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1. 

A reformulation is presented of the power flow equations obtained by Bouthier and
Bernhard [1, 2] for membranes and plates. An explicit stochastic formulation is carried out
in order to write, in the high frequency domain, a simple relationship between the
expectations of the time averaged power flow and energy density. It will be shown
that this relationship is the same as the one obtained by Bouther and Bernhard [1, 2]
between the ‘‘smoothed’’ time average energy density and power flow. The notion of
smoothing operation developed by Bouthier and Bernhard will be explicitly defined in the
following.

Besides reformulation of the energy equations, the problem of the evaluation of the
power input is considered. It will be shown that the exact power input (which is
generally not reachable) may be replaced by the power input of the infinite associated
system.

2.       

In two recent articles, Bouthier and Bernhard [1, 2] proposed an energy flow formulation
to treat the high frequency dynamic behaviour of membranes and plates. The basis of the
theory is the steady state energy balance, similar for both plates and membranes:

pinj = pdiss +9� · I� . (1)

pinj and pdiss denote respectively the input power density and the dissipated power density.
I� is the instantaneous intensity (W/m2), and is expressed in terms of the displacement u�
and the stress tensor s� as

I� =−s� : 1u� /1t (2)

The aim of Bouthier and Bernhard was to express the different variables of
equation (1), using the energy density variable, sum of the kinetic and potential
energy densities (J/m2). The solutions of the governing equations of the membrane and the
plates were written in terms of a plane wave approximation. Moreover, the evanescent
wave field present in the plate was neglected. Finally the displacement solutions was
expressed as

U(x, y, t)= (Ax e−ikxx +Bx eikxx)(Ay e−ikyy +By eikyy) eivt. (3)

kx and ky represent the wave number components. One can then write the expressions of
the time averaged energy density and intensity, in terms of the displacement and its
1derivatives. A smoothing operation is then performed on the time averaged intensity and
energy density. This operation may be understood as a space average, even if some
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authors [3] have doubts about the interpretation that can be given to this calculus. This
operation is defined as

q=
4

lxly g
x+ lx/4

x− lx/4
g

y+ ly /4

y− ly/4

q dx dy, (4)

where q is one of the energy variables, and lx and ly represent the components of the
wavelength l. The smoothed variables are underlined, while the time averaged variables
are written within brackets. A relationship between the smoothed expressions of the time
averaged energy density and intensity �e� � and �I� �� is obtained [1, 2]:

�I� ��=−
c2

g

hv 01�e� �
1x

i� + 1�e� �
1y

j�1. (5)

cg is the group velocity, h is the hysteretic damping factor and v denotes the circular
frequency. One can now explicit the energy dissipation variable in terms of the energy
density [2, 4], using the approximate relationship

�p� diss�1 hv�e� �. (6)

Finally, a differential equation for the smoothed time averaged energy density is
obtained. For the membrane as well as for the plate, the equation may be written as

(−c2
g /hv)D�e� �+ hv�e� �= �pinj�. (7)

The energy formulation summarized in this section is an important improvement on the
Statistical Energy Analysis (SEA) developed by Lyon [5] in the early sixties. One of the
main advantages of the energy flow formulation is its ability to provide local information
about the energy levels, unlike the SEA which may only give a global result for each
sub-system of a structure. However, some questions remain concerning the power flow
equations. The first difficulty is the evaluation of the influence of the smoothing operation.
Bouthier and Bernhard noticed that this operation seemed not to be valid when the
frequency was not sufficiently high.

In what follows, the authors introduce a stochastic parameter of the geometrical
characteristics of the plates and membranes, and will prove that one can write a
relationship similar to the one obtained by Bouthier and Bernhard, valid in the high
frequency domain, between the random mean energy density and the random mean
intensity. The geometrical random variables illustrate the high sensitivity of the dynamic
structural responses to small perturbations of the mechanical and geometrical parameters,
in the high frequency domain.

Generally, energy methods meet another important difficulty concerning the evaluation
of the power input. Bouthier and Bernhard avoided this difficulty by considering a pure
energy source without relating it to the associated force source. Unfortunately, experimental
datas and simulations propose generally force–displacement inputs and one must convert
them to an energy input. The authors will show that the random mean power input is
equivalent to the power input of the infinite associated system, in the high frequency domain.

3.     

The governing equation of a membrane under an in-plane tensile force T and submitted
to a punctual harmonic loading F, elastic linear properties and small harmonic deflections
being assumed, is expressed as [6]

TDU+ rv2U=−F d(x0, y0), (8)
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where r is the mass per unit area and U is the deflection of the membrane. A loss factor
h is introduced in equation (8). The governing equation may be written as

T(1+ ih)DU+ rv2U=−F d(x0, y0). (9)

The solution of equation (9) is approximated to a plane wave field and is written as

U(x, y)= (Ax e−ikxx +Bx eikxx)(Ay e−ikyy +By eikyy); (10)

kx and ky are the wave number components of k. The following notations are
introduced:

=k=2 =v2r/T (11)

and

kx = kx1(1− ih/2), ky = ky1(1− ih/2), cg =zT/r. (12, 13)

cg represents the wave group velocity of the membrane. The time averaged energy density
and the components of the intensity are

�e�t =
T
4 61U

1x 01U
1x1*+

1U
1y 01U

1y1*+
1
c2

g

1U
1t 01U

1t 1*7, (14)

�Ix�t =
T
2 61U

1x 01U
1t 1*7, �Iy�t =

T
2 61U

1y 01U
1t 1*7. (15)

The time average is represented by the symbol � �t . A stochastic parameter is now
introduced into the co-ordinates of the point of measurement. The random co-ordinates
x̃ and ỹ are written as

x̃= x+ ex , ỹ= y+ ey . (16)

ex and ey are two independent zero mean random Gaussian variables, and x and y are the
two deterministic co-ordinates. Ax , Bx , Ay and By do not depend on the value of ex and
ey ; they are functions only of the position of the boundaries. The explicit expressions for
the time averaged energy density and intensity components are given partially. The entire
calculus can be found in the Ph.D. Thesis of Bouthier [7]. The time averaged energy
density is

�ẽ�t =(T/2)(=kx =2 + =ky =2){=Ax =2=Ay =2 e−h(kx1x̃+ ky1ỹ) + =Ax =2=By =2 e−h(kx1x̃− ky1ỹ)

+ =Bx =2=Ay =2 eh(kx1x̃− ky1ỹ) + =Bx =2=By =2 eh(kx1x̃+ ky1ỹ)}

+(T4)=kx =2=Ax =2ByA*g e−hkx1x̃ e2iky1ỹ −(T/4)=kx =2=Ay =2BxA*x e−hky1ỹ e−2ikx1x̊

−(T/4)=kx =2BxByA*x A*y e2i(kx1x̃+ ky1ỹ) + · · · , (17)

The time averaged intensity components are

�I	 x�t =(T/2)kxv{=Ax =2=Ay =2 e−h(kx1x̃+ ky1ỹ) + =Ax =2=By =2 e−h(kx1x̃− ky1ỹ)

− =Bx =2=Ay =2 eh(kx1x̃− ky1ỹ) − =Bx =2=By =2 eh(kx1x̃+ ky1ỹ)}

+(T/2) Re {kxv=Ax =2AyB*y e−hkx1x̃ e−2iky1ỹ

+ kxvAx =Ay =2B*x e−hky1ỹ e−2ikx1x̃ +· · · }, (18)
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and

�I	 y�t =(T/2)kyv{=Ay =2=Ay =2 e−h(kx1x̃+ ky1ỹ) + =Ax =2=By =2 e−h(kx1x̃− ky1ỹ)

− =Bx =2=Ay =2 eh(kx1x̃− ky1ỹ) − =Bx =2=By =2 eh(kx1x̃+ ky1ỹ)}

+(T/2) Re {kyv=Ax =2AyB*y e−hkx1x̃ e−2iky1ỹ

+ kyvAx =Ay =2B*x e−hky1ỹ e−2ikx1x̃ +· · · }, (19)

It is now possible to evaluate the expectations of the energy variables expressed previously.
The averaging operation is explicitly carried out for two different terms. The developments
for the other terms are not given, as the calculus is too lengthy and repetitive. The average
of one of the terms may be calculated:

�=Ay =2BxA*x e−hky1ỹ e−2ikx1x̃�xy = =Ay =2BxA*x g
a

−a g
a

−a

e−hky1(y+ ey) e−2ikx1(x+ ex )

×
e−(e2x + e2y)/2s2

s22p
dex dey . (20)

The expectation operation over x and y is represented by the symbol � �xy . s represents
the standard deviation of the Gaussian law. The term hey as well as hex are assumed to
be second order terms compared to hx and hy and are not taken into account. Finally,
equation (20) gives

�=Ay =2BxA*x e−hy1ỹ e−2ikx1x̃�xy = =Ay =2BxA*x e−hky1y e−2ikx1x e−2k2
x1s

2. (21)

The average of another term is calculated by using the same procedure:

�BxByA*x A*y e2i(kx1x̃+ ky1ỹ)�xy =BxByA*x A*y g
a

−a g
a

−a

e2i(kx1(x+ ex)+ ky1(y+ ey))

×
e−(e2x + e2y)/2s2

sz2p
dex dey

=BxByA*x A*y e2i(kx1x+ ky1y) e−2(k2
x1 + k2

y1)s
2. (22)

The averaged values of the terms containing imaginary components may be neglected in
the high frequency range. The terms multiplied by exp[−k2

x1s
2] or (and) exp[−k2

y1s
2] vanish

in the high frequency field. The expectations of the time averages of the energy density
and intensity components in the high frequency range may be approximated by

��ẽ�t�xy 1 (T/2)(=kx =2 + =ky =2){=Ax =2=Ay =2 e−h(kx1x̃+ ky1ỹ) + =Ax =2=By =2 e−h(kx1x̃− ky1ỹ)

+ =Bx =2=Ay =2 eh(kx1x̃− ky1ỹ) + =Bx =2=By =2 eh(kx1x̃− ky1ỹ)}. (23)

The expectations of the time averaged intensity components are

��I	 x�t�xy 1 (T/2)kxv{=Ax =2=Ay =2 e−h(kx1x̃+ ky1ỹ) + =Ax =2=By =2 e−h(kx1x̃− ky1ỹ)

−=Bx =2=Ay =2 eh(kx1x̃− ky1ỹ) − =Bx =2By =2 eh(kx1x̃+ ky1ỹ)} (24)

and

��I	 y�t�xy 1 (T/2)kyv{=Ax =2=Ay =2 e−h(kx1x̃+ ky1ỹ) + =Ax =2=By =2 e−h(kx1x̃− ky1ỹ)

− =Bx =2=Ay =2 eh(kx1x̃− ky1ỹ) − =Bx =2=By =2 eh(kx1x̃+ ky1ỹ)}. (25)
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The symbol �� �t�xy represents the two operations of time averaging and space
expectation. The following relationship between the intensity and the energy density can
then be deduced from equations (11, 13, 23–25):

��I	 ��t�xy =−(c2
g /hv)9��ẽ�t�xy . (26)

It is then possible to obtain the energy governing equation:

(−c2
g /hv)D��ẽ�t�xy + hv��ẽ�t�xy = �pinj�t . (27)

At this stage, the input power is only time averaged. Its value depends only on the input
force, the mechanical parameters and the position of the boundaries, and is not a function
of (x, y), the point of measurement.

The evaluation of the power input to the structure by using the value of the injected
force is not easy to handle. Effectively, the expression for the exact power input contains
all the modal information: that is to say the structural complexity. It will now be proved
that for any kind of membrane shape, the introduction of a random parameter into the
co-ordinates of the boundaries, gives a very simple expression for the averaged injected
power. For this demonstration, the case of a circular clamped membrane of radius R is
considered, loaded by a punctual loading F situated at the center of the structure. The
displacement solution is

U(r)=
−iF
4T

H(1)
0 (kR)H(2)

0 (kr)−H(2)
0 (kR)H(1)

0 (kr)
H(1)

0 (kR)+H(2)
0 (kR)

, (28)

and the resulting radial traction is:

T(r)=T
1U(r)

1r
=

ikF
4

H(1)
0 (kR)H(2)

1 (kr)−H(2)
0 (kR)H(1)

1 (kr)
H(1)

0 (kR)+H(2)
0 (kR)

, (29)

where H(1)
0 , H(2)

0 , H(1)
1 and H(2)

1 represent the Hankel functions of zeros and first order. It
is not possible to evaluate the power input at the loading point. Its value is locally infinite,
due to the displacement singularity. Instead of considering the loading position, the input
power is calculated on a circle whose center is the source location. The radius of the circle,
r0, is considered sufficiently large so that the Hankel functions evaluated at r0 may be
replaced by their far field asymptotic values [8]. A general rule postulates that the far field
is reached at a distance equal to the half of the wave length. The time averaged power
input in the membrane through the contour defined by r0 is

�pinj�t =−(2pr0Tv/2) Re {i(1U(r0)/1r)U*(r0)}. (30)

The asymptotic expression for �pinj�t is

�pinj�t 1
F2v

8T
e−hk0r0

1+e−2ik0(R− r0) e−hk0(R− r0)

1+e−2ik0R e−hk0R
. (31)

Using the symmetry of the structure and appropriate polar co-ordinates, one can write the
wave number with only one radial component. The following notation is introduced:
k= k0(1− ih/2). The term exp[−hk0r0] is neglected. This simplification is accurate if r0 is
small. Taking r0 equal to the wave length l introduces an error of exp[−2ph]. A Taylor
series expansion of equation (31) valid in the high frequency range, is written:

�pinj�t 1 (F2v/8T)(1+e−2ik0(R− r0) e−hk0(R− r0) − e2ik0(R− r0) e−hk0(R− r0) + · · · ). (32)



   915

The stochastic operations presented before are carried out, with R and r0 replaced by the
random variables R	 =R+ eR and r̃0 = r0 + er0. The expectation of the time averaged power
input is calculated for Gaussian random variables. The final expression is

��p̃inj�t�x0y0 1 (F2v/8T)(1+e−2ik0(R− r0) e−4k2
0s

2 e−hk0(R− r0)

− e2ik0(R− r0) e−4k2
0s

2 e−hk0(R− r0) + · · · ). (33)

The expectation over the boundary co-ordinates is defined by the symbol � �x0y0. The
oscillating term vanishes when the frequency increases to infinity. One can then replace
the expression for pinj by

��p̃inj�t�x0y0 1F2v/8T. (34)

Equation (34) is a very simple expression for the mean value of pinj . Even if this last relation
has been obtained for circular membranes, this result can be extended to any shapes of
membranes, since the final result does not contain any geometrical information. However,
this expression is not valid near the location of the loading. The final expression for the
energy governing equation is

(−c2
g /hv)D���ẽ�t�xy�x0y0 + hv���ẽ�t�xy�x0y0 = ��p̃inj�t�x0y0 (35)

4.     

The same scheme is proposed to derive the energy equations for the plate. The calculus
will be given with few details, since the mathematical operations are similar to those
explicitly valid for the membrane.

The governing equation for harmonic analysis of flexural motion of a homogeneous,
isotropic, linear elastic plate, under the assumptions of small deflections, loaded by a time
harmonic point force, is

94U− k4(1− ih)U=Fd(r0). (36)

h�1 denotes the hysteretic damping coefficient, and k is the wave number. The solution
of equation (36) is approximated to its far field plane wave components. The expression
for the solution is

U=(Ax e−ikx +Bx eikx)(Ay e−iky +By eiky). (37)

kx and ky are the complex wave number components which may be written as

kx = kx1(1− ih/4), ky = ky1(1− ih/4) (38)

and

=k=4 =v2zrh/D. (39)

The group velocity is defined as

cg =2zv(D/rh)1/2, (40)

where D is the flexural rigidity, h is the thickness and r is the density. To obtain a
relationship between the expectations of time averaged energy density and intensity, the
far field displacement given in equation (37) is introduced in the expressions for the energy
variables. The co-ordinates x and y are replaced by the associated random co-ordinates
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x̃= x+ ex and ỹ= y+ ey . The expressions for the energy variables are given in the Ph.D.
Thesis of Bouthier [7]. The time averaged energy density is

�ẽ�t =
D
4 012U	

1x2 012U	
1x21*+

12U	
1y2 012U	

1y21*+2n Re 012U	
1x2 012U	

1y21*1
+2(1− n)

12U	
1x 1y 0 12U	

1x 1y1*+
rh
D

1U	
1t 01U	

1t 1*1. (41)

The time averaged intensity integrated over the plate thickness may be expressed in terms
of applied loads and motions. The components of the integrated intensity (W/m) are

�I	 x�t =−M	 xx
12U	
1x 1t

−M	 xy
12U	
1y 1t

+Q	 x
1U	
1t

, �I	 y�t =−M	 yy
12U	
1y 1t

−M	 yx
12U	
1x 1t

+Q	 y
1U	
1t

,

(42)

and

M	 xx =−D012U	
1x2 + n

12U	
1y21, M	 yy =−D012U	

1y2 + n
12U	
1x21,

M	 xy =−D(1− n)
12U	

1x 1y
, M	 yx =M	 xy , Q	 x = 1M	 x /1x+ 1M	 xy /1y,

Q	 y = 1M	 y /1y− 1M	 xy /1x. (43)

The expression for the expectation of the time averaged energy density may be written,
in part, as

��ẽ�t�xy =(D/4)(=kx =4 + =ky =4){=Ax =2=Ay =2 e−h(kx1x+ ky1y) + =Ax =2=By =2 e−h(kx1x− ky1y)

+ =Bx =2=Ay =2 eh(kx1x− ky1y) + =Bx =2=By =2 eh(kx1x+ ky1y)}

+AxAyB*x B*y =kx =4 e−h/2(kx1x+ ky1y)−2i(kx1x+ ky1y) e−2s2(k2
x1 + k2

y1) + · · ·

1 (D/4)(=kx =4 + =ky =4){=Ax =2=Ay =2 e−h(kx1x+ ky1y) + =Ax =2=By =2 e−h(kx1x− ky1y)

+ =Bx =2=Ay =2 eh(kx1x− ky1y) + =Bx =2=By =2 eh(kx1x+ ky1y)}. (44)

The high frequency approximations of the expectations of the temporal mean of the
intensity components are

��I	 x�t�xy 1 kx (v/2)(k2
x + k2

y + =kx =2 + n=ky =2 + (1− n)=ky =2){=Ax =2=Ay =2 e−h(kx1x+ ky1y))

+ =Ax =2=By =2 e−h(kx1
x− ky1

y)) − =Bx =2=Ay =2 eh(kx1
x− ky1

y))

− =Bx =2=By =2 eh(kx1
x+ ky1

y))}, (45)

��I	 y�t�xy 1 ky (v/2)(k2
x + k2

y + =kx =2 + n=kx =2 + (1− n)=kx =2){=Ax =2=Ay =2 e−h(kx1
x+ ky1

y))

− =Ax =2=By = e−h(kx1
x− ky1

y)) + =Bx =2=Ay =2 eh(kx1
x− ky1

y))

− =Bx =2=By =2 eh(kx1
x+ ky1

y))}. (46)

Using equations (39, 40, 44–46), one can easily deduce the following high frequency
relationship between ��I	 ��t�xy and ��ẽ�t�xy :

��I	 ��t�xy =−(c2
g /hv)9� ��ẽ�t�xy (47)



   917

According to Cremer and Heckl [4], one can write the dissipated power function of the
energy density: ��p̃diss�t�xy = hv��ẽ�t�xy . The governing energy differential equation may
finally be written by using the energy balance, the expression of the intensity and the power
dissipation relationships:

−(c2
g /hv)D��ẽ�t�xy + hv��ẽ�t�xy = �pinj�t . (48)

The expectation of the time averaged injected power may be evaluated in the same way
as for the membrane. The time average of the input power is evaluated for a simple finite
plate. The positions of the boundaries are random variables. The stochastic expectation
is then expressed and it is shown that a high frequency approximation of this expression
does not depend on the geometry of the plate. It is consequently assumed that the
expression is valid for any type of geometry. Its value is finally given (without any calculus
details) as

��p̃inj�t�x0y0 1F2/16zDrh. (49)

This expression corresponds to the time averaged input power of the associated infinite
plate. The final expression of the governing energy equation for the plate is

−(c2
g /hv)D���ẽ�t�xy�x0y0 + hv���ẽ�xy�x0y0 = ��p̃inj�t�x0y0. (50)

5. 

In this letter, an energy flow governing equation has been constructed for both plates
and membranes. The unknown of the formulation is precisely defined as the expectation
of the time averaged energy densities, and it is explicitly shown that the range of validity
of the equation is restricted to the high frequency domain.

The interest of this formulation lies in the fact that the results of Bouthier and Bernhard
are confirmed without using a ‘‘smoothing operation’’ whose signification was not clearly
established, and the frequency range validity of their energy equation was not precisely
given.

In other respects, the use of the ‘‘infinite input power’’ is justified with the same
stochastic theory. The ‘infinite input power’ gives a simple relationship between the input
force and the energy variable.
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