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In this paper the outdoor active noise control of the sound pressure created by an
incoherent line source is studied. Such a source is a model for the noise generated by road
traffic or by trains and consists of a continuous distribution of uncorrelated point sources.
By using this model, the possibility of generating quiet zones for environmental noise is
examined. For this purpose the statistical properties of the sound pressure are first studied.
Then the efficiency of active control by point sources is calculated as a function of both
frequency and position and comparisons are made between finite and infinite length
primary sources. Finally, the investigation is extended to the calculation of the pressure
crossing an aperture in a rigid plane to simulate the energy entering into a room through
an open window. The energy crossing the aperture is calculated with and without control
to determine the noise reduction potentially provided by the active control.

7 1998 Academic Press Limited

1. INTRODUCTION

Active control is now recognized as a powerful tool for reducing low frequency noise for
which passive methods are usually inefficient. Several applications have been developed for
the control of noise in ducts, in earphones, in cars or aircraft fuselages and in most of these
examples important noise reductions have been obtained in the whole space domain, or
in a part only. Almost all these applications, however, deal with closed and restricted
spaces. There is also a large need for the reduction of environmental noise such as that
of road traffic or train noise which lead to important problems not satisfactorily solved
in urban areas. This article reports a study of the possibility of using active noise control
methods to reduce these types of noise by using an incoherent line as a model for the noise
source. The interest in studying incoherent line sources is that they can provide a good
model for the noise created by dense road traffic. The point sources correspond to the
individual vehicles which emit sound pressures quite independently. It can also be used
to model a train if the line has a limited length.

In the domain of active noise control, much less effort has been undertaken to reduce
the noise in outdoor application than that in closed domains. Some work, however, can
provide interesting insights and allow one to estimate the possibilities of such systems. The
simplest problem seems to be the reduction of the sound pressure radiated by a point
source in free field by another point source. In this case, Nelson [1] has shown that the
total power output can be reduced only if the secondary source is separated from the
primary source by a distance which is less than one half wavelength. So for most practical
problems of interest such a goal seems unachievable, and one must look for a local control
in which the noise is reduced in a limited space domain but with perhaps an increase in
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noise elsewhere. Furthermore, in many applications the control of the total sound pressure
is not necessary and it is sufficient to create local zones of silence.

The local active noise control in three-dimensional free space of the sound pressure
created by a point source was studied by Tokhi [2]. He calculated the extent of the
cancellation zone and the stability of the controller according to the geometrical
arrangement of the system. Wright and Vuksanovic [3] have made a detailed study of the
cancellation zone for active control of the sound pressure created by several primary
sources with the same amplitudes and phases and a screen of secondary sources. They
showed that the cancellation zone looked like an angular sector with an aperture depending
on the frequency and on the geometrical arrangement of the system. Several authors
including Ise et al. [4], Omoto and Fujiwara [5], Omoto et al. [6] and Duhamel [7] have
studied active control around noise barriers. In this case the passive efficiency of the barrier
at high frequencies could be improved by the effect of active control at low frequencies
to provide good noise control over the whole spectrum. The cancellation zone also looks
like an angular sector with an opening angle decreasing with the frequency.

In all these active control problems, and even more specifically for outdoor applications,
the efficiency of the active systems is limited mainly by two difficulties. The first one is the
spectral content of the primary pressure field. It is well known that active control works
mainly for low frequencies because the wavelength is large in this case and the cancellation
of noise by interference phenomena can have a large spatial extent. Furthermore, the
sampling frequency of the digital controller can be chosen to be sufficiently low to be
compatible with the possibilities of the electronics. However, if the previous conditions are
fulfilled, noise with relatively complex spectra can be controlled with the help of adaptive
algorithms such as the LMS.

The second difficulty of active control systems comes from the spatial extent of the
primary source. In most active control systems the primary source is rather compact in
size. It is, for instance, a fan in duct applications or an engine for cars or airplanes. Our
purpose is, however, to study active control for outdoor noise propagations. In these cases
the primary source can be very complex. In fact, we will concentrate on road traffic noise
modelled as an incoherent line source. This source is made up of an infinite number of
uncorrelated three-dimensional point sources positioned along a straight line. This object
produces a complex sound field because the pressure at a point comes from different
directions corresponding to the different points constituting the line source. The sound
pressures coming from these directions are, furthermore, uncorrelated, so we are faced with
a sort of diffuse sound field.

Similar problems were studied in the papers of Joseph et al. [8, 9], Elliott et al. [10],
Garcia-Bonito and Elliott [11] and David and Elliott [12] for the case of a reverberant
room. They theoretically and experimentally determined the zone of quiet in a pure tone
diffuse sound field for active control by a secondary point source and an error microphone
placed near the secondary source (at a distance less than a wavelength) or at a larger
distance from the source. They found that the zone over which the primary pressure is
reduced by more than 10 dB has a diameter of order l/10. This problem is different from
ours in many aspects. First, it takes place in a closed domain and, second, there is always
a unique pair of primary and secondary sources, whereas we have, in our problem, a
continuous distribution of uncorrelated primary point sources.

We will here present a specific study of the sound pressure created by an incoherent line
source and of the possibility of creating quiet zones by active noise control. We will first
give a mathematical model of an incoherent line source with a detailed study of the spatial
correlation of the sound pressure which is good information on the complexity of the
sound field. Comparisons between time and frequency analyses are investigated. Then we
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will examine active control in free field, estimating the cancellation zone according to the
frequency. The model of an infinite number of discrete point sources located along a
straight line is compared to the continuous model and to a line of finite extent which as
we will show, will have better properties than the infinite source. However, the cancellation
zone that can be obtained by active control has a limited extent. Therefore, only small local
zones of quiet can be created in free field. This could be sufficient, however, to reduce the
noise entering a room through an open window. To study this problem, the above results
will finally be extended to the active control of the noise crossing an aperture in a rigid
screen.

2. INCOHERENT LINE SOURCE

An incoherent line source is modelled as a distribution of three-dimensional point
sources located on a straight line. One supposes that the sound pressures radiated by two
different point sources have no relation so that the sound pressures they emit are fully
uncorrelated. This line source has a large spatial extent and generates a much more
complex sound field than a standard point source. We will first start our study by giving
a precise mathematical model of this source, and then we will study the correlation
properties of the sound pressures at two different spatial points for different models of the
source: discrete or continuous, finite or infinite.

2.1.  

We consider first the case of harmonic sources with the time dependency e−ivt suppressed
throughout. The amplitude m(l) of the source as function of the abscissa l can be seen as
a random process with the cross-correlation function

E(m(l)m*(l'))= d(l− l'), (1)

where the asterisk denotes the complex conjugate and E is the expectation. The sources
are supposed to have unit strengths and the amplitudes are such that E(m(l))=0. The
source has a finite length and is included in the interval [la , lb ] in the x3-axis (see Figure 1
for notations). In free field the pressure of the whole line at a point x=(x1, x2, x3) is
given by

p(x)=g
lb

la

eikr(l)
4pr(l)

m(l) dl, (2)

Figure 1. The incoherent line source.



.   . 144

where r(l)=zx2
1 + x2

2 + (x3 − l)2. The pressure p(x) is also a random process. The
definition being statistical by nature we will focus our attention on average values obtained
by taking the statistical expectation of quantities of interest. For instance, we can calculate
the average potential energy in free field which has the expectation

efree =E0=p(x) =2
4rc2 1=

1
4rc2 g

lb

la
g

lb

la

eikr(l)

4pr(l)
e−ikr(l')

4pr(l')
E(m(l)m*(l')) dl dl'

=
1

4rc2 g
lb

la

1
[4pr(l)]2

dl=
arctan (lb /d)−arctan (la /d)

64p2rc2d
, (3)

where d=zx2
1 + x2

2 is the radial distance from the point x to the line source. For long
sources, this density of potential energy is decreasing as the inverse of the distance to the
line source.

2.2.   - 

The complexity of the sound field produced by the line source can be evaluated by
calculating the spatial correlation between the sound pressures at two different points. To
estimate the spatial correlation of the sound pressure one must first calculate the
cross-correlation function defined by

R(k, x, y)=E(p(x)p*(y)). (4)

This is a function of the frequency and of the two points and can be expressed as

R(k, x, y)=E 0g
lb

la
g

lb

la

eikrx (l)

4prx (l)
e−ikry(l')

4pry (l')
m(l)m(l') dl dl'1=

1
(4p)2 g

lb

la

eik(rx (l)− ry (l))

rx (l)ry (l)
dl. (5)

One can make the following remarks.
1. The correlation has a constant value on a circle centred on the line source and

included in a plane perpendicular to the line source, because these points have the same
radial distance d=zx2

1 + x2
2 and the same x3. This is, in fact, a consequence of the

rotational invariance of the system around the axis x3. Therefore, these points are perfectly
correlated.

2. If x and y are on a straight line parallel to the line source and if this one is infinite
in length (la =−a and lb =+a) the function R(k, x, y) is real because d1 = d2 and the
change l:−l transforms the integral into its conjugate.

Then the spatial correlation between the sound pressures at the two points is defined
by

r(k, x, y)= =R(k, x, y) =/[R(k, x, x)R(k, y, y)]1/2. (6)

One can see that 0E r(k, x, y)E 1 and r(k, x, x)=1. What is interesting is to estimate
the correlation zone around a point x; that is, the function y:r(k, x, y) as a function of
the distance x to the line source and of the frequency.

2.3.     

The results presented above were calculated in the frequency domain. However, the real
control should be done in the time domain, so information on the behaviour of the system
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in the time domain is important. If each source emits a signal s(l, t) at the abscissa l and
the time t, it is possible to calculate the time signal at a point in space as

p(x, t)=g
lb

la

s(l, t− r(l)/c)
4pr(l)

dl (7)

The intercorrelation of the signals taken at two different points is

E(p(x, t)p(y, t+ t))=g
lb

la
g

lb

la

E(s(l, t− rx (l)/c)s(l', t+ t− ry (l')/c))
16p2rx (l)ry (l')

dl dl'

=g
lb

la

E(s(l, t− rx (l)/c)s(l, t+ t− ry (l)/c))
16p2rx (l)ry (l)

dl

=g
lb

la

R(l, t+ rx (l)/c− ry (l)/c)
16p2rx (l)ry (l)

dl, (8)

since two sources at different positions emit independent signals. R(l, t) is the time
correlation function of the source at the abscissa 1. If all the sources have the same power
spectral density S(v), the interspectrum is

Sxy (v)=S(v) g
lb

la

e−ik(rx (l)− ry (l))

16p2rx (l)ry (l)
dl=S(v)R*(k, x, y). (9)

Therefore, the interspectrum between two points is equal to the spectral density of the
signal emitted by the sources multiplied by the spatial correlation function. The spectral
density for road traffic noise is usually a smooth function and the spectrum is large ranging
from very low frequencies up to about 5000 Hz. Therefore, the spatial correlation function
gives the most interesting information and will be studied in the following.

2.4.   

We suppose first that the source is infinite in length and try to obtain simple formulas
for the spatial correlation. To estimate the domain of correlation around a point x, one
first notices, according to remark 2 in section 2.2, that in the direction x3 the function R
is real. Therefore, far from the line source, one can use the simplified expression given in
Appendix A, formula (A6),

Re (R(k, x, x+ re3))2 J0 (kr)/16pdx (10)

and

r(k, x, x+ re3)2 J0 (kr). (11)

One has J0 (u)=0·5 for u0 1·5, so the diameter along x3 of the zone over which the spatial
correlation is greater than 0·5 is

2D3 0 l/2 (12)

In the x1 direction, one similarly has, far from the line source, the expression given in
Appendix A, formula (A8),

R(k, x, x+re1)2
1

16pdx
[J0 (kr)− iH0 (kr)], (13)
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and

r(k, x, x+ re1)2 =J0 (kr)− iH0 (kr) =. (14)

H0 is the Struve function of order 0. One can estimate numerically the diameter along x1

of the zone over which the spatial correlation is greater than 0·5 by

2D1 0 1·1l. (15)

Finally, if x is in the x1–x3 plane, in the x2 direction one uses remark 1 that the function
R is constant on a circle centred on the line source and included in a perpendicular plane
to show that, far from the line source, the spatial correlation is approximately constant
in the x2 direction. This fact is important because, at least in one direction, the spatial
correlation remains at a value near unity. One also sees that the extent of the spatial
correlation zone seems almost insensitive to the distance of the point x to the line source.
Therefore, to be near or far from the line source does not change the extent of the spatial
correlation zone, which is a function of the frequency only.

For a finite line source, in the far field, one can follow the analysis presented in Appendix
A, equation (A4), to obtain

R(k, x, y)2 1
(4p)2 g

lb

la

e−ik((od+ hl)/zd2 + l2)

d2 + l2
dl2 1

(4p)2d g
lb /d

la /d

e−ik((o+ hu)/z1+ u2)

1+ u2 du. (16)

When L=(lb − la )�d one finds

R(k, x, y)2 lb − la
(4pd)2

e−ik((o+ hla /d)/z1+ l2a /d2)

1+ l2a /d2 . (17)

For these points, the spatial correlation is near unity. Therefore, when one is at a distance
of the source large compared to its length the spatial correlation is restored and the system
behaves like a point source. In the transition between an infinitely long source and a finite
length source, one can expect that the spatial correlation increases.

2.5.   

Instead of a continuous line source, one may be interested in the behavior of a set of
discrete sources separated by a distance D and located along a straight line. This is the
discrete version of the line source. In this case, the correlation function between two
points is

Rd (k, x, y)=
D

(4p)2 s
+a

−a

eik(rx (nD)− ry (nD))

rx (nD)ry (nD)
, (18)

with rx (nD)=zd2
x +(x3 − nD)2 and ry (nD)=zd2

y +(y3 − nD)2. Comparing the

correlations for the continuous and discrete line sources, one has

R(k, x, y)−Rd (k, x, y)=
1

(4p)2 $g
+a

−a

eik(rx (l)− ry (l))

rx (l)ry (l)
dl−D s

+a

−a

eik(rx (nD)− ry (nD))

rx (nD)ry (nD)%
=

1
(4p)2 s

+a

−a g
(n+1)D

nD $eik(rx (l)− ry (l))

rx (l)ry (l)
−

eik(rx (nD)− ry (nD))

rx (nD)ry (nD)% dl. (19)
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Figure 2. Cases A and B for calculation of the coherence.

In Appendix B, relation (B 10), it is shown that

=R(k, x, y)−Rd (k, x, y) =E 2D
(4pd)2 (k =y3 − x3 =+1). (20)

Therefore, the difference is of order D/d2, while R(k, x, y) is of order 1/d. Far from the
line source D�d and the correlation of the discrete line is identical to that of the
continuous line. This means that if one is placed at a distance from the line equal to several
times the distance between the point sources, the line can be considered as continuous. In
the following, we will study only continuous line sources.

2.6.  

To illustrate the above discussion more precisely, we have calculated the spatial
correlation by a numerical integration of the function in formula (5) for an infinite line
source. All distances are given in units of wavelengths. The point x=(50l, 0, 0) is taken
at 50l from the line source. The spatial correlation is then calculated on a square of 2l

edge centred on the point x. Two cases are studied, corresponding to Figure 2. In the first
case (A) the square is included in the x1–x3 plane, while in the other case (B) the orientation
is parallel to the x2–x3 plane. The results are presented in Figures 3 and 4. In the x1–x3

plane the domain of spatial correlation tends to concentrate around the point x, while it
is almost invariant in the x2 direction. This supports the simplified analysis presented
before and resumed by formulas (12) and (15) which estimate the spatial domain over
which the correlation is greater than 0·5. This domain depends on the wavelength and
looks like a cylinder in the three-dimensional space. The sound pressure is thus coherent

Figure 3. Case A: spatial correlation in the x1–x3 plane. . . . , 0·75; - - - , 0·5; – – –, 0·25.
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Figure 4. Case B: spatial correlation in the x2–x3 plane. Key as Figure 3.

over distances ranging from 17 cm (at 1000 Hz along x3) to 3·8 m (at 100 Hz along x1) and
of course over large distances in the x2 direction.

In the case of a finite length source, one has calculated the spatial correlation for a
source of length 50l located in the interval [la =−25l, lb =25l]. Figures 5 and 6
present the spatial correlation on the squares A and B. One can see an important
improvement of the spatial correlation of the sound field when one compares them to
Figures 3 and 4.

3. ACTIVE CONTROL IN FREE FIELD

The previous analysis yields large insights into the possibility of an active control in
free field. If the control is realized with one error microphone and one secondary
source and designed to cancel the total sound pressure at the error microphone
position, one knows that the secondary sound pressure is perfectly correlated with the
primary sound pressure at the error microphone position. Therefore, the domain of
efficiency of the active control could not be larger than the domain of spatial
correlation of the sound pressure at the cancellation point. To obtain more precise results,
however, we must analyze the active control in free field and calculates its domain of
efficiency.

Figure 5. Spatial correlation in the x1–x3 plane for L=50l. Key as Figure 3.
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Figure 6. Spatial correlation in the x2–x3 plane for L=50l. Key as Figure 3.

3.1.     

We have seen before, by relation (9), that the interspectrum between two points is equal
to the spectral density of the signal emitted by the sources multiplied by the spatial
correlation function. One knows that one channel active control with a sensor at point
x and an error microphone at point y has maximal efficiency given by, if one allows
non-causal controllers,

g(v)=1−
=Sxy (v) =2

Sxx (v)Syy (v)
=1− r2(k, x, y). (21)

Therefore the frequency domain analysis gives the maximum efficiency of the system when
using non-causal controllers and this efficiency is given by the spatial correlation function
r. The total power before and after control at point y are then

Pwithout control =g
a

0

S(v) dv g
lb

la

1
16p2r2

y (l)
dl,

Pwith control =g
a

0

S(v) (1− r2(v)) dv g
lb

la

1
16p2r2

y (l)
dl (22)

and the efficiency of the control with a non-causal controller is

g=g
a

0

S(v) (1− r2(v)) dv>g
a

0

S(v) dv. (23)

One can ask if the results are very different when using causal controllers. To give a
partial answer to this question, one can calculate the optimal controller for a sensor at
point x and an error microphone further from the line source at point y= x+ oe1, with
oq 0. The controller is such that

E([ p(y, t)+ h ( p(x, t)]2) (24)

is minimized and, in the frequency domain, the non-causal controller is given by

h(v)=−
Sxy (v)
Sxx (v)

=−
R*(k, x, y)
R(k, x, x)

. (25)
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To find h in the time domain, one has to estimate the Fourier transform of R. Let us
start from formula (68),

R(k, x, y)2 1
(4p)2d g

+a

−a

e−ik(o/z1+ l2)

1+ l2
dl. (26)

With the change of variable u=1/z1+ l2, one has

R(k, x, y)2 2
(4p)2d g

1

0

e−ikou

z1− u2
du (27)

and

h(v)2 2
p g

1

0

eivou/c

z1− u2
du. (28)

Therefore, finally, in the time domain, the controller is approximated by

h(t)2 82p 1

z(o/c)2 − t2
,

0

if 0Q tQ o/c

otherwise 9, (29)

and the optimal control is in fact causal in this case. For a correct placement of the points,
the causality constraint does not seem to be very severe. If one takes into account the
position of the secondary source, there is a non-causal part corresponding to the
propagation time between the secondary source and the error microphone. However, this
part should be small since the function h(t) is mainly concentrated around t= o/c.
Therefore, the results in the frequency domain are close to the optimal possibility. As this
analysis is much simpler than in the time domain, it will be the only one considered in
the following.

3.2.     

We suppose that the active system consists of N secondary point sources positioned at
points Si , having amplitudes ai , and MeN error microphones positioned at points Ej .
The secondary sources are driven to minimize the sum of the squared pressures at error
microphones, that is the cost function

J= s
M

j=1

=pp (Ej )+ ps (Ej ) =2, (30)

where pp (Ej ) is the primary sound pressure coming from the line source and ps (Ej ) is the
secondary sound pressure produced by the secondary point sources. This secondary sound
pressure is given by

ps (Ej )= s
N

i=1

ai
eikrji

4prji
, (31)
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where rji = =Ej −Si = is the distance between the error microphone j and the secondary
source i. Upon denoting

Tji =
eikrji

4prji
(32)

the matrix of transfer functions and

Pj = pp (Ej ), (33)

the vector of primary sound pressures at error microphones, the cost function can be
written as

J=PHP+PHTA+AHTHP+AHTHTA. (34)

This quadratic form is minimum for the vector of secondary source amplitudes A given by

A=−[THT]−1THP=−GP, (35)

where G=[THT]−1TH. Therefore, the total sound pressure at a point x after control is

pp (x)+ s
N

i=1

ai
eikri

4pri
= pp (x)− s

N

i=1

eikri

4pri
s
M

j=1

Gij Pj = pp (x)− s
M

j=1 $s
N

i=1

eikri

4pri
Gij%Pj

= pp (x)− s
M

j=1

Hj (x)Pj = pp (x)−HT(x)P, (36)

with ri = =x−Si = and

Hj (x)= s
N

i=1

eikri

4pri
Gij .

Finally, the density of acoustic potential energy at point x after control is

ec =E0=pp (x)+ ps (x) =2
4rc2 1=

1
4rc2 $R(k, x, x)− s

M

j=1

H*j R(k, x, Ej )

− s
M

j=1

Hj R(k, Ej , x)+ s
M

j=1

s
M

k=1

H*j Hk R(k, Ek , Ej )%. (37)

With

ep =E(=pp (x) =2/4rc2)

being the energy density of the primary field, the energy reduction is

ec

ep
=1− s

M

j=1

H*j
R(k, x, Ej )
R(k, x, x)

− s
M

j=1

Hj
R(k, Ej , x)
R(k, x, x)

+ s
M

j=1

s
M

k=1

H*j Hk
R(k, Ek , Ej )
R(k, x, x)

. (38)
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3.3.   

In the special case of a control with one secondary source and one error microphone,
one obtains G11 =4pr11 e−ikr11 and H1 = (r11/r) eik(r− r11), where r11 = =E−S= and r= =x−S=.
Far from the line source the distances of the error microphone and of the point x to the
line source are equal, and denoted d, up to terms or order =E− x=/d which are neglected.
This leads to

ec /ep 2 1−32pd Re [(r11 /r) eik(r11 − r)R(k, x, E)]+ (r11 /r)2. (39)

To simplify one studies the case, where E−S is parallel to x1. As for the spatial
correlation, one can estimate the domain of control by calculating the potential energy
reduction for points on straight lines parallel to the co-ordinate axes. In the x1 direction,
noting that o= x1 − xe

1, using a development of R(k, x, E) from the formulas of Appendix
A and supposing, furthermore, that the secondary source is at several wavelengths from
the error microphone one finally obtains

ec

ep
2032−

4
p1(ko)2. (40)

In this case, one can estimate the diameter of the zone over which the pressure is reduced
by more than 10 dB as

2D1 2 l/5. (41)

In the same way, in the x3 direction one has, upon noting h= x3 − xe
3,

ec /ep 2 (kh)2/2. (42)

The diameter along x3 of the −10 dB zone is

2D3 2 l/7. (43)

Finally, in the x2 direction one gets, with m= x2 − xe
2,

ec /ep 2 k2m4/4r2
11, (44)

and the diameter is

2D2 2 0·6 zlr11. (45)

3.4.  

To verify these calculations the attenuation has been determined on the two squares of
Figure 2 for a secondary source placed at point (45l, 0, 0) and an error microphone at
the center of the squares at point (50l, 0, 0). The correlation is calculated by the formula
(5) upon supposing first that the line source is infinite in length. Figures 7 and 8 present
the attenuation in the x1–x3 and x2–x3 planes and confirm the previous estimations on the
size of the cancellation zone. The maximum attenuation has been limited to 25 dB to
improve the clarity of the figures. The cancellation zone has a small extent in the x1 and
x3 directions but is much larger in the x2 direction. The sound pressure can increase outside
the quiet zone.

It was shown by Wright and Vuksanovic [3] that for a control of a primary point source
in free field by another point source the cancellation zone looks like an angular sector of
axis x1 and with an aperture depending on the spatial arrangement of the system and on
the frequency. When the error microphone is far enough from the secondary source
relatively large zones of silence can be obtained with, for instance, an acoustic shadow
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Figure 7. Attenuation in the x1–x3 plane with one secondary source. . . . . , 5; ––, 0; –·–· , −5; –·–·–·–, −10;
·· ·· ·· ·· , −15; ··· ··· , −20; ···· ···· , −25.

along x1. One finds here much smaller dimensions along x1 and x3 because of the poor
correlation of the sound field in these directions. On the contrary, along x2 the good
correlation leads to a situation similar to the case studied by Wright et al. [3] and should
allow similar control zones.

To try to extend the quiet zone, another calculation was made with five secondary
sources placed at points (45l, 0, −5l), (45l, 0, −2·5l), (45l, 0, 0), (45l, 0, 2·5l),
(45l, 0, 5l). Five error microphones are placed at points (50l, 0, −0·4l), (50l, 0, −0·2l),
(50l, 0, 0), (50l, 0, 0·2l), (50l, 0, 0·4l). The distance between the microphones has been
chosen according to formula (43) to give an overlapping of the attenuation zone of the
microphones. The results are shown in Figures 9 and 10. The cancellation zone has been
extended in comparison to the case with one microphone. Other simulations not given here
were done with a larger distance between the microphones. It was observed that the control
tends to be localized around the error microphones with an increase of the sound level
elsewhere. Therefore, to really control a large zone, the distances between the microphones
should be of the same order as that given by relations (41) and (43). The positions of the
secondary sources seem less important.

Simulations are now presented for finite length sources with the correlation function
defined by equation (5) and the source symmetrical around the origin; that is, la =−lb .
We again calculate the examples of Figures 7 and 8 with a line of length 50l. The results

Figure 8. Attenuation in the x2–x3 plane with one secondary source. Key as Figure 7.
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Figure 9. Attenuation in the x1–x3 plane with five secondary sources. Key as Figure 7.

are presented in Figures 11 and 12, and considerable improvements over the infinite line
source can be seen in each case because the spatial extent of the attenuation zone is much
larger.

To show the influence of the source length, the efficiency of the active control is
calculated in the x1–x3 plane, in the x3 direction, for different source lengths. The results
are presented in Figure 13 for the lengths 2l, 25l, 50l, 100l and an infinite length. One
can see the deterioration of the attenuation as the length increases and conclude from these
results that a decrease in the length of the source leads to considerable improvement in
the active control efficiency.

For a given source length, one can try to put the active system at a larger distance from
the line source. To test this hypothesis, we carried out the same calculation but the
secondary source is now at the distance 95l from the line source while the error
microphone is at 100l. The results are presented in Figure 14. Comparison with Figure 13
shows important differences for sources of length 25l, 50l and 100l, while there is little
difference for the source length 2l. In this latter case, it seems that the active system is
far enough to be able to consider the source as a point source for both distances. On the
contrary, for the source lengths 25l, 50l and 100l, a change in the distance between the
active system and the line source has an important effect on the angle at which the source

Figure 10. Attenuation in the x2–x3 plane with five secondary sources. Key as Figure 7.
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Figure 11. Attenuation in the x1–x3 plane for L=50l. Key as Figure 7

is seen from the error microphone. As one moves further from the source, the spatial
correlation of the primary field is increased and the noise reduction is better. Therefore,
for a given source length, one should place the active control system as far as possible from
the line source.

4. DIFFRACTION BY AN APERTURE

The previous discussion on the active control in free field revealed that the cancellation
zone is relatively small and has dimensions decreasing with the frequency. Therefore, it
seems difficult to reduce the sound pressure over large spatial zones with a reasonable
number of microphones and secondary sources. However, the active control could be
efficient enough to significantly reduce the sound pressure crossing an aperture in a screen.
The aperture could for instance be a model for an open window which receives the sound
pressure created by a road traffic modelled by the incoherent line source. To investigate
this problem in more details, one must first be able to calculate the energy transmission
across the aperture, then one has to estimate the efficiency of an active control for various
secondary source and microphone arrangements.

Figure 12. Attenuation in the x2–x3 plane for L=50l. Key as Figure 7
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Figure 13. Attenuation with source length for d=50l. L values: ————, 2; — — —, 25; – – –, 50; · · · ·, 100;
— · — ·, infinity.

4.1.  

We propose first to determine the energy transmission across an aperture D in a
rigid screen (see Figure 15). The noise sources are located on one side of the screen
and one is interested in the transmission of energy to the other side through the
aperture.

The incident sound pressure is denoted by pinc (x); this is the sound pressure created by
the source in free field. The total sound pressure, denoted p(x), includes the diffraction by
the rigid plane and the aperture. According to Babinet’s principle (see, for instance,
reference [13]), one knows that the total sound pressure on the aperture is the same as the
incident pressure, that is,

p(x)= pinc (x) for x $ D. (46)

Figure 14. Attenuation with source length for d=100l. Key as Figure 13.
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Figure 15. Aperture in a rigid plane.

Therefore, on the aperture D, the pressure is the solution of the integral equation

pinc (x)=−gD

G(x, y)
1p
1n

(y) dy for x $ D, (47)

where G(x, y) is the Green function for a rigid boundary condition on the half-plane given
by

G(x, y)=
eik=x− y=

4p =x− y=+
eik=x− y'=

4p =x− y'=, (48)

in which y' is symmetric to y with respect to the screen. The boundary equation is solved
by the boundary element method by using quadrangular four nodes elements (see
Figure 16). We took about five nodes per wavelength.

Therefore, the pressure and its normal derivative are approximated by

p(x)= s
N

i=1

pi Ni (x),
1p
1n

(x)= s
n

i=1

qi Ni (x), (49)

where pi and qi are respectively the nodal values of the pressure and the normal derivative
of the pressure and Ni are the interpolation functions. The boundary integral equation was

Figure 16. Mesh of the aperture
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solved by the collocation method. Therefore equation (47) was used for x= xi and the
integral over D was decomposed over the elements of the mesh:

pinc (xi )=−gD

G(xi , y)
1p
1n

(y) dy, pi = s
n

j=1

Zij qj , (50, 51)

where

Zij =−gD

G(xi , y)Nj (y) dy. (52)

These matrix elements were calculated by Gauss integration. Special care should be taken
in the evaluation of Zii because of the singularity in the Green function. Thus one has the
nodal values of the normal derivative tQ= t(q1, . . . , qn ) as a function of the pressure
tP= t(p1, . . . , pn ) as

Q=Z−1P. (53)

The energy radiated by the aperture can then be calculated as

e= 1
2 gD

Re (p*(x)v(x) · n(x)) dx=
1

2rv gD

Im 0p*(x)
1p
1n

(x)1 dx. (54)

In terms of the nodal values of the pressure the energy is

e=
1

2rv gD

Im $0s
n

i=1

p*i Ni (x)1 · 0 s
n

j,k=1

Z−1
jk pk Nj (x)1% dx

=
1

2rv
s
n

i,k=1

Im [(MZ−1)ik p*i pk ], (55)

where the matrix M is defined by Mij = fD Ni (x)Nj (x) dx. Upon supposing now that the
incident sound pressure comes from an incoherent line source, the nodal values of the
incident pressure are random variables and one must calculate the expectation of the
energy radiated. One has, for the average energy,

ē=
1

2rv
E 0 s

n

i,k=1

Im [(MZ−1)ik p*i pk]1=
1

2rv
s
n

i,k=1

Im [(MZ−1)ik E(p*i pk )]

=
1

2rv
s
n

i,k=1

Im [(MZ−1)ik R(k, xk , xi )], (56)

where we have introduced the correlation function R previously calculated.

4.2.      

We now want to reduce the energy transmission across the aperture with an active
control system. It consists of secondary sources and error microphones. We suppose that
the error microphones are positioned on the aperture D where they will create zones of
minimum sound pressure (see Figure 15). The secondary sources are positioned between
the line source and the screen. We will calculate the maximum efficiency of the system:
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that is, the optimal secondary source amplitudes which minimize the sound pressure at the
error microphones, and then the energy transmission with control.

We suppose, as in the free field case, that the secondary sources are point sources.
Therefore, they produce the incident secondary field

ps (r)= s
N

i=1

ai
eikri

4pri
, (57)

where ri = =r−Si = is the distance between the point r and the secondary source Si . N is
the number of secondary sources. M denotes the number of error microphones and we
suppose that MeN. The error microphones are placed on the aperture D so that,
according to Babinet’s principle, the total and incident pressures at the error microphones
are the same. The vector of primary pressures at the error microphones is called
PT

e =(pp (E1), . . . , pp (EM ))T, where pp (Ej ) is the primary pressure at the error microphone
position Ej . The secondary source amplitudes that minimize the sound pressure at the error
microphones minimize the quadratic form

J=(Pe +TA)H(Pe +TA), (58)

where AT = (a1, . . . , aN )T are the amplitudes of the secondary sources and

Tji =eikrji/4prji with rji = =Ej −Si =. (59)

Therefore, one has

A=−[THT]−1THPe . (60)

With this result, one can now calculate the incident pressure at the mesh nodes which
is the sum of the contributions of the primary and secondary sources. At the node position
xk the incident pressure is

pinc (xk )= pp (xk )+ s
N

i=1

ai
eikrki

4prki
, (61)

with rki = =xk −Si =. Therefore, the nodal values of the incident pressure are given by the
vector

P−T	 [THT]−1THDP=KP, (62)

with T	 ki =eikrki /4prki , Pk = p(xk ) and D is a matrix doing the link between the microphone
and the node numbers. Djk =1 if the microphone number j is at node number k and 0
elsewhere, so that Pe =DP. The definition of the matrix K follows from formula (62).
Therefore, one sees that the action of the active control consists in changing the vector
of the incident pressure from P to KP. Application of formula (56) gives the energy
radiated with control as

ēc =
1

2rv
s
n

i,k=1

Im [(MZ−1)ik (KRKH)ki ]. (63)

The attenuation provided by the active control is finally given by

At=10 log10 (ēc /ē), (64)

where the energy radiated without control ē is calculated by formula (56).



.   . 160

4.3.  

We now present calculation of the attenuation of the energy transmission for
some examples of aperture and active systems arrangements. The aperture is located
in the x2–x3 plane with corners at points (50, −0·5, −0·5), (50, 0·5, −0·5), (50, 0·5, 0·5),
(50, −0·5, 0·5). The distances are given here in meters, so the aperture is a square of
side 1 m. We calculate the efficiency of the active control for systems with one to
four secondary sources using the same number of error microphones as secondary
sources. The microphones are positioned at point (50, 0, 0) for a unique microphone, at
points (50, 0, −0·25) and (50, 0, 0·25) for two microphones, at points (50, 0, −1/3),
(50, 0, 0) and (50, 0, 1/3) for a system with three microphones and at points
(50, 0, −0·375), (50, 0, −0·125), (50, 0, 0·125) and (50, 0, 0·375) for a system with four
microphones. The secondary sources are placed at the abscissa x1 =45 m with the same
x3 co-ordinate as the error microphones. The results are presented in Figure 17, it being
first supposed that the line source is infinite. The attenuation is presented as a function
of a/l, where l is the wavelength and a=1 m is the dimension of the aperture. The
frequency range is between 20 Hz and 1000 Hz. As expected, the attenuation is a decreasing
function of the frequency. The control is efficient (−10 dB of attenuation at least)
approximately until a/l2 n/3. In other words, each microphone contributes to the control
over a distance of l/3 and one obtains a good control when there are enough microphones
to fill the aperture. One must have as many secondary sources as microphones.

For the case of a finite source of length 50 m, the results are presented in Figure 18.
The active systems are the same as before. Now each source contributes to the control over
a distance approximately equal to 0·7l. Because of the spatial correlation properties of
the sound field a line of secondary sources is thus able to control the energy transmission
across a whole surface, thus avoiding the covering of a complete surface with control
sources. The difference between the finite and infinite line source shows that the spatial
correlation of the primary pressure field has important effects on the efficiency of the
system.

Figure 17. Attenuation for an infinite line source. ————, 1 source; - - - , 2 sources; · · · · , 3 sources; — - —,
4 sources.
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Figure 18. Attenuation for a finite line source with L=50 m. Key as Figure 17.

4.4.  

The results presented here were mainly obtained in the frequency domain by
supposing that the primary source was harmonic. They give the maximum attenuation
that can be obtained at a specified frequency component of the pressure field for a
geometrical arrangement of the system. In one example, it was seen that with a proper
arrangement of the system the causality constraint does not seem to be very severe and
should not change drastically the obtained results. For the control of moving sources,
the Doppler effect can change some properties of the signals. However, the movement
of the source is perpendicular to the observer and in this case the Doppler effect is
mimimized.

For real-time control, it is necessary to implement a control algorithm. Because of
the poor correlation of the primary field it seems that simple systems made of a
small number of sensor microphones should rather be built with feedback algorithms. To
build a feedforward controller one would need many sensors to obtain a primary
reference signal well correlated with the error microphone signals. The detailed analysis
of these questions is left for future works. Anyway, no matter how the active control is
obtained, the analysis presented gives an answer to the question: ‘‘What maximum
control can be obtained with a specified arrangement of error sensors and secondary
sources?’’

5. CONCLUSION

The previous study has shown that the active control of the noise created by transport
systems could be possible at least in a limited space domain. The extent of the quiet zone
depends both on the frequency and on the length of the source. Therefore, for an infinite
source length the quiet zone has dimensions of a fraction of a wavelength. But for limited
source lengths considerable improvement on the efficiency of the control could be obtained.
Similar conclusions are driven for the energy transmission into an aperture. It could be
substantially reduced for low frequencies with a few secondary sources and error
microphones.
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APPENDIX A: ASYMPTOTIC FORMULA FOR THE CORRELATION

The correlation function for an infinite source is given by

R(k, x, y)=
1

(4p)2 g
+a

−a

eik(rx (l)− ry (l))

rx (l)ry (l)
dl. (A1)

One looks for an asymptotic formula far from the line source. Calling d=zx2
1 + x2

2 the
radial distance of point x to the line source and supposing that

dy = d+ o, y3 = x3 − h, (A2)
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with =o =�d and =h =�d, one has the developments (with the origin in 1 at (x3 + y3 /2)),

rx (l)=Xd2 +0l− h

21
2

=zd2 + l2 01−
hl

2(d2 + l2)
+O 0h2

d211,

ry (l)=X(d+ o)2 +0l+ h

21
2

=zd2 + l2 01+
od

d2 + l2
+

hl
2(d2 + l2)

+O 0o2 + h2

d2 11. (A3)

Therefore, one finds that

R(k, x, y)2 1
(4p)2 g

+a

−a

e−ik((od+ hl)/zl2 + d2)

d2 + l2 01−
od

d2 + l21 dl, (A4)

and with the change of variable l= d tan u, one has

R(k, x, y)2 1
(4p)2d g

p/2

−p/2

e−ik(o cos u+ h sin u)01−
o

d
cos2 u1 du. (A5)

One can calculate the real part of this expression to order 0 in o/d by

Re (R(k, x, y))2 1
(4p)2d g

p/2

−p/2

cos (k(o cos u+ h sin u)) du

2 1
(4p)22d g

p

−p

cos (k(o cos u+ h sin u)) du2 1
(4p)22d

×g
2p

0

cos (kr cos u) du2 1
(4p)2d g

p

0

cos (kr cos u) du2 J0 (kr)
16pd

, (A6)

where r=zo2 + h2 and J0 is the Bessel function of order 0.
One can also calculate the imaginary part for points such as h=0. In this case, to order

0 in o/d,

Im (R(k, x, y))2 1
(4p)2d g

p/2

−p/2

− sin (ko cos u) du

2 1
(4p)2d

[−pH0 (ko)]2−
1

16pd
H0 (ko), (A7)

where H0 is the Struve function of order 0 (see reference [14] for the properties of the Struve
function). Thus the correlation is

R(k, x, y)2 1
16pd

[J0 (ko)− iH0 (ko)]. (A8)
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APPENDIX B: CORRELATION OF A DISCRETE LINE

The difference between the correlations of the continuous and discrete line sources is
given by

R(k, x, y)−Rd (k, x, y)=
1

(4p)2 s
+a

−a g
(n+1)D

nD $eik(rx (l)− ry (l))

rx (l)ry (l)
−

eik(rx (nD)− ry (nD))

rx (nD)ry (nD)% dl

=
1

(4p)2 s
+a

−a g
(n+1)D

nD

[ f (l)− f (nD)] dl, (B1)

where

f (l)=
eik(rx (l)− ry (l))

rx (l)ry (l)
. (B2)

On the interval [nD, (n+1)D], one has

bg
(n+1)D

nD

[ f (l)− f (nD)] dlb= bg
(n+1)D

nD $g
l

nD

f '(u) du% dl b
Eg

(n+1)D

nD $g
l

nD

=f '(u) = du% dlED g
(n+1)D

nD

=f '(l) = dl. (B3)

Therefore, one has

=R(k, x, y)−Rd (k, x, y)E D
(4p)2 g

+a

−a

=f '(l) = dl. (B4)

The derivative of f is given by

f '(l)=$ikr'x (l)− ikr'y (l)−
r'x (l)
rx (l)

−
r'y (l)
ry (l)% f (l). (B5)

From the result of Appendix A, one has, far from the line source,

rx (l)=zd2 + l2 +O(1), ry (l)=zd2 + l2 +O(1), (B6)

and

r'x (l)− r'y (l)=
l− x3

rx (l)
−

l− y3

ry (l)
2 y3 − x3

zd2 + l2.
(B7)

Consequently,

g
+a

−a

= (r'x (l)− r'y (l))f (l) = dlE =y3 − x3 = g
+a

−a

1
(d2 + l2)3/2 dlE 2=y3 − x3 =

d2 . (B8)

One also has, neglecting terms of higher order,

g
+a

−a b r'x (l)
rx (l)

f (l) = dlE 2 g
+a

0

l
(d2 + l2)2 dlE 1

d2. (B9)

Finally, one finds that

=R(k, x, y)−Rd (k, x, y)=E 2D
(4pd)2 (k =y3 − x3 =+1). (B10)


