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This paper is concerned with wavelet based linear transformations for data compression
and feature selection in vibration analysis. Recent developments in wavelet data
compression are summarized. A discussion of various types of data including periodic,
continuous non-stationary and transient non-stationary signals, are used to show practical
aspects of wavelet compression. The analysis employs smooth wavelets and compactly
supported wavelets. It has been shown that compression in vibration analysis can be used
not only for effective storage and transmission of the data but also for feature selection.
A number of different approaches have been presented to show coefficient selection
procedures. This includes procedures based on truncated wavelet coefficients according to
their amplitude, position and frequency location and a data compression technique based
on optimal wavelet coefficients.
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1. INTRODUCTION

Many vibration analysis methods require a significant amount of data to store, transmit
or process. Further it often appears that data used for vibration analysis is highly
correlated. This includes spatial correlation where the values of the signal can be predicted
from the neighbouring points in the space–time domain, and spectral correlation where
the frequency domain can be used for prediction. The correlations present in the data can
be removed using compression. Data compression has been the subject of extensive
research for the last three decades. Research and developments are particularly extensive
in the area of image processing and information theory. A vast amount of literature can
be found summarizing these developments (e.g., reference [1]). There exist many different
methods of data compression including: predictive coding, transform coding, pyramid
techniques, entropy coding, vector quantization and hybrid techniques. Transform coding
is one of the standard techniques used for data compression. A number of transforms can
be used for image compression. This includes [1, 2]: the Fourier, cosine and sine, Haar,
Walsh–Hadamard, Slant and Karhunen-Loeve transforms.

Statistically, the Karhunen–Loeve expansion is the optimal transform for data
compression. The optimal basis is given by the eigenvectors of the correlation matrix. In
practice the correlation matrix is not known and the transform is computationally
expensive. Additionally, the basis of the transform depends on the data used for
compression. Recent years have seen some developments in wavelet and fractal analysis
for compression [3–9]. The wavelet transform can give a compression basis which is
independent of the data set and can reveal local temporal correlations in the data. Also
there exist fast algorithms for wavelet transform calculations. The majority of applications
are in the area of image compression [4–9] and acoustical signals [3, 6].
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All compression methods fall into two basic schemes: lossless and lossy. Lossless
compression does not introduce any distortion and loss of information; the original and
reconstructed (decoded) data are identical. Lossy compression allows a certain level of
distortion between the original and reconstructed data as long as the error is acceptable.
It is obvious that textual data requires lossless compression. On the other hand, lossy
compression, with significant error, can be used for image data. Here the acceptable error
is when a decoded image is visually the same as the original image. The data used in
vibration analysis may require different compression schemes with various levels of
acceptable errors. However, the error level is usually smaller for vibration data than for
image data. Thus, simple compression based on subsampling is good enough for images
but very often not acceptable for vibration data.

It appears in practice that the wavelet based procedure is not widely used for
compression in vibration analysis. It has to be underlined that data compression in
vibration analysis is not only an effective storage and transmission procedure, but also,
if not predominantly, a feature selection procedure. Rough vibration data is very often
not appropriate for further analysis and initial feature selection procedure is required. This
is for example the case in fault detection where advanced detection procedures like neural
networks very often need pre-processing analysis. The feature selection procedure may be
a lossy compression scheme with a large level of acceptable error. This in practice leads
to high compression ratios.

The aim of this paper is: to bring together recent developments in wavelet based data
compression, to give some practical guidance on how to compress different types of
vibration data, and to show possible applications in vibration analysis, in particular feature
selection procedures based on wavelet compression algorithms. The paper is addressed to
the mechanical engineering community and will hopefully provide help and understanding
of wavelet based compression in this area. For detailed analysis about compression and
wavelets the reader is referred to other publications.

The structure of the paper is as follows. Section 2 defines a linear transformation
for data compression. The theoretical background of wavelet analysis is given briefly in
section 3. Section 4 summarizes a basic theory of wavelet compression, and gives a number
of compression examples for different types of data. A compression procedure with
optimal wavelet coefficient is presented in section 5. Section 6 gives two possible feature
selection procedures in the area of fault detection. Finally, the paper is concluded in
section 7.

2. LINEAR TRANSFORMATION FOR DATA COMPRESSION

Transform coding is a standard compression procedure which leads to a generalized
frequency domain. The theory of linear discrete transforms for compression can be found
in reference [2]. In what follows, the basic idea is given. The data is represented in the form
of a vector X�, which usually has equally distributed energy among its elements. The basic
idea is to move X� to a vector Y� using a linear transformation R:

Y�=R(X�). (1)

The new vector Y� concentrates most of the energy in only a few vector elements. Thus,
data compression can be achieved by setting some vector elements below a threshold to
zero and discarding them. The data can then be reconstructed using an inverse
transformation. The linear transformation of a vector is based on the decomposition of
this vector in terms of a basis of elementary vectors. A simple example can be given by
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Fourier analysis, where any periodic function x(t) has a Fourier series representation given
by,

x(t)= s
n=+a

n=−a

an ei2pnt, (2)

where an are the Fourier coefficients defined as,

an =
1
2p g

2p

0

x(t) e−i2pnt dt. (3)

Clearly, function x(t) is decomposed into an infinite sum of elementary functions fn =ei2pnt

which form the orthogonal basis. The orthogonality condition means that the inner
product � fm , fn � satisfies

� fm , fn �=
1
2p g

2p

0

fm (t) f *n (t) dt=0 (4)

for all integers m$ n. It is clear that the elementary functions ei2pnt are generated by
iteration or dilation of a single function ei2pt.

Other examples of transform coding include transforms already mentioned in the
previous section. The compression based on the Fourier transform does not depend on
the data set. The algorithm of calculations is simple and fast. However, the method very
often fails to remove correlations in non-stationary data. This is due to the nature of the
basis functions, which are local in the frequency domain but non-local in the time domain.
Additional locality in the time domain can be obtained using wavelets.

3. WAVELET ANALYSIS

3.1.  

For the sake of completeness, a brief introduction to the relevant wavelet theory is given
in this section. More detailed analysis can be found in reference [10].

By analogy to the Fourier transform, the wavelet transform is a linear transformation
that decomposes a given function x(t) into a superposition of elementary functions ga,b (t)
derived from an analyzing wavelet g(t) by scaling and translation i.e.,

ga,b (t)= g*0t− b
a 1, (5)

where * denotes complex conjugation, b is a translation parameter indicating the locality
and a is a dilation or scale parameter.

The discrete wavelet transform refers to a discrete time-scale framework. Within
this framework, when a binary dilation and dyadic translation is used, the orthogonal
wavelet transform can be defined. A function g(t) is called an orthogonal wavelet if the
family

gm,k (t)=2m/2g(2mt− k) (6)

forms an orthonormal basis, that is

�gm,k , gn,l �= dm,n · dk,l (7)
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for all integer m, n, k, l, where �, � is the usual inner product and dm,n is the Kronecker
symbol. The orthogonal wavelet transform can now be defined as

xm
k =g

+a

−a

x(t)gm,k (t) dt. (8)

The transform can be interpreted as a filter bank decomposition. The scale (frequency)
partitioning leads to a partitioning in the time domain that is finer in the higher frequency
bands. The wavelet synthesis formula is given by

x(t)= s
m

s
k

xm
k gm,k (t). (9)

3.2.  

A number of different bases have been proposed to construct orthogonal wavelets. The
simplest basis can be given by the well-known Haar function h(t) that is equal to 1 on
�0, 1/2), −1 on �1/2, 1) and 0 outside the interval (0, 1). Much more effective analysis and
synthesis can be obtained with the wavelets gr (t) of Daubechies [10], which are orthogonal
and have the following properties: (1) the support of gr (t) is the interval [0, 2r+1]; (2)
gr (t) have r vanishing moments, i.e., f+a

−a trgr (t) dt=0; (3) gr (t) has gr (g is about 0·2)
continuous derivatives.

Figure 1. An example of Daubechies’ wavelets: (a) fourth order; (b) twentieth order.
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Figure 1 shows the fourth and twentieth order Daubechies’ basis functions. It can be
shown that when r=0, this basis reduces to the Haar wavelet analysis. The orthogonal
wavelet decomposition based on the Daubechies’ wavelets can be obtained using the
pyramidal Mallat algorithm. For more details about the calculation procedure, the reader
is referred to references [11, 12]. Other popular wavelets which can be used for compression
are the Lemarié, Coiflet and Mexican Hat wavelets [13, 14].

4. WAVELETS FOR DATA COMPRESSION

A wavelet based compression is based on a linear transformation given by equations
(1), (8) and (9). The algorithm essentially consists of four major steps: transformation,
thresholding, quantization/encoding and reconstruction.

4.1. 

The wavelet transform given by equation (8) is computed using the original data. The
operation requires a proper choice of the wavelet analyzing function. This is very often
a trade-off between the smoothness (differentiability) and compact support of the wavelet
functions. The smoothness of a function corresponds to the decay of its Fourier transform.
It can be measured using the Sobolev norm obtained from the derivative norms

>g>2
WN = s

k

>g(k)>2. (10)

The support of the function means the smallest closed set outside which the function
vanishes identically. In general more compactly supported,* and therefore less smooth
wavelet functions, are better for non-stationary data with discontinuities, impulses or
transients. This class includes, for example, lower order Daubechies’ wavelets. Less
compactly supported, and therefore more smooth wavelet functions, are better for
stationary, regular data or in cases where low level of compression error is required. In
such situations, higher order of Daubechies’ wavelets or very smooth Lemarié’s wavelets
[13] can be used. In practice, the number of vanishing moments of the wavelet functions
is also important. For regular, smooth, stationary data, more vanishing moments lead to
smaller wavelet coefficients. However, for non-stationary, unregular data more vanishing
moments lead to more large wavelet coefficients.

4.2. 

Transient data can be represented by a smaller number of coefficients compared with
regular, stationary data which needs more wavelet coefficients for time-scale
representation. In the time-scale domain, data compression can be achieved by setting
wavelet coefficients xk

m below a threshold t to zero by applying a threshold function

F(t, xk
m )=60 =xk

m =Q t
1 =xk

m =e t
(11)

to these coefficients. Thus, the absolute amplitude and not the position of the coefficients
is important in the procedure. It is obvious that the bigger the threshold, the higher the
compression ratio that can be achieved.

*Strictly speaking a set is either compact or not. Therefore a function cannot be more or less compactly supported
than another. However, if one has a measure, as in this case on L2(R), one can compare the sizes of the compact
supports and introduce an order relation.
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4.3.   

Quantization is the procedure which restricts the values of chosen wavelet coefficients
to a limited number of levels. Encoding is an operation in which the whole scale of values
is divided into intervals represented by coded symbols. A simple scalar quantization
represents the coefficient in terms of these symbols. A more advanced method called vector
quantization replaces groups of coefficients with one symbol [15]. Encoding is an operation
in which a quantized vector is replaced by a bit stream. Two standard methods used for
this operation are: fixed length and variable length coding. Other methods based on
entropy coding concepts can also be used. These techniques relate the information about
possible coefficient amplitude levels with the probability of their occurrence. The idea is
to assign shorter symbols to the more frequent amplitude levels. Here the amount of
information (entropy) required to code a symbol of probability p is given by

I=log2 (1/p). (12)

The performance of the encoder can be improved when self-similarity analysis between
wavelet sub bands is used [7].

4.4. 

The data can be recovered from its compressed form using encoding and quantization
algorithms and the formula is given by equation (9). The compression procedure described
in this section can be performed well for the data which can be represented by a small
number of wavelet coefficients. This can be assessed by a function M [7]

0si, j

=�x, cj,k �=p1
1/p

, (13)

by finding the smallest value of p for which M is bounded. The smaller the value of p,
the fewer wavelet coefficients are needed to represent the data and thus a better
performance of the algorithm can be obtained.

In practice, the wavelet based compression algorithm is more suitable for non-stationary
type data. Thus, any parameter which reveals the level of non-stationarity can be used to
assess the performance of the algorithm. As an example, the parameter which measures the
extent to which a function x(t) is narrow-banded. This parameter can be defined by [16]

q=X1−
m2

1

m0 m2
, (14)

where mn is the nth spectral moment of the single sided spectrum of x(t) defined as

mn =g
a

0

vnSxx (v) dv. (15)

The smaller the value of q, the more narrow-banded the analyzed process. Simple examples
of the wavelet based compression are given in the next section.

5. COMPRESSION EXAMPLES

In order to show some of the properties of the wavelet based compression discussed in
the previous section, three examples with different types of real vibration data from
rotational machinery were analyzed. The data included 512 samples. The data was
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compressed using three different transformations: the Fourier transform (FFT) and the
wavelet transform with the fourth (DAUB4) and twentieth (DAUB20) Daubechies’
wavelet functions. A simple scalar quantization procedure using a six-bit representation
was applied.

5.1.  

Wavelet based compression represents a lossy compression scheme and allows a certain
level of distortion between the original and reconstructed data. This error can be controlled
using different measures. In order to compare different compression algorithms and
estimate the performance of the methods, two parameters have been used. The first one
is the compression ratio defined as the ratio between the number of bits of the original
data and the number of bits of the compressed data. The second parameter is the
normalized Mean Square Error (MSE) given as

MSE(x)=
100
Ns2

x
s
N

i=1

(xi − x̂i )2, (16)

where xi are the samples of the original function, x̂i are the samples of the reconstructed
(encoded) function, sx is the standard deviation of the function and N is the number of
sample points in the analyzed data.

5.2.  

The first analyzed example involved the stationary periodic data given in Figure 2(a).
The frequency domain representation in a form of the power spectrum is represented in
Figure 2(b). The value of q2 for this data is equal to 0·13. Here, three predominant
frequency components in the spectrum can be clearly observed. A few sidebands together
with some level of noise can also be seen. The solid line in Figure 2(c), displays wavelet
transform coefficients calculated for the analyzed data. Here the twentieth order of the
Daubechies’ wavelet function (DAUB20) has been used. The same coefficients, but plotted
according to decreasing order of amplitude, are, presented in Figure 2(c) and denoted by
the dashed line. It can be seen that the 150th largest wavelet coefficient is about 10 times
smaller than the largest coefficients. This suggests that the wavelet domain concentrates
energy better than the time domain, since a smaller number of samples is required to
represent the data. However, one can already notice that the frequency domain
(Figure 2(b)) requires even less coefficients to represents the data than the wavelet domain.

The compression results for different numbers of wavelet coefficients used for compression
and different compression ratios are presented in Figures 3(a) and (b), respectively. It can be
clearly seen that the Fourier transform based compression gives much smaller error than the
wavelet transform compression. As already mentioned in section 2, the twentieth order
Daubechies’ wavelet (DAUB20) is more suitable for stationary, regular data.

5.3.  - 

Continuous non-stationary data was analyzed for the second example. The data consists
of a series of impulses embedded in the noise. Figure 4(a) shows the data in the time
domain. The power spectrum represented in Figure 4(b), displays much more frequency
components than the previously analyzed data in Figure 2(b). The value of q2 for this data
is equal to 0·23. The wavelet coefficients for this data are represented in Figure 4(c) by
the solid line, and in decreasing order of amplitude by the dashed line. It can be seen that
in this example, the wavelet domain concentrates the energy better than the Fourier
domain. The decay of the dashed line in Figure 4(c) is also faster than in Figure 2(c). This
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Figure 2. Periodic data used for compression in: (a) time domain, (b) frequency domain, (c) wavelet domain;
dashed line indicates wavelet coefficients decreasing according to the amplitude level.

means that a smaller number of wavelet coefficients than in the previous example can be
used to represent the data with the same accuracy. The compression results are given in
Figure 5. Here the wavelet based compression performs better than the Fourier analysis.
In contrast to the previous example, the fourth order function (DAUB4) gives better results
than the twentieth order function out of the two Daubechies’ wavelets used in the analysis.

5.4.  

The third analyzed example involved non-stationary transient data. Figure 6(a) shows
a transient in the time domain. Its frequency domain characteristic is given in Figure 6(b).
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Figure 3. Compression performance for periodic data. MSE plotted as a function of: (a) wavelet coefficients
used for compression, (b) compression ratio. ————, DAUB4; – – – –, DAUB20; —·—·—, FFT.

Here, the broad-band nature of the power spectrum with one predominant spectral
component can be clearly observed. The value of q2 for this data is equal to 0·33. The solid
line in Figure 6(c) gives the wavelet coefficients for the data. These coefficients are plotted
in decreasing order of amplitude using the dashed lines. It can be seen that in contrast
to the Fourier domain (Figure 6(b)), the wavelet domain (Figure 6(c)) needs only a few
coefficients to represent the transient data. The compression results are given in Figure 7.
It can be clearly seen that the wavelet based compression method outperforms the Fourier
based technique. Both wavelet functions used in the analysis give similar results.

5.5.   

An example showing the comparison between the original data used and the
reconstructed (encoded) data is given in Figure 8. Here, three types of data used in sections
5.2–5.4 can be seen. The analysis involved the twentieth order Daubechies’ wavelet in
Figure 8(a) and the fourth order Daubechies’ wavelet in Figures 8(b) and (c). The
compression ratio 6:1 gives MSEs equal to 2·02, 5·03 and 0·2% for the periodic,
continuous non-stationary and transient data, respectively. These results show good
performance of the wavelet based compression algorithms especially for transient data.

The performance of the compression algorithms strongly depends on the data used.
Thus, the presented results should be considered only as guidance for different types of
data and various compression algorithms. It has to be mentioned that neither the linear
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Figure 4. Continuous non-stationary data used for compression in: (a) time domain, (b) frequency domain,
(c) wavelet domain; dashed line indicates wavelet coefficients decreasing according to the amplitude level.

transformation based algorithms nor the quantization are optimal for the analysis
used. This was not the aim of the study. The examples show that in general: (1)
the compression is a trade off between the compression ratio and the quality of
compression; (2) the non-stationary data is more suitable for wavelet based compression;
(3) the more non-stationary or transient the data, the better the performance of the
wavelet compression; (4) the smooth wavelets are better for regular, stationary,
periodic data; (5) the compactly supported wavelets are better for non-stationary, transient
data; (6) the q used to measure the extent to which the spectrum is narrow-banded can
be used to select a type of linear transformation and wavelet function for compression.
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Figure 5. Compression performance for continuous non-stationary data. MSE plotted as a function of: (a)
wavelet coefficients used for compression, (b) compression ratio. ————, DAUB4; – – – –, DAUB20; —·—·—,
FFT.

6. WAVELET BASED FEATURE SELECTION FOR VIBRATION ANALYSIS

The aim of compression is to reduce the amount of information for effective storage and
transmission. However, data compression in many areas of vibration analysis is used for
feature selection. This is the case in machinery and structural fault detection. The problem
of fault detection can be regarded as one of pattern recognition. Different machine
conditions can be described by patterns of features. Any fault detection procedure is
therefore a method which can identify fault features and determine a relationship between
these features and different machine conditions. All possible machine conditions form
classes which have to be known in advance. Neural networks have been established as a
powerful aid to pattern recognition. They have the potential to form internal
representations of fault classes through training on raw data. It is often impractical to use
directly all data values for training; a simple decimation procedure can be used to reduce
the training feature space. This reduction does not necessarily mean that the fault
symptoms will be preserved or enhanced. An alternative approach can be offered by the
wavelet compression: compressed data can be used for the network training. The
compression procedure significantly reduces the feature space, removes irrelevant
information and enhances features which exhibit faults.

Wavelet based compression for feature selection does not require good quality of
accuracy of compression but extracts some specific features which can characterize the
data. If these features are not represented by wavelet coefficients with the highest
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Figure 6. Transient data used for compression in: (a) time domain, (b) frequency domain, (c) wavelet domain;
dashed line indicates wavelet coefficients decreasing according to the amplitude level.

amplitude, the wavelet based compression algorithm described in section 4 is often
not suitable to keep the features with good accuracy. The question is which wavelet
coefficients represent the features, or in other words, which coefficients to choose for
feature selection. If the answer was known, the compression could be based on these
coefficients. In what follows, a number of different approaches are presented to show
coefficient selection procedures and present wavelet based compression for feature
selection. Applications of these procedures for pattern recognition analysis can be found
in references [17, 18].
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Figure 7. Compression performance for transient data. MSE plotted as a function of: (a) wavelet coefficients
used for compression, (b) compression ratio. ————, DAUB4; – – – –, DAUB20; —·—·—, FFT.

6.1.  

A simple thresholding procedure, described in section 4.2, is often still sufficient to select
required features in vibration data. These features are based on the highest wavelet
coefficients chosen for data compression. An example presented in this section involves an
ultrasonic acoustic data.

Ultrasonic Lamb waves are used for detection of various damages in composite
materials. The detection of gross defects can be accomplished with relative ease. However,
some defects, such as delaminations, require enhancement techniques involving feature
selection procedures. Figure 9 shows an example of ultrasonic Lamb waves given by 512
data samples. The upper wave shows a damage-free region of the composite plate while
the lower wave is recorded directly in front of the delamination. The amplitude of the
impulse is about 30 ms depends on the coupling between Lamb wave transducer and the
analyzed plate and thus is not a feature of the fault. The reflection from the damage would
be expected between 50 and 140 ms. A comparison between upper and lower waves does
not clearly show any indication of the fault and allows for considerable scope of
improvement in the damage detection procedure. The Lamb wave data was compressed
using the procedure described in section 4. The normalized data was decomposed using
the orthogonal wavelet transform. Only the 17 highest wavelet coefficients were kept for
further analysis; the remaining coefficients were set to zero. The inverse wavelet transform
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Figure 8. Comparison between original (88) and reconstructed (– – – –) data. Compression ratio used in the
analysis, 6:1. (a) Periodic data, MSE=2·02%; (b) continuous non-stationary data, MSE=5·03%; (c) transient
data, MSE=0·20%.

was then applied to form the data presented in Figure 10. Here the data is dominated by
the impulse which, as previously mentioned, does not indicate the fault. However, the
feature of reflection due to delamination can be seen at about 100 ms in Figure 10(b). This
feature is not visible in Figure 10(a), where the defect-free section of the plate was analyzed.
The feature of reflection can be used for damage detection procedure based on pattern
recognition. This procedure requires a significant amount of data for training. It is now
obvious that the data, represented by 17 wavelet coefficients, and given in Figure 10 is more
suitable for training than the 512 sample vectors given in Figure 9. Further details about
the wavelet based feature selection procedure for damage detection in composite materials
can be found in references [19, 20].

6.2.     

The wavelet synthesis formula given by equation (9) clearly shows that the analyzed
signal can be represented as a sum of m so-called wavelet levels [12]:

xm (t)= s
k

xm
k gm,k (t). (17)
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Figure 9. Ultrasonic Lamb wave data: (a) normal condition; (b) delamination.

Each of these levels represents the time behaviour of the signal within different frequency
bands. The analysis of wavelet levels and some prior knowledge of a frequency content
of required data features can be useful when choosing proper wavelet coefficients for

Figure 10. Feature selection in a compressed form of ultrasonic Lamb wave data: (a) normal condition, (b)
delamination.
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the compression based feature selection procedure. In what follows, an example of fault
detection using gearbox data is presented.

It is well known that gearbox vibration data is dominated by the meshing vibration.
Local tooth faults (surface wear, cracked tooth) create impulses in vibration data [21, 22].
For a simple fault, an impact appears regularly once per revolution of the damaged wheel.
A priori knowledge of rotational and meshing vibration frequencies together with
orthogonal decomposition based on wavelet levels, allows for an effective selection
procedure for damage detection in gearboxes.

Figure 11 shows spur gear vibration data representing normal (no fault) and fault
(broken tooth) conditions. More details about the gearbox data and faults can be found
in reference [23]. The wheel rotational and meshing vibration frequencies were equal to
37·5 and 600 Hz, respectively. One gear rotation is given by 172 samples in Figure 11. The
impulses created by the damaged tooth are visible at about 120–140° in Figure 11(b). These
features can be enhanced using the wavelet based compression procedure. The gearbox
data was decomposed using the twentieth order Daubechies’ wavelet. Figure 12 shows the
result for the data representing the normal condition of the gearbox. Here, the upper vector
gives the original data used for decomposition. Figure 13 gives the wavelet decomposed
levels in the frequency domain. The frequency analysis was based on 256 samples. Here
the upper vector shows the power spectrum of the original data. Four meshing harmonics

Figure 11. Gearbox vibration data: (a) normal condition, (b) local tooth fault.
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Figure 12. Wavelet decomposition of gearbox vibration data representing normal condition.



0.1

0.0

0.2

0.2

0.0

0.4

0.1

0.0

0.2

0.4

0.0

0.8

0.8

0.0

1.6

1.5

0.0

3.0

5.0

0.0

10.0

4.0

0.0

8.0

7.5

0.0

15.0

800.0 1600.0 2400.0 3200.0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Frequency (Hz)

A
cc

el
er

a
ti

o
n

 (
m

/s
2 )

. . 752

Figure 13. Power spectra of wavelet levels shown in Figure 12.
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can be observed in this spectrum. Figure 13 shows that the first meshing harmonics
(600 Hz) is predominant in the sixth level of decomposition. Any impact due to the local
tooth fault will result in an impulse in gearbox vibration data. These impulses will appear
with the rotational frequency harmonics of the damaged wheel (37·5 Hz). As seen in
Figure 13, the rotational vibration dominates the three lowest levels of wavelet
decomposition. This suggests that any possible local tooth fault will be exhibited by these
three levels. Thus the five wavelet coefficients representing the first, second and third levels,
together with the maximum five coefficients from the sixth wavelet level, were chosen to
form ten coefficients of compressed data for feature selection. On the basis of these
coefficients, the data was reconstructed. An example of reconstructed data for analyzed
gear conditions is given in Figure 14. Here, the vectors are represented by ten wavelet
coefficients. If one compares Figures 11 and 14, the enhancement of fault features and
feature selection procedure based on the wavelet compression is now clearly visible. The
additional advantage of the procedure is also the fact that the compressed vectors given
in Figure 14 are represented by only ten wavelet coefficients in contrast to 172 samples
needed to represent the vectors in Figure 11.

Figure 14. Feature selection in a compressed form of the gearbox vibration data: (a) normal condition, (b)
local tooth fault.
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6.3.   

A simple example of compression with optimal wavelet coefficients involving the
spectrum of the gearbox data will be given in this section.

Local tooth faults can display sidebands around meshing harmonics in the power
spectrum. Thus, detection of sidebands is important for fault detection in gearboxes. The
meshing vibration will be represented by the highest wavelet coefficients and the wavelet
based compression algorithm described in section 4 will not keep sidebands with good
accuracy. The solution to the problem can be found using the optimization procedure.
Thus, instead of thresholding, a genetic algorithm (GA) can be used to select wavelet
coefficients for compression. GAs are search procedures based on the mechanisms of
natural selection and natural genetics. These procedures use random selection algorithms
to do a highly exploitative search through a parameter space. More details about GAs can
be found in reference [24].

The simple GA used in this paper employed integer coding, applied reproduction,
crossover and mutation operations, and involved new blood and elite chromosomes. An
example of compression with optimal wavelet coefficients involves the spectrum of a
sample of spur gear data used in the previous section. Figure 15(a) shows the original
spectrum of the gearbox data plotted using the solid line. Four predominant meshing
harmonics together with the sidebands around the second and the fourth harmonics can
be seen. This spectrum was compressed using the algorithm based on the fourth order
Daubechies’ wavelet and the 25 maximum wavelet coefficients. The aim of the compression
was to preserve the amplitude of the sidebands around the second meshing harmonics. The
reconstructed data is shown by the long dashed line in Figure 15(a). It can be seen that
the thresholding wavelet coefficients procedure does not compress the data properly; the
MSE estimated for the frequency bandwidth 800–1150 Hz is equal to 82·0%. The data was

Figure 15. Wavelet compression for fault features selection in gearbox vibration spectra: (a) algorithm based
on thresholding, (b) algorithm based on genetic algorithms.
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compressed using the same wavelet function and 25 wavelet coefficients determined by a
GA. Figure 15(b) gives a comparison between the original data and the reconstructed data
using the GA. It can be clearly seen that a simple GA selects wavelet coefficients in such
a way that the sidebands around the second components are quite well preserved; the MSE
is equal to 24·7%. Finally, Figure 16 shows the comparison between wavelet coefficients
used in both compression algorithms. The 25 coefficients selected by a GA in Figure 16(b)
are completely different from the 25 maximum coefficients used by thresholding in
Figure 16(a).

The simple example presented in this section has shown that vibration analysis often
requires a different choice of wavelet coefficients for compression: the position not the
absolute amplitude is important. It has to be mentioned that the trade-off between the time
required to perform the GA optimization is not substantial. For a given gearbox system,
the optimal coefficients can be established in advance from the data representing the
normal condition and then used to detect possible faults in the system. More details about
compression with optimal wavelet coefficients can be found in reference [25].

6.4.        

As already explained in section 3, the wavelet transform can be interpreted as a bank
of filters, where the frequency partitioning leads to a partitioning in the time domain that
is finer in the higher frequency bands. Each wavelet level m given is represented by 2m−1

wavelet coefficients which cover different frequency bands. Within each level, the
coefficients have time localization properties. This allows one to allocate the wavelet
coefficients with given locations in the time domain. Thus, the wavelet coefficients can be
truncated not only according to the amplitude but also according to their position in the
vector. Keeping the coefficients with properly chosen positions can give good quality
compression of specific parts of the data.

Figure 16. Wavelet coefficients chosen to compress data presented in Figure 15: (a) algorithm based on
thresholding, (b) algorithm based on genetic algorithms.
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Figure 17. Wavelet decomposition of a logarithmically dampened sine wave transient.
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Figure 18. Wavelet decomposition of a logarithmically dampened sine wave transient embedded in the white
Gaussian noise.
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A simple example is used to show how to compress specific parts of data. This example
involves the transient data represented by a logarithmically dampened sine wave. Figure 17
shows the wavelet decomposition of the analyzed transient. Here the plot of the transient
is given at the upper part of the figure. It can be seen that the transient is significantly
localized in time in the fifth, sixth and seventh levels. The same data was analyzed in the
presence of a white Gaussian noise with the standard deviation of s=0·1 and
SNR=10 dB. The results can be seen in Figure 18, where the noise corrupted transient
is given in the upper part of the figure. Figures 17 and 18 show that the transient is
significantly localized in time in the fifth wavelet level. Most of the noise can be smoothed
out at large levels by amplitude based truncation of wavelet coefficients. However, it is also
possible to smooth out the noise at other levels by truncation of wavelet coefficients. It
is obvious that the wavelet coefficients representing the transient have to be established.
This can be done as follows. The decomposed vector of 256 wavelet coefficients is
organized in the hierarchical order, i.e., the eighth level is given by coefficients 129–256,
the seventh level is given by coefficients 65–128, etc. The maximum wavelet coefficient,
established as number 19, indicates the main feature in the data, namely the transient.

Figure 19. Wavelet compression for fault features selection in transient data: (a) time domain, (b) frequency
domain. ————, Original transient; – – – –, reconstructed transient using wavelet-based procedure; — — —,
reconstructed transient using filter-based procedure.
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The maximum coefficient also localizes the time position of the transient among
the coefficients 17–32 which represent the fifth level of decomposition. This time position
can also be obtained for other levels, e.g., 38th and 39th coefficient among 33–64
coefficients representing level 6, 76th, 77th, 78th and 79th coefficients among 65–128
coefficients representing level 7, etc. Simply, the higher the level, the bigger the number
of coefficients representing the transient and concentrated at the location of the transient.
This allows one to select the coefficients representing the transient in different wavelet
levels. Following this study, eight wavelet coefficients, namely 9, 19, 38, 39, 76, 77, 78 and
79 were chosen to compress the data and smooth out the noise. Figure 19 shows the result
of this procedure. Here, the comparison between the original transient given by the solid
line, and the reconstructed transient given by the dashed line is given in the time and
frequency domain. It can be seen in Figure 19(a) that the eight chosen wavelet coefficients
represent the transient remarkably well; the MSE is equal to 4·9%. One can claim that
the similar denoising procedure can be obtained using classical time domain filtration.
Figure 19 shows that the tenth order Butterworth filter used does not have the power to
remove the noise from the data due to the lack of localization property in the time
domain (Figure 19(a)); the MSE is equal to 23·6%. Unwanted low frequency
components can still be observed in the filtered data in Figure 19(b). This simple example
again shows that very often the position of the wavelet coefficients is important for the
feature selection.

7. CONCLUSIONS

Recent developments in wavelet based compression have been reviewed. This includes
possible applications of compression in vibration analysis. A number of simple examples
have been used to give practical guidance on how to compress different types of data. This
analysis has revealed that wavelet based compression is especially effective for
non-stationary data. It has been shown that compression in vibration analysis can be used
not only for effective storage and transmission of the data, but also for feature selection.
A number of different approaches have been presented to show coefficient selection
procedures and present wavelet based compression for feature selection. The examples
given show that, in contrast to wavelet based compression, the feature selection procedures
often use the position together with the amplitude of the wavelet coefficients.
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