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DYNAMICAL VISCOSITY IN POROUS MEDIA
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It is assumed that porous media consists of elastic cylindrical tubes filled with fluids, in
which their radii have a certain distribution and the axes of the tubes can be oriented in
various directions. The dynamical viscosity in such media is calculated. A comparison of
the numerical results obtained by the author of this paper and by the Biot theory is given.
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1. INTRODUCTION

A porous medium is composed of a solid frame and fluid-filled pores. Usually, it is difficult
to model precisely, since it has a complex geometric structure. Several classical works have
been published [1–3]. Using Kirchhoff’s theory, Biot investigated sound propagation in
these media and discovered that there are two dilatational waves and one rotational wave
that propagate in isotropic porous media. In order to calculate their dynamical viscosity,
he assumed that the pores were cylindrical, equal-radius tubes or same-width slits, and that
the tubes or the slits were parallel to each other. If the actual conditions were more
complicated, he further introduced some structural factors to take the complexity of the
media into account. In the 1980s, the authors of some papers (see, e.g., reference [4]), also
investigated dynamical permeability in porous media. A more detailed and comprehensive
analysis of this can be found in references [5, 6].

In this paper, we begin with the modelling of media that consist of non-parallel
cylindrical tubes, the radii of which have a certain distribution, and the dynamical viscosity
is then calculated. The theoretical results show that the real and imaginary parts of the
dynamical viscosity depend sensitively upon the size distribution of the pores.

2. SOUND PROPAGATION ALONG AN ARBITRARY DIRECTION

When a sound wave propagates along a direction that makes an angle a with the axis
of the tube, one can decompose the vibration into a parallel component and a vertical
component, and find the solutions corresponding to them, as was done in reference [7].

On the basis of the generalized Navier–Stokes equation, one has

rf
1

1t
V� =−9p+(j+ 1

3h)99 · V� + h92V� , (1)

where j and h are the bulk viscosity and the shear viscosity of the fluid respectively. Let

V� =9f+9×c� . (2)
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Substituting this into equation (1) yields

rf
1

1t
(9f)=−9p+(j+ 4

3h)92(9f), (3)

rf
1

1t
(9×c� )= h92(9×c� ). (4)

Let

f=f1 +f2, (5)

where f1 and f2 are the acoustic component and viscous component of f, respectively.
Substituting equation (5) into equation (3) and writing

rf
1

1t
(9f2)= (j+ 4

3h)92(9f2), (6)

one has

rf
1

1t
(9f1)=−9p−

jffv

b2 92(9f1), (7)

where

b=jzjrfv/(j+ 4
3h) (8)

is the complex wavenumber of the bulk viscous wave. Since 9fj is an acoustic wave
92(9f1)0 k29f1, where k is the wavenumber of the acoustic wave, it is easily seen that
in a rather wide range of the frequency k2/=b=2�1, the second term on the right side of
equation (7) is far less than the term on its left and, therefore, can be neglected. Thus,

9f1 =−
1

jrfv
9p. (9)

On the other hand, equations (4) and (6) can be rewritten as

92(9×c� )+ b2
19×c� =0, 92(9f2)+ b29f2 =0, (10, 11)

where

b1 = jzjrfv/h. (12)

Thus, equations (10) and (11) can be regarded as the equations of the shear viscous wave
and the bulk viscous waves respectively, the solutions of which were investigated by the
authors of references [3, 7], except that here b and b1 appear instead of the complex
acoustic wavenumbers used in reference [7].

2.1.       

In reference [3], Biot investigated the problem of sound vibration along the direction
of the axis of the cylindrical tube, i.e., on the wall of the tube, the vibration can be described
by u0 cos a ejvt. In this situation, the fluid in the tube will have an axis-symmetric vibration,
which can be denoted by uz (r, z). In addition, there are only two kinds of waves in the
fluid. The first is the sound wave, which propagates along the axial direction; and the
second is the viscous wave, which propagates along the vertical direction of the axis. Thus,
one has

99 · V� = i� r
12uz

1r 1z
+ i� z

12uz

1z2 , 92V� = i� z6 12

1r2 +
1
r

1

1r
+

12

1z27uz .
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Since

1uz /1zAkuz , 1uz /1rAbuz ,

and k/b�1, the second term on the right side of equation (1) is far less than its third term,
and equation (1) can be rewritten as

rf
1uz

1t
=−

dp
dz

+ h6 12

1r2 +
1
r

1

dr7uz ,

which is precisely the equation solved by Biot.
In this situation, the friction force of the fluid per unit length and the relative velocity

with respect to the wall, which was averaged over the cross-section of the tube, should be
written, respectively, as

tz0 =2ph0u0 +
=9p=
jrfv1 cos ab1R

J1(b1R)
J0(b1R)

, (13)

Uz0 =−0u0 +
=9p=
jrfv1 cos a$1−

J1(b1R)
b1RJ0(b1R)%, (14)

where rf , h, R, v, 9p and Jn (x) (n=0, 1) are the density, the shear viscosity of the fluid,
the radius of the tubes, the angular frequency, the pressure gradient of the sound wave
and Bessel functions, respectively.

2.2.       

In reference [7], the authors investigated the solution in the situation that the vibration
of the wall of the tube is in the direction vertical to its axis, the amplitude of which is
u0 sin a. However, their solutions are not expedient for this paper, since the acoustic
component and the viscous component of the solution cannot be separated. In this section,
a more expedient solution will be given.

Equations (10) and (11) can be regarded as the equations of the shear viscous wave and
the volumetric viscous waves respectively. It is noted that there is no axi-symmetry, so that
all of the velocities depend upon r and u. Obviously, the solutions for 9f1 can be obtained
from equation (9), and f2 and C can be obtained, as was done in reference [7], except that
here we use the volume viscous wavenumber b instead of the complex acoustic
wavenumber a. Thus, the components of the velocities in the r and the u directions are

ur =−0u0 +
=9p=
jrfv1 sin a61+$bJ0(br)−

1
r

J1(br)%B+
1
r

J1(b1r)C7 cos q, (15)

uq =−0u0 +
=9p=
jrfv1 sin a61−

1
r

J1(br)B−$b1J0(b1r)−
1
r

J1(b1r)%C7 sin q, (16)

respectively, where B and C are determined by the boundary conditions, which are

B=
b1RJ0(b1R)−2J1(b1R)

E
R, C=

bRJ0(bR)−2J1(bR)
E

R,

E= {bb1R2J0(b1R)J0(bR)− bRJ0(bR)J1(b1R)− b1RJ0(b1R)J1(bR)}. (17)
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It should be noted that in reference [7] the last factor R on the right side of the first two
expressions for B and C in equation (17) was omitted. Now, we calculate the projection
of both ur and uu to the vibration direction of the wall, which can be denoted as

ux = ur cos q− uq sin q.

Averaging this on the section of the tube yields

Ux =
1

pR2 g
R

0 g
2p

0

uxr dr dq=Ux0 sin a, (18)

where

Ux0 =0u0 +
1

jrfv
=9p=1{1− [bRJ0(bR)J1(b1R)+ bRJ0(b1R)J1(bR)

−4J1(bR)J1(b1R)]/E}. (19)

As is already known, the viscous stresses are

srr =−(j− 2
3h)9 · V� −2h

1ur

1r
, srq =−h01r 1ur

1q
+

1uq

1r
−

uq

r 1,
the projection of which in the x direction is

sx = srr cos q− srq sin q.

Hence the frictional force on the tube per unit length is

tx =g
2p

0

sxR dq= tx0 sin a,

tx0 = jpRrfv R/E 0u0 +
=9p=
jrfv1{b1RJ2(b1R)J1(bR)+ bRJ2(bR)J1(b1R)}. (20)

2.3.              

 

From the previous results, one can calculate the components of both the flow velocity
and the frictional force in the direction of the sound pressure gradient, which have been
averaged over the section and on the surface of the wall, respectively. They are denoted
by

Un =Uz0 cos2 a+Ux0 sin2 a, tn = tz0 cos2 a+ tx0 sin2 a. (21)

3. SIZE DISTRIBUTION OVER THE TUBES

Since the sizes of the tubes have a distribution, it is necessary to find an average value,
but unfortunately, no suitable data are available to describe them. However, the author
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of reference [8] suggested that the diameters of the grains (in oceanic sediments) (in phi
value) obey approximately a normal distribution, i.e.,

P(f)=
1

z2pD
e(f−f�)2/2D2, (22)

where

f=−log2 (d) (23)

d is the diameter of a grain (in mm), f� and D are the average of f and the standard
deviation respectively. It is easy to postulate that there may be a linear dependence of the
diameters 2R of the pores in granular media upon the sizes of the grains d (for example,
as was done in reference [9], 2R1 (1/6 to 1/7)d). Thus, it is assumed here that the f values
of 2R also obey the distribution (22), so that all of the averages are denoted as

X
 =g
a

−a

X(f)P(f) df. (24)

where X denotes one of the following quantities: Ux0, Uz0; tx0 and tz0.

4. AVERAGE ON SPATIAL ORIENTATION OF THE TUBES

In general, the axes of the tubes are oriented in different directions in space, so that all
the quantities have to be averaged over the solid angle V, which yield

U� n =g U
 n (V)Q(V) dV, t̄n =g tx n (V)Q(V) dV, (25)

where Q(V) is the orientation distribution of the axes of the tubes. In this paper, a simple
situation is considered, in which Q(V) is a uniform distribution. Hence

U� n =
1
4p g

p

0

U
 n2p sin a da= 2
3U
 x + 1

3U
 z ,

t̂n =
1
4p g

p

0

t̂n2p sin a da= 2
3t̂x0 + 1

3t̂z0. (26)

On the basis of the definition given in reference [3], the dynamical viscosity can be written
as

F(v)=Fr (v)+ jFi (v)=$U� n

t̄n%v=0

t̄n

U� n
,

$U� n

t̄n%v=0

=
1

24ph 61+16
1+E2 +294E
1176E(1+E)7,

E=(j+ 4
3h)/h.

Subsituting Ux0, Uz0, tx0 and tz0 into equation (24) to obtain U
 x0, U
 z0, t̂x0 and t̂z0, and then
into equations (26) and (27), gives F(v).
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It can be noted that the results depend upon two viscosity coefficients, j and h.
Unfortunately, there are few data available for the former coefficient. However, they can
be evaluated for water. As is already known, the sound absorption due to viscosity can
be denoted as [10]

as =
v2z

2rc3, (28)

where z= h for an incompressible fluid and z= j+4h/3 for irrotational fluids. When
j=0, the latter situation corresponds to Stokes’ classical theory. As is indicated by the
data for water collected in reference [10],

aob /v2 = constant,

where aob is the measured data of the sound absorption coefficients, and is almost three
times the result of Stokes’ absorption. On the other hand, the sound absorption can also
be calculated from equation (1), and corresponds to z= j+4h/3 in equation (28); i.e.,

ath =
v2

2rc3 (j+ 4
3h), (29)

where ath is the theoretical value, in which two viscosity coefficients have been taken into
account. In the frequency range far from the relaxation region (for example, lower than
108 Hz) [10], ath is equal to aob approximately. Obviously,

ath /as =(j+ 4
3h)/z. (30)

and

z= 4
3h, aob 1 ath , aob /as 1 3, (31)

so that j/h is nearly 8/3. Similarly, j/h in air can also be obtained. However, since sound
absorption depends upon the relative humidity, and particularly upon molecular relaxation
effects, it is not proportional to v2 in general, unless the frequency is much lower than
the relaxation frequency.

Figure 1. The real part of the dynamical viscosity versus b1R. 1, Biot’s theory; 2, D=0·5; 3, D=0·75, 4,
D=1·0. In 2, 3 and 4, E=4.
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Figure 2. The imaginary part of the dynamical viscosity versus b1R. Key as Figure 1.

As for water, when j/h=8/3, E=4, and then the static viscosity is approximately
(t̄n /U� n )v=0 1 13·3ph, instead of 8ph in Biot’s theory, which means that the static
viscosity is greatly increased. Only when E=1 it is equal to 8ph, which is the same as
Biot’s result.

5. NUMERICAL RESULTS

In Figures 1 and 3 is shown the relationship of the real parts of F(b1R) versus b1R, while
the standard deviation D=0·5, 0·75 and 1, in which E=4 and E=4/3, respectively. The
relationship of the imaginary parts is shown in Figures 2 and 4. Obviously, for a greater
b1R, they are both different from Biot’s results.

Figure 3. The real part of the dynamical viscosity versus b1R. 1, Biot’s theory; 2, D=0·5; 3, D=0·75, 4,
D=1·0. In 2, 3 and 4, E=4/3.
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Figure 4. The imaginary part of the dynamical viscosity versus b1R. Key as Figure 3.

6. CONCLUSIONS

In porous media, if the axes of the tubes are distributed uniformly in the space and the
sizes of the pores obey a normal distribution (in f values), in the higher frequency range,
their static viscosity will be higher than that given by Biot’s theory, and the dynamical
viscosity function will be different from Biot’s results, both of which depend sensitively
upon the average radius of the pores R and upon the standard deviation D, as well as on
the ratio of both viscosity coefficients.
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