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The electric field due to the constant bias voltage between the diaphragm and the base
plate of a condenser microphone introduces a deflection dependent load intensity on the
diaphragm. Since this load intensity increases with deflection, the electric field has a
destabilizing influence on the plate vibration. Considering the diaphragm as a clamped
circular plate, the dependence of the steady deflection and the natural vibration of the plate
on the strength of the electric field is investigated. The analysis shows that as the field
strength increases, the steady deflection also increases and reaches a neutral equilibrium
state corresponding to a critical value of the field strength. Any further increase in the field
strength buckles the diaphragm on to the base plate. The electric field decreases the
fundamental natural frequency of vibration which approaches zero as the field strength
reaches its critical value.
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1. INTRODUCTION

In condenser microphones, the sound pressure impinging on its flexible diaphragm causes
diaphragm deflection which changes the capacitance between the diaphragm and the rigid
base plate. The changes in the capacitance are then converted to a voltage signal in an
electrical circuit connected to the diaphragm and the base plate. Since the electric force
field in the capacitor is always attractive, a bias voltage source is used in this circuit to
maintain the potential difference between the diaphragm and the base plate to have the
same sign.

The natural vibration of the diaphragm within the operating frequency range of the
microphone can cause distortion in the output signal and hence, a vibration analysis of
the diaphragm in the presence of the electric field is essential in the microphone design.
The bias voltage between the diaphragm and the base plate can be considered as a constant
for such natural vibration analysis.

In the absence of the electric field, exact solutions for the natural frequencies and modes
of the clamped circular plate can be obtained in terms of Bessel functions [1, 2]. The electric
field due to the constant bias voltage introduces a load intensity which increases with the
plate deflection. The influence of electrostatic field on the static and dynamic deflections
of circular membrane was studied by Warren et al. [3, 4] using numerical techniques. In
their dynamic deflection analysis [4], they used an approximate thin air film model,
developed by Hayasaka [5], to relate the reaction pressure of air in the gap to the dynamic
deflection. A central difference numerical approach was then used to solve the coupled
differential equations for the membrane and the air in the gap.
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An energy approach was used to study the influence of electrostatic field on the static
deflection of rectangular plate type microphone diaphragms in references [6, 7], which
showed that the static deflection of the plate increased with increasing electrostatic field.
The vibration of a rectangular microphone diaphragm in the presence of electrostatic field
was studied in reference [8] using the Rayleigh–Ritz method after linearizing the non-linear
effects of the electrostatic field. While the assumed deflection shape accounted for the
dynamic deflection only, the non-homogeneous terms resulting from following the
Rayleigh–Ritz procedure on the linearized problem was also disregarded. As a result, it
was wrongly concluded that the diaphragm stiffens with increasing strength of the
electrostatic field.

Since the circular plate is a more realistic representation of the microphone diaphragm,
the influence of the electric field on the circular diaphragm vibration is considered in the
present study. The diaphragm is considered as a thin circular plate clamped at its
periphery. Further, the differential equation of the plate is solved directly in order to
examine the non-linear behavior and stability of the system. The vibration of the
diaphragm is considered as a small perturbation from the static deflection due to the
electrostatic field.

2. THEORY

The diaphragm of the microphone is modeled as a thin uniform circular plate which
is clamped at its periphery as shown in Figure 1, for theoretical analysis. The electric field
in the space between the diaphragm and the stationary plate introduces a deflection
dependent load intensity oV2/(d−w)2 on the diaphragm. The equation of motion of the
diaphragm can be expressed as

D94w+m12w/1t2 = oV2/(d−w)2. (1)

For the present analysis, the applied voltage V between the diaphragm and the base plate
is assumed to be constant. Using the non-dimensional polar co-ordinate (r, u), which is
related to the Cartesian co-ordinates (x, y) by the relations x= ar cos u and y= ar sin u,
equation (1) can be rewritten in non-dimensional form as

9�4w̄+(ma4v2/D)12w̄/1t2 = oa4V2/Dd3(1− w̄)2, (2)

where

9�2 = 12/1r2 + (1/r)1/1r+(1/r2)12/1u2. (3)

It is desirable to subdivide the investigation into three cases, namely (1) vibration in the
absence of electric field, V=0, (2) time independent deflection due to electric field and
(3) vibration in the presence of electric field. The time independent deflection of the
diaphragm in the case (2) due to the constant bias voltage is axisymmetric. Since the aim
of the present analysis is the determination of the fundamental frequency of diaphragm

Figure 1. Diaphragm and base plate in a condenser microphone.
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vibration, the circular plate deflections for the cases (1) and (3) are also considered to be
axisymmetric.

2.1.  (1):          

The equation of motion of the plate in the absence of an electric field is a special case
of equation (1) corresponding to V=0. Exact solutions for the pth axisymmetrical
vibration mode w̄ =f0p (r) of a clamped circular plate can be expressed in terms of Bessel
functions as [1, 2]

f0p (r)= I0(mpr)/I0(mp )− J0(mpr)/J0(mp ), (4)

where

mp =(ma4v(0)2
p /D)1/4. (5)

Here, mp is a non-dimensional parameter representing the square root of the natural
frequency of the plate. The superscript (0) in the frequency symbol indicates the plate
vibration condition in the absence of an electric field. The modal function set {f0p (r)} is
orthogonal in the interval [0, 1] with respect to the weight function r.

Imposing the slope boundary condition at r=1 on equation (4), the corresponding
frequency equation can be simplified to

J0(mp )I1(mp )+ J1(mp )I0(mp )=0. (6)

This frequency equation can be solved using the Newton–Raphson method [2] and the first
positive root of the equation converges to m1 =3·19622. Thus, the fundamental natural
frequency of vibration of the plate in the absence of an electric field becomes,
v(0)

1 =10·21582(D/ma4)1/2. This vibration frequency and mode can be used as a first
approximation on the determination of the first natural frequency and mode of small
vibration of the plate in the presence of an electric field.

2.2.  (2):         

The time independent deflection of the plate is the special solution of equation (1), when
the second term on the left side is not considered. Representing the time independent
solution as w̄s , the governing equation becomes

9�4w̄s = l/(1− w̄s )2, (7)

where

l= oa4V2/Dd3. (8)

The presence of the term on the right side of equation (7) renders it non-linear. The
linearized form of this governing (7) for small w̄s becomes

9�4w̄s −2lw̄s 1 l, (9)

which can be solved exactly in terms of Bessel functions as

w̄s 1 1
2 6I1(lc )J0(lcr)+ J1(lc )I0(lcr)

I1(lc )J0(lc )+ J1(lc )I0(lc )
−17 , (10)

where lc =(2l)1/4. When l is small, the series expressions for Bessel functions give the first
order approximation of equation (10) as w̄s = l(1− r2)2/64+O(l2). This approximation
indicates that, when l is small, the time independent deflection w̄s is of order l and
consequently, the solution (10) for w̄s is reasonably accurate for small l.
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When l is small, the solution (10) of the linearized equation (9) can be used as a first
aproximation in an iterative scheme for the solution of the non-linear equation (7). In this
iterative scheme, the improved (i+1)th solution is calculated from the assumed ith
solution using the relation

9�4w̄(i+1)
s = l/(1− w̄(i)

s )2. (11)

For the numerical solution of equation (11), the independent variable r in the range [0, 1]
is divided into equal intervals and the w̄(i)

s values at these points are used to compute the
corresponding values of w̄(i+1)

s . A cubic spline approximation of the integrand is used to
evaluate each of the four successive numerical integrations with respect to r associated with
the operator 9�4.

The approximate solution (10) is assumed as the first approximation for l=0·5 to
evaluate the solution of the non-linear equation (7). The l values are progressively
increased in steps of 0·1 and the non-linear solution corresponding to the previous l,
instead of the linear solution, is subsequently used as first approximation to improve the
convergence rate. The iteration was continued until the relative error is less than 10−16.
However, the scheme fails to converge when l exceeds a certain critical value.

Refining the l intervals to 0·01 and 0·001, the largest value of l for which the iteration
scheme (11) converges is determined accurately to five significant places as 13·887 and the
non-dimensional central deflection for this value of l is found to be w̄s =0·459205. The
computations are carried out on a VAX digital computer in quadruple precision and the
convergence of the numerical results are confirmed by increasing the number of intervals
in the radial direction. Convergence was obtained at 500 intervals; however, the results
are presented using 1000 intervals.

Since the electrical force on the plate increases with the deflection, it can become strong
enough to destabilize the plate when l is large. When l=13·888, the iterative scheme
yields progressively increasing values of w̄s which ultimately exceeds unity. Thus, when l

exceeds its critical value, it is reasonable to consider the diaphragm to buckle under the
dominating influence of the destabilizing electric force.

The electric field pulls the diaphragm away from the equilibrium position and this
destabilizing pull increases with the deflection. For small vibration about the steady
deflection, the electric force field can be represented by a negative stiffness intensity given
by 2oV2/(d−ws )3. An increase in the steady deflection strengthens this negative stiffness
which ultimately neutralizes the diaphragm stiffness at the critical field strength and
buckles the diaphragm.

2.3.  (3):         

The time independent deflection of the plate due to electric field satisfies equation (7).
Substituting the solution w̄ = w̄s +Dw̄ cos t for small vibration of the plate about this
steady deflection into equation (2) and approximating the resulting equation to first order
gives

9�4Dw̄ −V2Dw̄ =LsDw̄, (12)

where

V=va2zm/D, Ls =2l/(1− w̄s )3. (13, 14)

Even though equation (12) governing small vibration is linear, the implicit dependence
of Ls on r renders its closed form solution difficult. It can be seen from equation (14) that
for sufficiently small w̄s the parameter Ls on the right-side of equation (12) approximates
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to 2l. Consequently, an approximate closed form expression for the plate frequency in the
presence of weak electric field can be deduced from equation (12) as

vp /v(0)
p 1z{1−2l/m4

p }. (15)

The corresponding vibration modes become identical to that of the plate in the absence
of the electric field given in equation (4).

The approximate natural frequency given in equation (15) shows that the electric field
can destabilize the system when l1 1

2m
4
1 1 52·18. However, the accurate solution of

equation (7) for the steady deflection indicated that the destabilization occurs when l

exceeds 13·887. Thus, the approximate frequency, expressed in closed form in equation
(15), is not accurate for those values of l near this critical value.

When w̄s is sufficiently large compared to the amplitude of vibration Dw̄, equation (12)
can be solved for the fundamental natural frequency and mode using the standard iterative
method based on the successive determination of the deflection due to system flexibility
corresponding to the inertia forces associated with an assumed deflection mode. Here, the
assumed ith approximations Dw̄(i) and V(i), are used to calculate the intermediate Dw̄(c) given
by

9�4Dw̄(c) =LsDw̄(c) +V(i)2Dw̄(i) (16)

and satisfy the clamped plate boundary conditions Dw̄(c)(1)=0 and 9Dw̄(c)(1)=0.
Multiplication of equation (16) by the scale factor {Dw̄(i)(0)/Dw̄(c)(0)} expresses the iterative
scheme in the standard form of as

9�4Dw̄(i+1) −LsDw̄(i+1) =V(i+1)2Dw̄(i), (17)

where

V(i+1)2 = {Dw̄(i)(0)/Dw̄(c)(0)}V(i)2, Dw̄(i+1) = {Dw̄(i)(0)/Dw̄(c)(0)}Dw̄(c). (18, 19)

In this scheme the (i+1)th approximation is the deflection due to the combined influence
of the plate elasticity and the electric field for the inertia force associated with the ith
approximation. It can be noticed that Dw̄(i+1) satisfies the clamped plate boundary
conditions and the requirement Dw̄(i+1)(0)=Dw̄(i)(0). Thus, the actual iterative scheme used
in the determination of the fundamental frequency and mode is given by equation (17) and
the additional equations (16, 18, 19) are included to clarify the numerical method used in
the implementation of this scheme.

The dependence of Ls on r through w̄s renders the determination of Dw̄(c), which satisfies
equation (16) and the clamped boundary condition, difficult. Using an assumed
approximation for Dw̄(c) in the right side of equation (16), an improved approximation for
Dw̄(c) is determined by four successive numerical integrations. Here, Dw̄(i) is used as the first
approximation, and the successive approximations for Dw̄(c) are calculated until the relative
error is less than 10−8. The improved V(i+1) and Dw(i+1) which satisfy equation (17) are then
evaluated from equations (18) and (19). The iterative scheme (17) for the determination
of the fundamental frequency is continued until the relative error is less than 10−8, and
iteration converges for all values of l, including those which are slightly less than the
critical value for snap instability. The computations are carried out on a VAX digital
computer in quadruple precision and the convergence is validated using 1000 radial
intervals for the numerical integration.

Using finite difference expression for 9�4Dw̄, equation (17) can be expressed as a matrix
eigenvalue problem for determination of the natural frequencies and nodal deflection
vectors. In such an expression, the second term on the left side due to the electric field
introduces negative elements in the leading diagonal of the stiffness matrix. The numerical
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Figure 2. Variation of steady central deflection with electric field: ——, equation (7); - - - -, equation (10).

values of these negative elements increases with l and thereby reduces the determinant of
the stiffness matrix which ultimately vanishes as the parameter l approaches its critical
value. This formulation as a matrix eigenvalue problem involves very large order matrices
and is not suitable for numerical computation. However, it emphasizes the fact that the
iterative scheme (17) must lead to convergent solutions for the fundamental frequency and
mode.

3. RESULTS AND DISCUSSION

The diaphragm of a microphone can be represented as a thin clamped circular plate.
The exact solution for vibration frequencies and modes of clamped circular plate in terms
of Bessel functions is well known. However, the presence of an electric field between the
diaphragm and the rigid base plate renders the vibration analysis of the diaphragm
difficult. The electric field induces a deflection dependent load intensity on the diaphragm,
which introduces non-linearity in the governing equation (1). The diaphragm deflection
has a time independent steady state solution represented by equation (7) and the small
vibrations of the diaphragm about this steady state is studied using equation (12).

The load intensity due to the constant applied voltage between the plates causes a steady
deflection of the diaphragm. The parameter l, defined by oa4V2/Dd3, represents the square
of this applied voltage in non-dimensional form. This parameter is assumed to be constant
for the present analysis. The dependence of the axisymmetric steady deflection of the plate
on the parameter l is expressed in equation (7), which is solved using an iterative
procedure. For small l, the approximate solution given in equation (10) is used as a first
approximation to start the iterations.

The variation of non-dimensional deflection w̄s at the center of the plate against the
parameter l is shown in Figure 2. The approximate solution (10), based on the assumption
that l is small, is also included for the purpose of comparison. The solution of equation
(7) shows that the central deflection increases with l until it reaches about 45·92% of the
gap between the plates. Any further increase in l beyond its critical value of 13·887 causes
the plate to buckle. However, the approximate solution (10), which is valid for small l,
increases with l, and reaches unity when l=28·44. Thus, this solution of the linearized
equation (7) does not indicate the instability at the critical strength of the electric field.
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Figure 3. Variation of steady deflection shape with the electric field along a diameter.

A comparison with the solution of the non-linear equation (7) shows that this approximate
solution underestimates the plate deflection and the error reaches 10% when l1 11·036.
However, the approximate solution is in 34·87% error at the critical value of l. Thus, the
approximate closed form solution is reasonably accurate for microphone design purposes.
The exact steady deflection shapes of the plate corresponding to l values of 4, 8, 12 and
13·887 are shown in Figure 3.

The small vibration of the plate about its steady deflected position is governed by
equation (12), which is solved by iterative steps given in equations (16–19). The variation
of the fundamental frequency of vibration with l is shown in Figure 4. The approximate
solution (15) for this frequency is also included in Figure 4 for comparison. The
destabilizing electric field decreases the natural frequency of plate vibration. Further, as
l approaches its critical value, this natural frequency approaches zero, indicating the
buckling instability condition. The approximate solution (15) for the frequency of
vibration always overestimates the fundamental frequency and is at 10% error when
l=10·27. This closed form solution is also reasonably accurate for design calculations.
However, this solution becomes inaccurate near the critical value of l associated with the
buckling instability.

Within the accuracy of the numerical scheme (16–19), the small vibration mode shapes
of the plate in the presence of the electric field always converges to the normalized vibration
mode given by equation (4). Thus, the electric field does not have an appreciable influence

Figure 4. Variation of fundamental frequency with the electric field: ——, equation (12); - - - -, equation (15).
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on the fundamental mode of small vibration. Since 9�4f01(r)= m4
01f01(r), a careful

re-examination of equation (12) reveals that the solution for Dw̄ cannot be completely
independent of the electric field. Substitution of the series solution Dw̄ =acif0i (r) into
equation (12) simplifies it to the matrix eigenvalue problem

s
k

(m4
0idik −L(eq)

ik )ck =V2ci , (20)

where

L(eq)
ik =g

1

0

Lsf0i (r)f0k (r)r dr (21)

and dik is the Kronecker delta. In this formulation, the negatives of {L(eq)
ik } represents the

elements of the ‘‘stiffness matrix’’ due to the electric field. The numerical result for the
fundamental mode indicates that c2, c3, etc., are small in comparison to c1, and
consequently equation (20) can be used to obtain an approximate expression for the
fundamental frequency, V1zm4

01 −L(eq)
11 , and further discussion on the numerical

accuracy of this expression falls outside the scope of the present investigation.
The steady deflection of the plate in the presence of the electric field has a unique stable

solution which is axisymmetric. However, the small vibration modes governed by equation
(12) need not necessarily be axisymmetric. Equation (12) can still be used to determine the
other modes and frequencies of small vibration of the plate in the presence of the electric
field. Since the derivative of the vibration amplitude with respect to u appears only in the
operator 9�4 in equation (12), the dependence of the vibration mode on u can be handled
by assuming the modes with n diagonals as Dw̄=Dw̄n cos nq and the lowest natural
frequencies and modes in each of these mode categories can be similarly determined.
However, the approximate numerical methods such as the Rayleigh–Ritz, are more
appropriate for the determination of a large number of these other natural frequencies and
modes of the plate in the presence of the electric field.

4. CONCLUSION

Vibration of the microphone diaphragm subjected to an electric force field, which
induces a deflection dependent load intensity on the plate has been analyzed in two steps.

The steady deflection due to the non-linear load intensity is considered in the first step.
The electric field causes a steady plate deflection which increases with the field strength.
However, when the field strength reaches a critical value, it destabilizes this rest position
associated with the steady deflection and thereby causes the plate to buckle.

When the system has a stable rest position, the dependence of its small vibration about
this position on the electric field is studied in the next step. The fundamental frequency
and the corresponding vibration mode are computed. The results show that, as the field
strength increases, the frequency decreases and approaches zero as the field approaches
its critical value corresponding to the buckling instability.

The negative stiffness intensity due to the electric field has a destabilizing influence which
is indicated by the reduction in natural frequency. At the critical field strength, the negative
stiffness due to the field completely neutralizes the plate stiffness and brings the system to
a neutral equilibrium state. When the plate is displaced from the neutral equilibrium state
towards the other plate, the electric field pulls it to buckle.
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NOMENCLATURE

a plate radius
d gap between diaphragm and base plate when w=0
D flexural rigidity of plate, D=Eh3/12(1− n2)
E Young’s Modulus
h plate thickness
m mass per unit area of plate
r non-dimensional radial co-ordinate
t time
V voltage between the plates
w plate deflection
w̄ non-dimensional deflection, w̄=w/d
ws steady deflection of plate
w̄s non-dimensional steady deflection, w̄s =ws /d
Dw amplitude of small vibration
Dw̄ non-dimensional vibration amplitude, Dw̄=Dw/d
o permittivity of air
l non-dimensional parameter representing the square of voltage expressed in equation (8)
Ls defined in equation (14)
mp defined in equation (5)
n Poisson ratio
t non-dimensional time, t=vt
v frequency of vibration
v(0) frequency of vibration when l=0
V non-dimensional frequency defined in equation (13)


