =(a) 1·0 m, (b) 2·0 m, (c) 3·0 m, and (d) 4·0 m.
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Next, experimental results and BEM predictions are presented for the case of a convex
surface in the presence of a barrier. The plot of EA versus the distance along the curved
surface from the source is shown in Figure 8. The corresponding results above the rigid
and absorbing convex surfaces are presented for the source frequency of 500 Hz. Finally,
Figure 9 shows typical results for the case of the sound field above the concave surfaces
with the source frequency of 500 Hz. Again, there are good agreements between
measurements and BEM predictions for both convex and concave surfaces.

5. INSERTION LOSS OF NOISE BARRIERS IN THE REFRACTING ATMOSPHERE

To study the acoustic performance of a noise barrier in the refracting atmosphere, the
total insertion loss (ILtotal) is frequently used. It is defined as the difference between the
sound pressure level in a homogeneous medium and that of the sound pressure level in
the refracting atmosphere. With the acoustic analogy, ILtotal for curved surfaces is defined
as the difference between the sound pressure level without a barrier on a flat surface and
that of the sound pressure level with a barrier on a curved surface. The total insertion loss
of the barrier can be obtained directly from Figures 7–9 and the initial measurements of
EA without the barrier over the flat surface. Figures 10(a) and (b) show the result of the
total insertion loss on the rigid and absorbing surfaces, respectively. In these two figures,
the results for flat, concave and convex surfaces are superimposed for ease of comparison.

Figure 10. Barrier insertion loss, ILtotal, obtained for an equivalent full-scale frequency of 500 Hz over (a) rigid
surfaces, and (b) absorbing surfaces. Points and stars: the BEM calculations and measurements over convex
surfaces; solid lines and circles: the BEM calculations and measurements over flat surfaces; dotted lines and
crosses: the BEM calculations and measurements over concave surfaces. hs =0·16 m, hr =0·05 m, hb =0·80 m,
xsb =1·0 m.
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In these typical cases, the barrier is inserted at the scaled distance of 1·0 m from the source
and other scaled distances (2·0, 3·0 and 4·0 m) are not shown for brevity. The scale
frequency of 500 Hz is used in these two examples. In general, the agreement between the
BEM predictions and the measurements is tolerably good for all cases. The experimental
and numerical results indicate that the total insertion loss of the barrier is enhanced in the
convex surface whilst it is degraded in the concave surface. Consequently, these
experimental results support the view that the total insertion loss of barriers is increased
for an upward refracting atmosphere and decreased for a downward refracting atmosphere
[27].

On the basis of the success reported above, one can extrapolate the BEM result to predict
the effectiveness of a noise barrier in a more realistic outdoor environment. The total
insertion loss, ILtotal may not be a good indicator for the acoustic performance of a barrier
in a refracting atmosphere. This is because the meteorological effects have been included
in the factor, ILtotal. To assess the effectiveness of a barrier, one can use the barrier insertion
loss, ILbarrier instead. It is defined as the difference between the sound field above an
impedance ground without a barrier and that of the sound field with a barrier. The
parameter, ILbarrier is related to ILtotal by

ILtotal = ILbarrier + ILgeom, (12)

where ILgeom is the insertion loss due to the effect of refraction. The quantity, ILgeom, is
defined as the difference between the sound field above an impedance ground in a

Figure 11. Insertion loss of a barrier, ILbarrier, calculated for a frequency of 500 Hz with hs = hr =2 m,
xsb =20 m and hb =2·5 m. Dotted lines and stars: upward refraction; dashdot lines and pluses: downward
refraction; solid lines and circles: no refraction. (a) se =20 kPa s−1 m−2, ae =60 m−1 and sound speed gradient
of 31·0 s−1; (b) se =100 kPa s−1 m−2, ae =100 m−1 and sound speed gradient of 30·1 s−1.
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Figure 12. Insertion loss of a barrier, ILbarrier calculated for a source frequency of 1 kHz with
se =100 kPa s−1 m−2, ae =100 m−1 and sound speed gradient of 30.1 s−1. hs =1·0 m, hr =1·5 m and hb =2·5 m.
Dotted lines and stars: upward refraction; dashdot lines and pluses: downward refraction; solid lines and circles:
no refraction. (a) xsb =10 m, (b) xsb =15 m, and (c) xsb =20 m.
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homogeneous medium and that of the sound field in the refracting atmosphere. A typical
case is considered in the following numerical examples, where both the source and receiver
are situated at 2 m above the impedance ground. The barrier has a height of 2·5 m and
is located at a distance of 20 m from a source. Two types of impedance ground with
se =20 kPa s−1 m−2, ae =60 m−1 and se =100 kPa s−1 m−2, ae =100 m−1, respectively, are
used to simulate the conditions of a soft and a hard ground. Figures 11(a) and (b) show
the calculated barrier insertion loss as a function of range for a source frequency of 500 Hz.
The results are presented for an upward refracting medium (stars and dotted lines), a
downward refracting medium (crosses and dashdot lines), and a homogeneous medium
(circles and solid lines). The effective sound speed gradients 31·0 s−1 and 30·1 s−1 were
used in the numerical calculations for Figures 11(a) and (b), respectively.

Similar to Figure 11(b), Figures 12 and 13 show the predicted barrier insertion losses
for different source frequencies and various ranges. In Figure 12, the barrier insertion loss
is plotted as a function of range for a frequency of 1 kHz with source and receiver heights
of 1·0 and 1·5 m, respectively. The barrier is located at various distances of 10, 15 and 20 m
from the source respectively. Figure 13 shows the predicted barrier insertion loss as a
function of source frequency for different sources–barrier–receiver geometries. Figure 13(a)
shows the results calculated for the receiver height of 1·5 m that is located at a horizontal
distance of 50 m from the barrier. On the other hand, Figure 13(b) shows the results
calculated for a receiver located at 2·0 m above the ground and at a horizontal distance
of 80 m from the barrier. The barrier source heights are the same as those used in

Figure 13. Insertion loss of a barrier, ILbarrier, calculated with se =100 kPa s−1 m−2, ae =100 m−1 and sound
speed gradient of 30·1 s−1. hs =2 m, xsb =10 m and hb =2·5 m. Dotted lines and stars: upward refraction;
dashdot lines and pluses: downward refraction; solid lines and circles: no refraction. (a) hr =1·5 m and
xbm =50 m; (b) hr =2·0 m and xbm =80 m.
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Figure 11. In both cases, the distance between the source and the barrier is 10 m, the
impedance ground is calculated with se =100 kPa s−1 m−2, ae =100 m−1 and the effective
sound speed gradients are 30·1 s−1.

Note, from Figures 11–13, that the insertion loss is dependent on the source/receiver
geometry, source frequency, effective sound speed gradient, barrier height and ground
impedance. To confirm the trend, other source/receiver configurations have also been tried
and the distance of the source from the barrier varied in the other numerical calculations
(results not shown). It was found that the barrier insertion loss in the refracting atmosphere
is significantly different from that of the homogeneous atmosphere. There is no consistent
trend to support the view that the barrier insertion loss is always higher in the case of a
downward or upward refracting medium. Consequently, these numerical ‘‘experiments’’
suggest that the effectiveness of a noise barrier is not necessarily degraded in a downward
refracting atmosphere and is not obviously enhanced in an upward refraction atmosphere.
The meteorological influence on sound propagation plays a significant role in determining
the effectiveness of a noise barrier.

6. CONCLUSIONS

A rigorous numerical approach, based on a conformal transformation and the boundary
element method (BEM), has been used to compute the sound field behind noise barriers
in a refracting atmosphere. The numerical results have been validated by a series of scale
model experiments in which the curved surfaces are used to simulate sound propagation
in the refracting atmosphere. Also results of the current numerical scheme have been
compared with published experimental results. In general, there is a good agreement
between the BEM predictions and the experimental measurements for all cases.

In this paper, a novel approach involving the use of curved surfaces has been proposed
to assess the acoustic performance of noise barriers. It is possible, by combining the BEM
and conformal transformation, to examine the effects of sound speed gradient on barrier
insertion loss. The experimental measurements and numerical calculations confirm the
general belief that the total insertion loss of a barrier is degraded in a downward refracting
medium and enhanced in an upward refracting medium. However, this apparent change
in the acoustic performance of a noise barrier is largely due to the meteorological influence
on sound propagation outdoors. Finally, the effectiveness of a noise barrier in a refracting
atmosphere was studied by considering the barrier insertion loss. The numerical results
suggest that the effectiveness of a barrier depends on a number of factors such as the
source/receiver geometry, the effective sound speed gradient, the source frequency, the
barrier height and the impedance of the ground surface.
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