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In a recent article [1], Pun and Semercigil successfully applied a joint variable stiffness
control (VSC) scheme to a one-link flexible arm. A standard finite element method was
used to discretize the continuous system and produce global matrices. The Newmark-b
method was applied to integrate the global matrices. The numerical results of the joint
angle and the tip deflection were presented [1] as surface plots for varying payload mass,
link length, joint stiffness and damping. Pun and Semercigil also demonstrated the
effectiveness of VSC in suppressing the transient vibration of the one-link flexible arm. In
this note, aspects of the numerical integration and the boundary condition on the flexible
arm will be discussed.
Frequency equation. The frequency equation of a flexible slewing link can be written in
a dimensionless form [2, 3] (see reference [3] for symbols and illustration)

(csh−sch)−2a1l ssh− b0l
3(1+cch)−2b1l

3 cch− a1l
4(b0 + b1)(csh−sch)

+ b0b1l
6(csh+sch)− b0b1a1l

7(1−cch)=0, (1)

in which c=cos l, s= sin l, ch=cosh l and sh=sinh l, while b0 = J0/(rAl3),
b1 = Jp /(rAl3) and a1 =Mp /(rAl).

Equation (1) can be re-arranged as:

(csh−sch−2a1l ssh)/b0 − l3(1+cch)−2b1/b0l
3 cch− a1l

4(1+ b1/b0)(csh−sch)

+ b1l
6(csh+sch)− b1a1l

7(1−cch)=0. (2)

For cases associated with a cantilever base (b0 1a), equation (2) reduces to [see reference
4]

(1+ b1a1l
4)+ (1− b1a1l

4) cch+ a1l(csh−sch)− b1l
3(csh+sch)=0. (3)

If a lumped mass is attached to the flexible link (b1 =0), equation (3) can be further
simplified to

(1+cos ln cosh ln )+ a1ln (cos ln sinh ln −sin ln cosh ln )=0, (4)

where ln is the eigenparameter corresponding to a tip-loaded uniform beam with a
cantilever base [references 4–6], where n is the mode number. The mode frequency in Hertz

is then vn = b2
n /(2p)zEI/(rA) and ln = bnl.

Numerical integration. Hamilton’s principle has been utilized in the dynamic analysis of
flexible manipulator arms [7–9]. Numerical integration methods are often used to obtain
the system response. It is well-known that the accuracy of the solution through a numerical
scheme depends upon the time step, Dt. A common rule of thumb: Dt/tE 1/10, which
usually provides satisfactory results, was suggested in reference [10]. The condition that
is required to yield the convergent solutions of vibratory systems by using different
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numerical integration methods was investigated in references [11, 12]. Three methods were
each used in the response analysis of discrete and continuous systems [11]. It was found
that the required coefficient Dt/t for satisfactory results was higher than that suggested
by Clough and Penzien [10]. The values were found to be respectively 0·318, 0·456 and
0·55 for linear systems, if the methods of central difference, fourth order Runge–Kutta,
and Newmark-b were used. A smaller value was required for a non-linear vibratory
systems [11]. Moreover, in a stability study of the rotating beam system considered, it was
confirmed that the choice of the time step would depend essentially on the least period
of vibration, tn . For example, the selected time step of the rotating beam system was based
on the third mode frequency, v3 =501·3 Hz [11].

Pun and Semercigil used the Newmark-b method to integrate the global matrices of the
one-link flexible arm [1]. Each integration time step is 0·005 s, which corresponds to
approximately 1/41 of the fundamental oscillation period of the system (v=4·9 Hz).

The frequency equation can also be used to determine the appropriate time step. The
first two natural frequencies obtained by solving equation (4) are, respectively, 8·6 and
95·2 Hz, if the parameters given in Table 1 of reference [1] are used: l=0·5 m,
rA=0·85 kg/m, M=0·5 kg and EI=73 Nm2. Note that the results were obtained
without considering the elbow stiffness and damping.

Based on v2 =95·2 Hz (thus t2 =0·0105 s) and Dt/t2 =0·55 for the Newmark-b
method, the appropriate time step can be found: Dt=0·0058 s. The value is near to the
value 0·005 s used in reference [1].
Boundary conditions. The effects of joint stiffness and payload’s mass to the vibration of
the flexible arm were studied and presented as surface plots [1]. As the stiffness increases,
the flexibility decreases until the joint begins to lock up and produces a near-cantilever
response. Also, the fundamental frequency decreases and the system becomes more flexible
as the tip mass increases.

The rotating beam system is often modelled as an Euler–Bernoulli beam with
clamped–free or pinned–free boundary conditions. Several works [2, 3, 6, 13–15] have
addressed an important issue, that of selecting sets of modes for problems of elastic beams
that undergo large rigid body displacements. Experimental results [13, 14] suggested that
the exact natural frequencies are intermediate between the clamped and pinned cases. It
was concluded in a recent work [3] that the parameters of hub and payload should be
incorporated for an accurate model, regardless of the use of the pseudo-clamped or the
pseudo-pinned case.
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