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Non-smooth stiffness and damping characteristics are commonly encountered in
mechanical systems. The specific physical contacts considered in this paper are impact and
friction. Although these individual effects have been the subject of quite intensive research
it is their interaction and influence on the dynamic behavior of a mechanical oscillatory
system that is the subject of the current work. Dynamical systems theory is used as a
conceptual framework and comparisons are made between numerical and experimental
results over a relatively wide range of parameters.
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1. INTRODUCTION

Motion-limiting constraints including impacting and sticking are thoroughly non-linear
effects. Impact oscillators have been the focus of a number of studies, due in part to the
variety of practical applications for which an impact model is appropriate, and also due
to the considerable intrigue provided by these systems from a dynamical systems
perspective. Friction, though also present and potentially significant in many of the impact
applications, represents further complexity but has often been neglected.

For a single-degree-of-freedom system, two-sided impact implies that the amplitude of
motion is bounded in either direction. Shaw [1] described the local and global bifurcation
structure of this type of system for a given parameter range. The qualitative flavor of
Shaw’s work is well reflected below, particularly for low friction levels. Additional
two-sided impact studies were performed by Li et al. [2], who considered a zero-stiffness
impact oscillator intended to mimic the behavior of pin joints in space structures. Shaw
and Rand [3] analyzed the behavior of an inverted pendulum, constrained on either side,
which resulted in a system with negative stiffness. Thompson and Ghaffari [4] conducted
some numerical experiments on a simple impact oscillator showing some interesting scaling
behavior and the onset of chaos. Many other studies have been conducted on systems with
discontinuities in their stiffness characteristics [5–20].

Dry friction has been the subject of many investigations over the years. A basic, and
certainly not exhaustive, sample is contained in references [21–42]. It has also been included
in a limited number of impact studies. Mansour and Filho [43], and later Bapat [44],
included the effects of friction in examining the response of impact dampers. An impact
damper consists of a loose (secondary) mass that slides inside of a container, which is
attached to the primary mass. The loose mass impacts the sides of the container, dissipating
energy and reducing the amplitude of vibration of the primary mass. Whiston [45]
considered an impact oscillator that moves in two-dimensional space in response to
elliptical harmonic excitation. In order to facilitate wear calculations, the system includes
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Coulomb friction as the oscillating mass slides along either of two impact surfaces. And
Glocker and Pfeiffer [46] accounted for the possibility of friction forces in their analysis
of a percussive drilling machine. Finally, the work of Cone and Zadoks [47] in particular
considered the combined effects of friction and two-sided impact in terms of dynamical
systems theory. The base-excited system and relatively large friction force are employed
to reflect the behavior of a loose bolt in a vibratory environment.

Experimental work on impact oscillators includes several studies on single-sided impact
[18, 48–50], relatively fewer on two-sided impact [49, 51], and Hinrichs et al. [52] discuss
both the effects of friction and impact in experimental systems. The present work includes
frictional damping in an extensive study of a two-sided impact oscillator, both in
simulation and experiment. It is demonstrated that a relatively simple experiment exhibits
the spectrum of non-linear features observed in, and predicted by the mathematical model.

2. THE PHYSICAL SYSTEM

Consider a single-degree-of-freedom oscillator consisting of a rotational inertia,
harmonically forced through a base spring, and subject to impact at the critical angles fL

and fR , as shown in Figure 1(a). Friction is assumed to be present at the pivot. For small
f, a summation of moments about the pivot provides the equation of motion:

If� + cL2
s f� + kL2

s f+Lf F(f� )+Li G(f)= cLs ẏ+ kLs y, (1)

where F(f� ) and G(f) represent non-linear forces due to friction and impact respectively
and are considered in more detail later, together with an experimental realization of such
a system. The base forcing is harmonic at frequency v and amplitude
Y0 : y(t)=Y0 sin (vt).

Figure 1. (a) Schematic of impact/friction oscillator, (b) piecewise linear friction model, (c) trilinear impact
model.
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Figure 2. Damping and frequency combinations for which response amplitude exceeds critical baseline value
(=umax=q 1·5); (a) friction damping; (b) viscous damping.

2.1.  

The modelling of friction is an extremely difficult task, influenced as it is by a myriad
of different factors, and has been the subject of comprehensive study [25, 30, 37, 40].
Included in the list of contributary factors are area of contact, surface finish, lubrication,
normal load, damage or wear, temperature and humidity. The interactive effects of friction
forces and system dynamics may be intricate including the possibility of ‘‘frictional
memory’’ [25]. For the purposes of the current study (where the global dynamics effects
of friction are of primary concern) a relatively simple friction law is adopted. A piece-wise
linear Coulomb friction relationship can be written as

FA (f� )=F� sgn (f� ), for f� $ 0, −aF� EFA (f� )E aF�, for f� =0. (2)

where the parameter a accounts for a static friction level that differs from kinetic friction.
A schematic picture of this model is shown in Figure 1(b).

2.2.  

The modelling of impact is somewhat more straightforward than friction although there
are again a number of choices to be made. A simple coefficient of restitution has been
shown to work well in related studies [16]. However, since the current study involves a
rubber ball contacting a flat metal surface there is a finite contact time and hence a change
of stiffness model is used here where the equation of motion switches (at impact) to one
with a much higher (but still linear) stiffness, i.e., a trilinear stiffness [12, 53, 54]. This
characteristic is described mathematically as

G(f)=8k�Li (f−fR ),
0,

k�Li (f−fL ),

fqfR ,
fL EfEfR ,

fQfL , 9 (3)

and is also shown schematically in Figure 1(c). Here, the contact stiffness is k� at the right
and left boundaries fL and fR .

3. NON-DIMENSIONALIZATION

It is convenient to reduce the number of parameters in the equation of motion. Time
is normalized with respect to the primary natural frequency of the system, vn . A
non-dimensional co-ordinate, u(t), and several non-dimensional parameters are defined:
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Figure 3. Response spectra for friction system (——) and viscous system (·–·): (a) h=0·1, f=0·15; (b) h=0·5,
f=0·8.

vn =zkL2
s /I , t=vn t, u(t)=f(t)Ls /Y0, g=v/vn ,

h= cLs /2Ivn , v̄n =zk�L2
i /I , f=F�Lf /Ls Y0 k,

u� c (t)=f� c (t)Ls /vn Y0, r= v̄n /vn =zk�L2
i /kL2

s , sR,L =fR,L Ls /Y0. (4)

Now, rescaling the equation of motion (1) and incorporating the friction and impact
models (equations 2 and 3), and using the above non-dimensionalization leads to

u� +2hu� + u+ f(u� )+ g(u)=2hg cos (gt)+ sin (gt), (5)

where

f(u� )= af sgn (u� ), u� $ 0, −fE f(u� )E f, u� =0, (6)

and

g(u)= 8r
2(u− sR ),

0,
r2(u+ sL ),

uq sR ,
sL E uE sR ,

uQ sL . 9 (7)

The resulting parameters of interest are the ratio of the driving frequency to natural
frequency, g, the normalized friction force, f, the viscous damping ratio, h, the left and
right impact locations, sL and sR , and the impact-to-free stiffness ratio, r. The friction
force has been normalized in such a way that it is equivalent to half of the static equilibrium
range in non-dimensional co-ordinates. That is, f=[(ue )max − (ue )min]/2, where ue represents

Figure 4. Periodicity charts for symmetric impact, s=21·5: (a) friction system; (b) viscous system.
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Figure 5. Typical responses of symmetric system: (a) single-impact phase projection; (b) Poincaré section
showing a chaotic attractor; (c) period-3 phase projection.

an angle of equilibrium in the presence of friction. This is convenient for experimental
purposes because the friction force can be estimated directly from a simple measurement
of the static equilibrium range without prior knowledge of the coefficient of friction or
spring force. In fact, the total friction force as contributed by all frictional interfaces in
the system is assessed with one measurement. The impact locations provide similar
interpretations due to this normalization method. Because the forcing amplitude, Y0, is
part of the conversion factor in going to normalized co-ordinates, the amplitude of the
response as forcing frequency approaches zero is equal to unity. So, an impact location
of s=2·0 means that the impact wall is twice as far from equilibrium as the ‘‘static’’
deflection due to Y0. Likewise, sQ 1·0 indicates that impact cannot be avoided at low
frequencies.

4. SOLVING FOR THE MOTION

It is well known that traditional numerical integration techniques, such as Runge–Kutta,
must be used with some caution when applied to systems that are piecewise linear, i.e.,
the location of the exact transition point between linear sub-intervals is important [55].
However, a number of approaches have been developed which take advantage of the exact
linear solution over a sub-region of the motion, and a solution can be pieced together by
matching [9]. Another popular pseudo-analytical technique is based on the imposition of
certain periodicity and boundary conditions [12], but is limited to periodic motion. In the
current study a numerical technique is used which takes advantage of the linearity of the
inter-impact region.

5. EFFECTS OF DAMPING AND IMPACT LOCATION

Dry friction is a dissipative force that is often replaced in an analysis by an ‘‘equivalent’’
linear viscous damping in order to simplify the governing equations. Yet, it is difficult to
define an ‘‘equivalent’’ damping level because friction itself is a non-linear phenomenon
that can produce qualitative effects not possible in a linear oscillator. As Klepp [56] and
others have concluded, it is not feasible to define a single equivalent viscous damping level
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Figure 6. Periodicity charts for symmetric impact, s=20·8: (a) friction system; (b) viscous system.

to replace friction damping and still retain satisfactory correlation between all system
response characteristics over a significant range of forcing frequencies. At a given forcing
frequency, however, it is possible to locate damping levels that produce identical measures
of a single response attribute, such as amplitude, energy dissipated per cycle, or length of
transient.

Though defining universally equivalent damping levels is not realistic, endeavoring to
compare the effects of the two types of damping requires at least the choice of a scaling
factor to promote an approximately ‘‘apple to apples’’ study. From a non-linear dynamics
perspective, a primary concern is the location of bifurcation phenomena and the range of
frequencies over which irregular behavior occurs. For impacting systems, the dominant
bifurcations occur near so-called grazing orbits, or transitions between non-impacting and
impacting solutions. It seems natural, then, to include the relationship between response
amplitude and impact amplitude in the computation of the scaling factor.

In Figure 2, a baseline impact location of s= 2 1·5 is chosen. Friction and forcing
frequency combinations that lead to steady state response amplitudes that exceed the
impact amplitude (=umax =q 1·5) are then plotted in gray in Figure 2(a). An identical
interpretation is made for the (linear) viscously damped system in Figure 2(b). The similar
shapes of the shaded regions and the maximum damping levels required to prevent impact
near resonance point to the logical choice of a rough scaling factor for this case: the
maximum f=0·8 is deemed comparable to h=0·5. The damping ranges displayed in the
‘‘periodicity charts’’ presented below reflect this scaling derivation.

To demonstrate the fact that ‘‘equivalent’’ damping is not an accurate description over
the entire frequency range of interest, Figure 3 shows the response spectra for low

Figure 7. Phase projections: (a) period-3 motion; (b) period-6 motion.
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Figure 8. (a) Schematic of the experimental rig (overhead view), (b) friction mechanism (side view), impact
barriers and measuring equipment not shown.

(Figure 3(a)) and high (Figure 3(b)) levels of damping, in the absence of impact barriers.
At low damping, friction is unable to attenuate the large response amplitude near
resonance. High damping levels reveal two important points: the amplitude of response
for the frictional system dips well below the linear response amplitude at low frequencies,
and the transition from large to small amplitudes immediately following resonance is
abrupt for the frictional system. These facts help to explain some of the trends noted in
the periodicity charts below.

5.1.   ‘‘’’ 

The shaded figures below compare the effects of frictional and viscous damping by
comparing the period of the response (normalized with respect to the forcing period) that
results for the indicated system parameters, in response to quiescent initial conditions, after
200 forcing cycles. These figures are essentially two-dimensional bifurcation diagrams,
using ‘zero’ initial conditions for each set of parameters. A small amount of viscous
damping (h=0·001) is included for the friction cases to facilitate numerical convergence,
particularly near resonance. For all viscous cases, f=0·0. The shading code is: white:
period-1, non-impacting solutions. For the viscous damping cases, white represents entirely
linear response. gray: period-1 solutions that include at least one impact per cycle. black:
higher order periodic solutions and chaos.

It should be noted that the periodicity charts are constructed for a single choice of initial
conditions and therefore do not provide competing solution information. Further details
of competing basins of attraction for this system can be found in Virgin et al. [57].

5.2.  

A typical case where the impact barriers are positioned symmetrically with respect to
the natural equilibrium of the oscillator is presented in Figure 4. For s= 2 1·5,
higher-order periodic and potentially chaotic response are more prevalent for the friction
oscillator, particularly at higher damping levels. It is interesting that an increase in friction
is likely to lead to higher order behavior in many cases. Period-1 solutions dominate for
viscous damping. Examples of specific friction-damped response are shown in Figure 5.
The period-1 solution that impacts only the left barrier (Figure 5(a)) has an anti-symmetric
partner solution (not shown) for the same parameter set. The chaotic attractor shown in
Figure 5(b) was not observed in the viscous system at comparable damping levels. Finally,
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Figure 9. Bifurcation diagrams for symmetric impact (s=21·6) and low friction (f=0·05): (a) experiment;
(b) simulation.

a period-3 motion (Figures 5(c)) is dominant in both systems for low damping levels. In
fact, the low damping level results across the entire frequency range are very similar for
the two systems, as might be expected.

When the impact amplitude is reduced to s= 2 0·8, period-1 impacting solutions (gray)
dominate for both systems, as shown in Figure 6. By recalling that for sQ 1 the impact
locations are closer to equilibrium than the maximum base excitation displacement,
implying that the linear (viscous) system cannot avoid impact at the lower frequencies,
where the linear response amplitude asymptotes to umax =1·0, independently of damping
level. Interestingly, friction is capable of preventing impact as the forcing frequency
approaches zero, even for sQ 1, due to a response amplitude scaling [53]. For the range
of frequencies considered here, however, impact is not avoided in either system until higher
frequencies. Referring back to Figure 3, the abrupt drop in response amplitude for high
friction levels helps to explain why the friction system shows a larger (white) region of
non-impacting response in Figure 6.

Figure 10. Coexisting attractors at g=1·338: (a) non-impact response; (b) double-impact response; (c and d)
anti-symmetric period-2 response.
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Figure 11. Bifurcation diagrams for asymmetric impact (s=−1·1, 2·2) and low friction (f=0·05): (a)
experiment; (b) simulation.

5.3.  

Given the critical s=1 boundary, a representative case of asymmetric impact is chosen,
i.e., sL =−1·5, sR =1·3. Figure 7 shows a period-3 and period-6 solution. For other
asymmetric impact locations it is also possible to obtain periodic orbits that impact each
side a different number of times.

5.4.    

Though the friction-damped system is prone to more extensive higher order response
regions, the qualitative nature of the response for regions of matching shade is generally
consistent between systems. Non-impacting solutions are more common in the friction
system. The quiescent initial conditions are apt to encourage the non-impacting solutions
for both systems, especially for higher frequencies. However, non-zero initial conditions
(u0 =1·0, u� 0 =1·0) were examined for the symmetric s=21·5 case, with surprisingly little
overall effect. Much of the non-impacting (white) regions at higher frequencies became
coexisting period-1 impacting (gray) motion as a result of the higher energy initial
conditions, but little change was observed elsewhere, for either type of damping. The effect
of allowing fewer transient cycles before recording the periodicity of the behavior was also

Figure 12. Phase projections for experiment (——) and simulation (----): (a) single impact response, g=1·12;
(b) period-2 motion, g=1·41; (c) period-4 motion, experiment only, g=1·58.
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Figure 13. Bifurcation diagrams for symmetric impact (s=20·8) and low friction (f=0·04): (a) experiment;
(b) simulation.

found to be minimal. It was speculated that one or the other of the systems may be more
effective at reducing the length of transients (again starting from zero initial conditions.)
This proved not to be the case, as the primary effect of allowing only ten transient cycles
was to produce more non-convergent response across the lower damping range, roughly
equivalently for both forms of damping.

6. EXPERIMENTAL SETUP

An experimental system was constructed to examine the combined effects of impact and
friction analogous to the theoretical model described above. A schematic is shown in
Figure 8. A more complete description can be found in Begley [58]. Independent position
and velocity measurements are made using a potentiometer at the pivot and a linear
velocity transducer, respectively. In this case there is, therefore, no need for phase space
reconstruction based on time lag embedding. Their signals are then filtered using 100 Hz
low pass analog filters. The friction force can be adjusted by means of a stationary friction
lever, which is also shown in Figure 8. Impact walls with rubber stoppers are located on

Figure 14. Phase projections for experiment (heavy line) and simulation (thin line): (a) g=0·54; (b) g=0·8;
(c) g=1·1; (d) g=1·4.
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Figure 15. Phase projections: (a) simulation, g=0·54; (b) experiment, g=0·54; (c) experiment, g=0·61.

either side of the natural equilibrium of the system. The location of these impact bumpers
is also adjustable via radial grooves cut in the mounting plate. The oscillating mass itself
is made of aluminum stock (2·2×1·6×31 cm), with a steel shaft supported by radial
bearings in two locations along its length.

The sliding track depicted in Figure 8 provides sinusoidal base excitation. The track itself
is driven by a ‘‘scotch yoke’’ mechanism that transforms the rotational motion of a drive
motor into the linear harmonic motion of the track. The available driving frequency range
is 0–2 Hz; amplitude range of roughly 2–10 cm. A flywheel and drive belts are positioned
between the drive motor and scotch yoke mechanism to smooth the motion. Attached to
the flywheel is a magnetic sensor (modified Reed relay) that can detect the zero position
(or other arbitrary position) of the forcing mechanism once per cycle. This provides a
means to perform experimental Poincaré sections.

Many of the non-dimensional parameters could be measured directly from the rig. The
natural frequency was estimated to be approximately 0·9 Hz via free response data. This
value is then related to the known driving frequency to calculate g. The friction level was
computed (aF) by measuring the range of static equilibria for several track positions and

Figure 16. Bifurcation diagrams for asymmetric impact (s=−1·91, 1·08) and high friction (f=0·38): (a)
experiment; (b) simulation.
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Figure 17. Phase projections for experiment (heavy line) and simulation (thin line): (a) g=0·7; (b) g=1·1.

averaging over a number of measurements. As a check on the estimate of viscous damping
and friction present in the system, a method recently proposed by Feeny and Liang [59]
was used. Using their technique the levels were estimated at f=0·057 and h=0·024, which
compared with estimates from the static equilibria range of f=0·05 and h=0·02.

A related study by the same authors [53] focuses attention specifically on friction
modelling and measurement.

7. EXPERIMENTAL RESULTS

A catalog of experimental friction–impact results is presented in the following section.
These results include bifurcation diagrams and phase trajectories for symmetric and
asymmetric impact locations, sq 1·0 and sQ 1·0, and high and low levels of friction. The
experimental data is compared to simulation results where possible, using the
experimentally measured parameters. The figure captions include the pertinent parameter
information. In the bifurcation diagrams for the experimental results (e.g. Figure 9(a)) the
irregular frequency intervals reflect a lack of a priori setting for the frequency rather than
uncertainty in the value of the frequency. Since the experimental results are rather extensive
a list of some key details is presented.

In Figure 10, four co-existing attractors were located at g=1·338, both experimentally
and in simulation.

Figure 18. Bifurcation diagrams for symmetric impact (s=20·8) and high friction (f=0·36): (a) experiment;
(b) simulation.
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Figure 19. Phase projections for experiment (heavy line) and simulation (thin line): (a) g=0·7; (b) g=1·4.

Experimental results in Figures 11 and 12 reveal a significant period-4 branch (around
g=1·6) that is not seen in the simulation results.

The bifurcation diagrams in Figure 13 indicate that the experiment and simulation
choose different anti-symmetric branches near g=1·0. Both antisymmetric solutions were
recorded for experiment and simulation; an example of one response is shown in
Figure 14(c).

Figure 15 indicates a period-1 solution that impacts twice on the left wall, once on the
right wall per cycle. This response experiences period doubling in experiment only,
Figure 15(c).

Significant single impact response branches were recorded for the largely asymmetric
system, Figures 16 and 17.

Double impact period-1 responses dominate the small impact, high friction case,
Figures 18 and 19.

Figure 20. Examples of chaotic attractors, simulation (left) and experiment (right): (a) g=0·88,
s=(−1·86, 1·75), f=0·06; (b) g=0·58, s=(−1·53, 1·47), f=0·04.
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Figure 21. Bifurcation diagrams for asymmetric impact (s=−0·51, 0·82) and low friction (f=0·04): (a)
experiment; (b) simulation.

Figure 22. Bifurcation diagrams for symmetric impact (s=21·93) and high friction (f=0·33): (a)
experiment; (b) simulation.

The chaotic attractor ‘‘fingers’’ in Figure 20 are typical of this system. Some sharpness
in the detail of the attractor is lost in the experimental results due to noise.

For the most part, the correlation between simulation and experiment is excellent. The
bifurcation diagrams in particular reveal qualitative agreement over the entire range of

Figure 23. Bifurcation diagrams for asymmetric impact (s=−0·51, 0·82) and high friction (f=0·34): (a)
experiment; (b) simulation.
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Figure 24. Period-3 motion, g=0·8: (a) simulation; (b) experiment.

forcing frequencies (see also Figures 21–23). Higher friction levels produce bifurcation
frequencies to match simulation as well. Subtle differences are observed in the amount of
detail included in the experimental results, which is not unexpected. For instance, the
amplitude and frequency range of the multi-periodic response seen in Figure 16 is not as
extensive in experiment as in simulation. In certain phase projections, such as Figure 12,
the experimentally measured impact velocities are not as large as the simulation predicts.
This may be partially due to the 100 Hz low pass analog filters that are used on the position
and velocity traces. Also, the experimental results tend to produce a high frequency
‘‘ringing’’ immediately after impact that could be a result of the vibration of the measuring
equipment itself at impact. Again, this effect is neither unexpected, nor entirely avoidable.
In general, the experimental system was able to produce very satisfying impact results that
confirm many of the trends noted in the periodicity charts presented above (see also
Figures 24 and 25).

A more recent type of non-linear feature relevant to this type of system is the occurrence
of grazing bifurcations [60–62]. A description of the geometry of these types of low-velocity
impacts and their relationship with basin boundaries will form the basis of a subsequent
study [54].

8. SUMMARY

Impact and friction oscillators have received considerable attention over recent years.
This study has highlighted the effect of both motion constraints and Coulomb friction

Figure 25. Phase projections for experiment (heavy line) and simulation (thin line): (a) g=0·9; (b) g=1·1.
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(making the system piecewise linear in both its force–position and force–velocity
characteristics). In the absence of both friction and impact this system is linear, and hence
effective comparsions were made to the baseline case. The forcing frequency and forcing
amplitude were the main control parameters although the impact locations were also
adjusted and thus highlighted the role of asymmetries in the response. The levels of friction
were chosen in relation to the viscous damping present in the system, and it is worth
pointing out that most of the responses illustrated in this paper were quite robust, i.e., they
appeared over a relatively wide range of parameters. The range and variety of both
periodic and chaotic responses (sometimes co-existing) was extensive. This study will thus
provide a foundation for further study, including basins of attraction and control. Some
modelling issues were discussed for these highly non-linear systems but the key emphasis
was placed on a qualitative correlation between simulation and experiment. Very good
agreement was achieved.
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