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Free and forced in-plane vibrations of circular arches with variable cross-sections are
investigated. Using the Kirchhoff assumptions for thin beams and taking the neutral axis
as inextensible, a closed form solution is obtained for circular arches of uniform
cross-section. This exact solution is used for circular arches with stepped cross-sections and
is applied to obtain an approximate solution for arches with non-uniform cross-sections.
For free vibration, an analytic form of frequency equation is obtained by using the general
solution expressed in terms of some initial parameters at one end of the arch; while for
forced vibration, the system’s response is obtained analytically by solving a set of algebraic
equations with only three unknowns. Several examples are presented to illustrate the
validity and accuracy of the method.
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1. INTRODUCTION

Vibration analysis of arches under various kinds of loads has been the subject of numerous
investigations [1–3] due to their important applications in many industrial fields. It is well
known that the governing dynamic equation of inextensible Bernoulli–Euler arches with
constant cross-sections is a sixth order differential equation with constant coefficients. The
exact solutions for the free and forced vibrations of uniform Bernoulli–Euler arches can
be found in references [1, 4]. However, it is more difficult to find general closed form
solutions for the dynamic response of arches with arbitrarily varying cross-sections since
the governing equations of such arches possess variable coefficients. Therefore, in the past
many methods, such as the finite element method [5, 6], the Rayleigh–Ritz method [7–11],
the cell discretization method [3, 12], and the correlation matrix method [13], have been
proposed for investigating these arches’ dynamic behaviour. Although these methods have
been proven useful for vibration analysis of arches, they either require cumbersome
computation as the number of discrete elements increase, or are restricted by their rate
of convergence.
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In the following, a systematic approach is presented for investigating the free and forced
vibrations of inextensible Bernoulli–Euler arches with arbitrarily varying cross-sections,
using an approach, developed for non-uniform beams [14–16]. For this particular purpose,
the arch with arbitrarily varying cross-sections is approximated by a number of stepped
arches with constant cross-sections. For each stepped arch element, an analytic solution,
which is expressed in terms of six initial parameters (deflections, rotation, bending moment,
shear force and normal force) at one end of each stepped arch, may be obtained by solving
the governing equation with constant coefficients. Then, the overall solution of the stepped
arches can be expressed in terms of the end parameters at one end of the arch by satisfying
the continuity and equilibrium conditions between adjacent elements. In the case of free
vibration, the frequency equation under various boundary conditions is shown to have an
analytic form in terms of some physical parameters; while in the case of forced vibration,
the system’s response can also be obtained analytically by solving a set of algebraic
equations with only three unknowns, independent of the numbers of elements used in the
computational model. As the number of stepped arches increases, a fast convergence to
the exact solution of the original arch is obtained. Several examples illustrating the validity
and accuracy of this method are presented.

2. GOVERNING EQUATIONS

Consider a thin circular arch with a variable cross-section, as shown in Figure 1. The
equation of motion without taking into account the effects of shear deformation and rotary
inertia are [1]

1T(u, t)
1u

+N(u, t)+Rqu (u, t)− m(u)R
12u(u, t)

1t2 =0, (1)

Figure 1. A circular arch with variable cross-section.
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Figure 2. An arch represented by a number of stepped arches.

1N(u, t)
1u

−T(u, t)+Rqw (u, t)− m(u)R
12w(u, t)

1t2 =0, (2)

1M(u, t)
1u

−RT(u, t)=0, (3)

where T(u, t) denotes the shear force, N(u, t) the normal force, M(u, t) the bending
moment, m(u) the mass per unit length (rA(u)), and R the radius of the circular arch. The
components of the external load in the normal and tangential directions are denoted by
qu (u, t) and qw (u, t), respectively.The flexural deformations are more important than the
axial deformation for the lowest modes of vibration, so that it is possible to neglect the
extensibility of the arch’s neutral axis. The inextensibility condition is written as

u=
1w
1u

, (4)

whereas the bending moment can be expressed as

M(u, t)=−
EI(u)
R2 012u

1u2 + u1=−
EI(u)
R2 013w

1u3 +
1w
1u1, (5)
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where E is the Young modulus and I(u) is the second moment of area. Substituting
equation (5) into equation (3), one obtains the shear force as

T(u, t)=−
1
R3

1

1u $EI(u) 013w
1u3 +

1w
1u1%. (6)

From equations (6) and (1), the following relation identifying the normal force is obtained
as

N(u, t)=−
1T(u, t)

1u
−Rqu (u, t)+ m(u)R

12u(u, t)
1t2

=
1
R3

12

1u2 $EI(u)013w
1u3 +

1w
1u1%−Rqu (u, t)+ m(u)R

13w(u, t)
1u 1t2 . (7)

T 1

Frequency equations under various boundary conditions

Types Boundary conditions Frequency equations

u=0, W=W=C=0 b14b25b36 + b24b35b16

Clamped–clamped +b34b26b15 − b16b25b34g
F

fu= un , W=W'=C=0 −b26b35b14 − b36b24b15 =0

u=0, W=W'=M=0 b13b25b46 + b23b45b16

Hinged–hinged +b43b26b15 − b16b25b43g
F

fu= un , W=W'=M=0 −b26b45b13 − b46b23b15 =0

u=0, M=T=N=0 b41b52b63 + b51b62b43

Free–free +b61b53b42 − b43b52b61g
F

fu= un , M=T=N=0 −b53b62b41 − b63b51b42 =0

u=0, W=W'=M=0 b14b25b46 + b24b45b16

Hinged–clamped +b44b26b15 − b16b25b44g
F

fu= un , W=W'=C=0 −b26b45b14 − b46b24b15 =0

u=0, W=W'=M=0 b11b22b43 + b21b42b13

Hinged–free +b41b23b12 − b13b22b41g
F

fu= un , M=T=N=0 −b23b42b11 − b43b21b12 =0

u=0, W=W'=C=0 b13b25b36 + b23b35b16

Clamped–hinged +b33b26b15 − b16b25b33g
F

fu= un , W=W'=M=0 −b26b35b13 − b36b23b15 =0

u=0, W=W'=C=0 b11b22b33 + b21b32b13

Clamped–free +b31b23b12 − b13b22b31g
F

fu= un , M=T=N=0 −b23b32b11 − b33b21b12 =0

u=0, M=T=N=0 b44b55b66 + b54b65b46

Free–clamped +b64b56b45 − b46b55b64g
F

fu= un , W=W'=C=0 −b56b65b44 − b66b54b45 =0

u=0, M=T=N=0 b43b55b66 + b53b65b46

Free–hinged +b63b56b45 − b46b55b63g
F

fu= un , W=W'=M=0 −b56b65b43 − b66b53b45 =0
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Figure 3. Two stepped arches (h= h1/h0 and b1 = b0): (a) symmetric stepped arch; (b) unsymmetric stepped
arch.

Then, by substituting equations (6) and (7) into equation (12), the equation of motion for
the deflection component w can be written as

13

1u3 $EI(u)013w(u, t)
1u3 +

1w(u, t)
1u 1%+

1

1u $EI(u)013w(u, t)
1u3 +

1w(u, t)
1u 1%

+R4 1

1u $m(u)
13w(u, t)
1u 1t2 %− m(u)R4 1w(u, t)

1t2 −R4 1qu (u, t)
1u

+R4qw (u, t)=0, (8)

where the boundary conditions are:
(1) clamped,

u=0, w=0, c=0 at u=0 or u= un ; (9)

(2) hinged,

u=0, w=0, M=0 at u=0 or u= un ; (10)

(3) free,

M=0, T=0, N=0 at u=0 or u= un ; (11)
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and

u=
1w
1u

, c=
1
R 012w

1u2 +w1,
M=−

EI
R2 013w

1u3 +
1w
1u1, T=−

1
R3

1

1u $EI(u)013w
1u3 +

1w
1u1%,

N=
1
R3

12

1u2 $EI(u)013w
1u3 +

1w
1u1%−Rqu (u, t)+ m(u)R

13w(u, t)
1u 1t2 . (12)

3. FREE VIBRATIONS

Consider the thin circular arch with an arbitrarily varying cross-section (Figure 1). In
order to determine the solution of equation (8), one may divide this arch into a number
of stepped arches with constant cross-sections, as illustrated in Figure 2. For the ith
stepped arch element, the equation of motion (8) can be written as

16w(u, t)
1u6 +2

14w(u, t)
1u4 +

12w(u, t)
1u2 +

mi−1R4

EIi−1

14w(u, t)
1u2 1t2 −

mi−1R4

EIi−1

12w(u, t)
1t2

=
R4

EIi−1

1qui−1(u, t)
1u

−
R4

EIi−1
qwi−1(u, t). (13)

T 2

First frequency coefficient of a symmetric stepped arch

x1

un Present R-R F.E.M. C.D.M.
(degrees) method [9] [3] [3]

h=0·8
10 1844·84 1958·85 1840·9
20 459·662 489·30 456·31 458·68
30 203·157 202·72
40 113·392 121·874 113·195 113·15
45 89·175 96·1659 88·897
50 71·856 71·705
60 49·306 49·200
70 35·722 35·647
80 26·918 26·86
90 20·895 23·599 20·851

h=1·2
10 2119·46 2082·9 2102·2
20 527·201 520·08 521·80 523·31
30 232·831 230·93
40 129·683 129·42 129·30 128·63
45 101·861 102·12 101·03
50 81·965 81·299
60 56·068 55·613
70 40·477 40·148
80 30·380 30·134
90 23·480 23·599 23·290
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T 3

First frequency coefficient of an unsymmetric stepped arch

x1

un Present R-R F.E.M. C.D.M.
(degrees) method [9] [3] [3]

(a) Clamped–clamped
10 2277·412 2277·9 2264·9
20 567·170 567·10 566·86 564·05
30 250·472 250·37 249·10
40 139·647 139·62 139·72 138·88
50 88·372 88·439 87·887
60 60·538 60·540 60·604 60·206

(b) Hinged–hinged
10 1458·852 1462·16 1456·0
20 362·609 363·32 362·667 361·92
30 159·625 160·128 159·33
40 88·601 88·7588 88·697 88·440
50 55·750 55·8865 55·651
60 37·926 37·989 38·007 37·862

(c) Hinged–clamped
10 1853·663 1868·5 1848·4
20 461·342 464·76 461·15 460·03
30 203·520 205·03 202·95
40 113·014 114·16 113·36 112·98
50 71·563 72·103 71·363
60 48·910 49·269 48·978 48·775

Let w(u, t)/R=W(u) ejvt; the equation of motion (13) can be reduced to

d6W
du6 +2

d4W
du4 +

d2W
du2 − x2

i−1
d2W
du2 + x2

i−1W=0, (14)

for free vibration and

d6W
du6 +2

d4W
du4 +

d2W
du2 − x2

i−1
d2W
du2 + x2

i−1W=Fi−1(u), (15)

for harmonic forced vibration where the non-dimensional frequency coefficient is

xi−1 =zmi−1R4/EIi−1 v, (16)

the forcing function is

Fi−1(u) ejvt =
R3

EIi−1

1qui−1(u, t)
1u

−
R3

EIi−1
qwi−1(u, t), (17)
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and the continuity and equilibrium conditions at u= ui require that

lim
e:0

W(ui − e)=W(ui ), lim
e:0

W'(ui − e)=W'(ui ),

lim
e:0

C(ui − e)=C(ui ), lim
e:0

M(ui − e)=M(ui ),

lim
e:0

T(ui − e)=T(ui ), lim
e:0

N(ui − e)=N(ui ). (18)

In the ith stepped arch, the solution of free vibration (14) can be expressed in terms of
the initial parameters (deflections, rotation, bending moment, shear force and normal
force) at u= ui−1, as

{d(u)}=Ai(u, ui−1, n1i−1, n2i−1, n3i−1){d(ui−1)}, ui−1 E uQ ui , (19)

where

{d(u)}=6W(u), W'(u), C(u),
M(u)R

EI0
,
T(u)R2

EI0
,
N(u)R2

EI0 7
T

, (20)

Figure 4. Two tapered arches: (a) unsymmetric tapered arch; (b) symmetric stepped arch.
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T 4

First frequency coefficient of a clamped–clamped unsymmetric tapered arch

h=0·1 h=0·4
ZXXXXXXXXCXXXXXXXXV ZXXXXXXXXCXXXXXXXXV

N Scheme (a) Scheme (b) Scheme (c) Scheme (a) Scheme (b) Scheme (c)

10 54·1564 53·0791 53·6178 53·9509 49·4777 51·7143
20 53·8796 53·3408 53·6102 52·7034 50·4603 51·5818
30 53·7882 53·4291 53·6087 52·3020 50·8055 51·5538
40 53·7429 53·4735 53·6081 52·1050 50·9824 51·5437
50 53·7157 53·5001 53·6079 51·9880 51·0898 51·5389
60 53·6975 53·5180 53·6077 51·9016 51·1621 51·5363
70 53·6846 53·5307 53·6077 51·8556 51·2140 51·5348
80 53·6750 53·5403 53·6077 51·8145 51·2531 51·5338
90 53·6674 53·5478 53·6076 51·7826 51·2836 51·5331

100 53·6614 53·5537 53·6076 51·7572 51·3080 51·5326

ui =1+ s
i

k=1

{u− uk}0$EI0

EIk
−

EI0

EIk−1%, (22)

and the Heaviside function

{u− ui}0 =610 if
if

ue ui ,
uQ ui .

(23)

Figure 5. Three discretization schemes.
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Figure 6. The natural frequencies as functions of number of elements: - - - -, scheme (a); – · – · –, scheme (b);
——, (c). (a) h=0·1; (b) h=0·4.
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The detailed derivation of the functions fi and gi (i=1, 2, 3) is presented in the Appendix.
However, it can be verified that

Ai(u, ui−1, n1i−1, n2i−1, n3i−1)=Ai(0, u− ui−1, n1i−1, n2i−1, n3i−1),
Ai(ui−1, ui−1, n1i−1, n2i−1, n3i−1)= I. (24)

Thus the solution of the arch may be written in terms of the initial parameters at the
starting end u=0, as

{d(u)}=Bi(u){d(u)}, ui−1 E uQ ui , (25)

where

Bi(u)=Ai(u, ui−1)+Ai(u, ui−1) s
i−1

k=1

{u− uk}0Fk, (26)

and the constant matrix

Fk =DAk(uk , uk−1)+DAk(uk , uk−1) s
k−1

m=1

{u− um}0Fm (27)

is determined by satisfying the continuity and equilibrium conditions (18), where

DAk =Ak(uk , uk−1)−Ak(uk−1, uk−1). (28)

At the finishing end u= un , the solution of the arch can be written as

{d(un )}=Bn(un ){d(0)}. (29)

T 5

First frequency coefficient of a hinged–hinged symmetric tapered arch

x1

un Present R-R C.D.M. SAP90
(degrees) method [8] [3] [3]

h=0·1
20 1357·63 1299·0 1354·4
40 337·517 322·86 336·70
60 148·646 142·15 148·25
80 82·581 78·890 82·31

h=0·2
20 1420·650 1315·1 1416·1 1418·8
40 353·219 326·88 352·08 352·79
60 155·584 143·90 155·05 155·39
80 86·452 79·875 86·105 86·325

h=0·3
20 1482·695 1340·7 1476·2 1478·2
40 368·677 333·20 367·05 367·72
60 162·414 146·70 161·66 161·99
80 90·262 81·434 89·799 90·006
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Figure 7. The normal deflection response of the tip in the frequency domain (h=0·1).

Upon substitution of the boundary conditions into equation (29), one obtains the
frequency equation, which is in analytic form for the stepped arches. The natural
frequencies can be determined by finding the roots of the frequency equation. The
frequency equations under various boundary conditions are listed in Table 1.

4. HARMONIC FORCED VIBRATION

For the ith element, the solution of harmonic forced vibration (15) can be expressed in
terms of the initial parameters at u= ui−1, as

{d(u)}=Ai(u, ui−1, n1i−1, n2i−1, n3i−1){d(ui−1)}+ {pi
e (u)}, ui−1 E uQ ui , (30)

where the first term on the right-hand side is the homogeneous solution of the free
vibration, as indicated in equation (21), and the second term is the particular solution of
equation (15), which can be expressed as

pi
e1

=g
u

ui−1

g3(u− a, ui−1, n1i−1, n2i−1, n3i−1)Fi−1(a) da

+
R3qu (ui−1)

EI0
ui−1g3(u, ui−1, n1i−1, n2i−1, n3i−1), (31)

pi
e2

=g
u

ui−1

f3(u− a, ui−1, n1i−1, n2i−1, n3i−1)Fi−1(a) da

+
R3qu (ui−1)

EI0
ui−1f3(u, ui−1, n1i−1, n2i−1, n3i−1), (32)
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pi
e3

=g
u

ui−1

g2(u− a, ui−1, n1i−1, n2i−1, n3i−1)Fi−1(a) da

+
R3qu (ui−1)

EI0
ui−1g2(u, ui−1, n1i−1, n2i−1, n3i−1), (33)

pi
e4

=−
1

ui−1 g
u

ui−1

f2(u− a, ui−1, n1i−1, n2i−1, n3i−1)Fi−1(a) da

−
R3qu (ui−1)

EI0
f2(u, ui−1, n1i−1, n2i−1, n3i−1), (34)

pi
e5

=−
1

ui−1 g
u

ui−1

g1(u− a, ui−1, n1i−1, n2i−1, n3i−1)Fi−1(a) da

−
R3qu (ui−1)

EI0
g1(u, ui−1, n1i−1, n2i−1, n3i−1), (35)

pi
e6

=
1

ui−1 g
u

ui−1

f1(u− a, ui−1, n1i−1, n2i−1, n3i−1)Fi−1(a) da

+
R3qu (ui−1)

EI0
f1(u, ui−1, n1i−1, n2i−1, n3i−1)−

R3qu (u)
EI0

. (36)

Figure 8. Deflection and rotation responses of the arch for the driving frequency (x=2·5): – – –, rotation;
- - - -, normal deflection; ——, tangential deflection.
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Figure 9. Bending moment, shear force and normal force responses of the arch for the driving frequency
(x=2·5): – – –, shear; - - - -, normal force; ——, bending moment.

Now, the solution of the forced vibration of the arch may be written in terms of the initial
parameters at the starting end u=0 as

{d(u)}=Bi(u){d(0)}+ {pi
g}, ui−1 E uQ ui , (37)

where

{pi
g}= {pi

e (u, ui−1, n1i−1, n2i−1, n3i−1)}+Ai(u, ui−1) s
i−1

k=1

{u− uk}0{hk}, (38)

and the constant vector

{hk}= {pk
e (uk , uk−1, n1k−1, n2k−1, n3k−1)}+DAk(uk , uk−1) s

k−1

m=1

{u− uk}0{hm}. (39)

is determined by satisfying the continuity and equilibrium conditions between adjacent
stepped arches (18). At the finishing end u= un , the solution of the arch can be expressed
as

{d(un )}=Bn(un ){d(0)}+ {pn(un )}. (40)

Upon substitution of the boundary conditions into equation (40), one obtains a set of
algebraic equations to determine the three remaining unknowns in the vector {d(0)}. Then
the dynamic response of the arch under harmonic loading can be obtained from equation
(37).
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5. NUMERICAL EXAMPLES

5.1.     

Consider the stepped arches with rectangular cross-sections, as shown in Figure 3. The
first non-dimensional frequency x1 =zm0R4/EI0v1 is given in Tables 2 and 3. In Table 2,
a clamped–clamped symmetric stepped arch with u1 =0·3un , u2 =0·7un , is considered for
two different values of h=0·8 and 1·2. In Table 3, an unsymmetric stepped arch with
u1 =0·5un for h=0·8 is considered for three different boundary conditions, that is the
clamped–clamped, the hinged–hinged, and the hinged–clamped. For purposes of
comparison, the results obtained by the Rayleigh–Ritz method [9], the cell discretization
method [3], and the finite element package SAP IV [3] are also presented in these tables.
Using the present method, the exact solutions for these stepped arches are obtained.

5.2.        -

Two rectangular cross-section tapered arches with the heights varying linearly, are
shown in Figure 4. In Figure 4(a), the height of the arch’s cross-section varies linearly from
h0 at one end to hc at the crown, i.e.,

h(u)= hc (1− h+2hu/un ), 0E uE un , (41)

whereas in Figure 4(b), the height of the arch’s cross-section varies linearly from h0 at both
ends to hc at the crown, i.e.,

h(u)=6hc (1+ h−2hu/un ),
hc (1− h+2hu/un )

,
0E uE un /2,
un /2Q uE un .

(42)

Table 4 shows the fundamental non-dimensional frequency (x1 =zm0R4/EI0v1) of a
clamped–clamped unsymmetric tapered arch (Figure 4(a)) obtained by three different
schemes for producing approximate stepped arches (see Figure 5). As can be seen from
Figure 6, if the arch is approximated by scheme (a), the natural frequencies approach the
exact values from above, and by scheme (b), the natural frequencies approach the exact
values from below. If the arch is approximated by scheme (c), the rate of convergence
improves significantly. For scheme (c), as shown in Table 4, 20 elements provide
satisfactory results while 40 elements give more accurate results. Table 5 shows the
fundamental non-dimensional frequency (x1 =zm0R4/EI0v1) of a hinged–hinged
symmetric tapered arch (Figure 4(b)) obtained by using 40 elements divided in terms of
scheme (c). For comparison, the results obtained by the Rayleigh–Ritz method [8], the cell
discretization method [3], and the finite element package SAP 90 [3] are also presented in
Table 5. It is interesting to notice that from Table 1, no matter how many elements are
used, the present method needs only to solve the determinant of a 3×3 matrix to
determine the natural frequencies.

5.3.     –  

A clamped–free unsymmetric tapered arch subjected to a harmonic uniform distribution
load, pw (u, t)=0, pu (u, t)= p0 eivt, is considered. The initial displacement and velocity are
set to zero. The normal deflection response of the tip of the arch in the frequency domain
for h=0·1 is shown in Figure 7. The horizontal axis is the non-dimensional driving
frequency x=zm0R4/EI0v and the vertical axis is the magnification factor u/ust . Figure
8 shows the deflection and rotation responses of the whole arch for x=2·5 at t= p/2v,
and Figure 9 shows the bending moment, shear force, and normal force responses of the
whole arch for x=2·5 at t= p/2v.
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6. CONCLUSIONS

In this paper, a simple and efficient method for free and forced vibrations of inextensible
Bernoulli–Euler arches with arbitrarily varying cross-section is presented. As an
approximation, such an arch is divided by a number of stepped arches with constant
cross-sections. Then the closed form solution of both free and forced vibrations for
the stepped arches can be obtained in terms of the initial parameters (deflections,
rotation, bending moment, shear force and normal force) at one end of the arch. As the
number of the stepped arches increased, the fast convergence to the exact solutions of the
original arch was observed. The method proposed in this paper makes it more convenient
to use symbolic programming in conjunction with the conventional numerical
programming. As a result, it can provide more efficient and accurate evaluation of dynamic
responses of non-uniform arches, as well as great physical insight into the vibration of
such arches.
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APPENDIX A: SOLUTIONS OF FREE VIBRATION OF A CIRCULAR ARCH

For a circular arch with constant cross-section, the governing equation of free vibration
is [1]

16w(u, t)
1u6 +2

14w(u, t)
1u4 +

12w(u, t)
1u2 +

mR4

EI
14w(u, t)
1u2 1t2 −

mR4

EI
12w(u, t)

1t2 =0. (A1)

Let w(u, t)/R=W(u) ejvt, we have

d6W
du6 +2

d4W
du4 +

d2W
du2 − x2 d2W

du2 + x2W=0, (A2)

where x=zmR4/EIv is the non-dimensional frequency parameter.
Assuming

W(u)=C ejnu, (A3)

where j=z−1, and substituting equation (A3) into equation (A2), we obtain the
characteristic equation

n6 −2n4 + (1− x2)n2 − x2 =0. (A4)

The general solution of equation (A2) may be expressed as

W(u)=A1 cos n1u+A2 cos n2u+A3 cos n3u+B1 sin n1u+B2 sin n2u+B3 sin n3u, (A5)

where 2ni (i=1, 2, 3) are the roots of the characteristic equation (A4), and Ai and Bi

(i=1, 2, 3) are constants of integration, which can also be expressed in terms of the initial
parameters (deflections, rotation, bending moment, shear force and normal force) at u=0,
that is

W(0), U(0)=W'(0), C(0)=W(0)+W0(0),

M(0)=−
EI
R

[W'(0)+W1(0)], T(0)=−
EI
R2 [W0(0)+Wiv(0)],

N(0)=
EI
R2 [W1(0)+Wv(0)]− mR2v2W'(0). (A6)

Substituting equation (A5) into equations (A6), one obtains

W(0)=A1 +A2 +A3, W'(0)= n1B1 + n2B2 + n3B3,

C(0)= (1− n2
1 )A1 + (1− n2

2 )A2 + (1− n2
3 )A3,

M(0)=−
EI
R

[n1(1− n2
1 )B1 + n2(1− n2

2 )B2 + n3(1− n2
3 )B3],

T(0)=−
EI
R2 [−n2

1 (1− n2
1 )A1 − n2

2 (1− n2
2 )A2 − n2

3 (1− n2
3 )A3],

N(0)=
EI
R2 [−n3

1 (1− n2
1 )B1 − n3

2 (1− n2
2 )B2 − n3

3 (1− n2
3 )B3],

−mR2v2(n1B1 + n2B2 + n3B3). (A7)
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Solving the above equation for Ai and Bi (i=1, 2, 3), we obtain

A1 =
1
D 6[n2

2 − n2
3 + n4

3 − n4
2 + n2

2n2
3 (n2

2 − n2
3 )]W(0)

+ (n2
3 − n2

2 + n4
2 − n4

3 )− (n2
2 − n2

3 )
T(0)R2

EI 7,

A2 =
1
D 6[n2

3 − n2
1 + n4

1 − n4
3 + n2

3n2
1 (n2

3 − n2
1 )]W(0)

+ (n2
1 − n2

3 + n4
3 − n4

1 )C(0)− (n2
3 − n2

1 )
T(0)R2

EI 7,

A3 =
1
D 6[n2

1 − n2
2 + n4

2 − n4
1 + n2

1n2
2 (n2

1 − n2
2 )]W(0)

+ (n2
2 − n2

1 + n4
1 − n4

2 )C(0)− (n2
1 − n2

2 )
T(0)R2

EI 7,

B1 =
1

n1D 6[n2
2 − n2

3 + n4
3 − n4

2 + n2
2n2

3 (n2
2 − n2

3 )− x2(n2
3 − n2

2 )]W'(0)

− (n2
3 − n2

2 + n4
2 − n4

3 )
M(0)R

EI
+(n2

2 − n2
3 )

N(0)R2

EI 7,

B2 =
1

n2D 6[n2
3 − n2

1 + n4
1 − n4

3 + n2
3n2

1 (n2
3 − n2

1 )− x2(n2
1 − n2

3 )]W'(0)

− (n2
1 − n2

3 + n4
3 − n4

1 )
M(0)R

EI
+(n2

3 − n2
1 )

N(0)R2

EI 7,

B3 =
1

n3D 6[n2
1 − n2

2 + n4
2 − n4

1 + n2
1n2

2 (n2
1 − n2

2 )− x2(n2
2 − n2

1 )]W'(0)

− (n2
2 − n2

1 + n4
1 − n4

2 )
M(0)R

EI
+(n2

1 − n2
2 )

N(0)R2

EI 7, (A8)

where

D= n2
1n2

2 (n2
1 − n2

2 )+ n2
2n2

3 (n2
2 − n2

3 )+ n2
3n2

1 (n2
3 − n2

1 ). (A9)
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Substituting equations (A8) into equation (A5), one may express

W(u)=W(0)f1(u)+W'(0)g1(u)+C(0)f2(u)−
M(0)R

EI
g2(u)

−
T(0)R2

EI
f3(u)+

N(0)R2

EI
g3(u), (A10)

where

f1(u)=
1
D

{[n2
2 − n2

3 + n4
3 − n4

2 + n2
2n2

3 (n2
2 − n2

3 )] cos n1u

+[n2
3 − n2

1 + n4
1 − n4

3 + n2
3n2

1 (n2
3 − n2

1 )] cos n2u

+[n2
1 − n2

2 + n4
2 − n4

1 + n2
1n2

2 (n2
1 − n2

2 )] cos n3u},

f2(u)=
1
D

{(n2
3 − n2

2 + n4
2 − n4

3 ) cos n1u+(n2
1 − n2

3 + n4
3 − n4

1 ) cos n2u

+(n2
2 − n2

1 + n4
1 − n4

2 ) cos n3u},

f3(u)=
1
D

{(n2
2 − n2

3) cos n1u+(n2
3 − n2

1 ) cos n2u+(n2
1 − n2

2 ) cos n3u},

g1(u)=
1
D 61

n1
[n2

2 − n2
3 + n4

3 − n4
2 + n2

2n2
3 (n2

2 − n2
3 )− x2(n2

3 − n2
2 )] sin n1u

+
1
n2

[n2
3 − n2

1 + n4
1 − n4

3 + n2
3n2

1 (n2
3 − n2

1 )− x2(n2
1 − n2

3 )] sin n2u

+
1
n3

[n2
1 − n2

2 + n4
2 − n4

1 + n2
1n2

2 (n2
1 − n2

2 )− x2(n2
2 − n2

1 )] sin n3u7
g2(u)=

1
D 61

n1
(n2

3 − n2
2 + n4

2 − n4
3 ) sin n1u+

1
n2

(n2
1 − n2

3 + n4
3 − n4

1 ) sin n2u

+
1
n3

(n2
2 − n2

1 + n4
1 − n4

2 ) sin n3u7,
g3(u)=

1
D 61

n1
(n2

2 − n2
3 ) sin n1u+

1
n2

(n2
3 − n2

1 ) sin n2u+
1
n3

(n2
1 − n2

2 ) sin n3u7. (A11)


