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1. 

The stochastic averaging method of energy envelope (SAMEE) was introduced by
Stratonovich [1], and subsequently applied and improved by Roberts [2–5], Dimentberg
[6, 7], Zhu and Lei [8, 9], Zhu and Lin [10], Red-Horse and Spanos [11–13]. One major
advantage of SAMEE’s over the method of classical stochastic averaging (CSA) of
Stratonovich [1] is that the influence of the non-linear restoring forces in the governing
equation of motion on the joint probability density function of displacement and velocity
is present in the energy relation of the system. However, the SAMEE’s quoted thus
far require, in general, the evaluation of the period of free oscillation of the non-linear
system of interest and they are difficult, if not impossible, to apply to systems with both
non-linear stiffness and non-linear damping which is a function of both displacement and
velocity.

Consequently, in this paper a SAMEE is presented. It has the advantages that: (a) its
standard form equations, drift and diffusion coefficients are defined in line with those of
the CSA and therefore it can be easily employed; (b) it does not require the evaluation
of the period of free oscillation of the system of interest; and (c) it can be applied to systems
with both small linear and non-linear dampings which are functions of both displacement
and velocity, and large non-linear restoring forces under small random excitations.

2.  

Consider the following equation of motion for a non-linear single-degree-of-freedom
(sdof) system,

ẍ+ eh(x, ẋ)+ g(x)=zej(t), (1)

where h(x, ẋ) is a non-linear function of displacement x and velocity ẋ=dx/ dt, g(x) is
a non-linear function of displacement x, e is a small parameter, j(t) is a zero mean
stationary random process, and the over dot and double dot denote, respectively, the first
derivative and second derivative with respect to time t.

By multiplying equation (1) with the velocity ẋ one has

ẋẍ+ eẋh(x, ẋ)+ ẋg(x)=zeẋj(t). (2)

The energy envelope or total energy of the system may be defined as

U= 1
2 ẋ2 +g g(x) dx= 1

2 ẋ2 +G(x). (3)

The limits of integration in equation (3) are not identified as the reference level of the
potential energy may be selected arbitrarily. This flexibility seems to have an added
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advantage in selecting an appropriate co-ordinate transformation for a wide variety of
non-linear systems.

Differentiation of equation (3) with respect to time t results in

U� = ẋẍ+ ẋg(x).

Substituting equation (2) into the last equation and re-arranging terms gives

U� =−eẋh(x, ẋ)+zeẋj(t). (4)

By making use of equation (4), and a co-ordinate transformation for the displacement,
x=R1 (U, F), and velocity ẋ=R2 (U, F), where R1 (U, F) and R2 (U, F) are functions of
energy U and phase angle F, one can obtain the state space equation as

dZj / dt= efj (Z, t)+ e1/2gjr (Z, t)jr (t), j=1, 2; r=1, 2, (5)

where in general fj and gjr are non-linear functions, Z is a two-dimensional random
vector process whose elements are z1 =U and z2 =F, e is a small positive parameter,
and jr (t) is the rth element of the stationary random excitation vector E. The
elements of the latter vector are of zero mean and have cross-correlation matrix G(t) whose
elements are Grv (t)= Qjr (t) jv (t+ t)q. In the latter the angular brackets denote
mathematical expectation. The choice of the co-ordinate transformation is such that

U=U(R1 (U, F), R2 (U, F)). (6)

That is, the total energy of the system is a function of the transformed co-ordinates. This
choice of co-ordinate transformation seems to be the most general one. Other choices, such
as those in references [2–9, 11–13], are special cases to equation (6). These special cases
are difficult to use for systems with both non-linear stiffness and non-linear damping
which is a function of both displacement and velcoity. This may explain the fact that
non-linear damping as functions of velocity only were considered in references [3, 10] for
example.

If the correlation times of the random excitations are all smaller than the relaxation time
of the system, then it can be shown [14] that the state vector Z weakly converges to a
diffusive Markov vector Z(0) with transition probability density p(Z(0), t =Z(0)

0 , t0) or simply
p, where the subscript 0 denotes at time t0. The Fokker-Planck-Kolmogorov (FPK)
equation is

1p/1t=−e1(aj p)/1z(0)
j +(e/2) (12(bjk p)/1z(0)

j 1z(0)
k ), (7)

where the drift coefficient aj and the diffusion coefficient bjk are given, respectively, as

aj (Z(0))=Tav
s 6�fj (Z(0), s)�+g

0

−a W1gjr (Z(0), s)
1z(0)

k
gkv (Z(0), s+ t) jr (s)jv (s+ t)w dt7, (8)

bjk (Z(0))=Tav
s 6g

a

−a

�gjr (Z(0), s) gkv (Z(0), s+ t) jr (s)jv (s+ t)� dt7, (9)

in which the notation Tav
s { · } is given by

Tav
t0 { · }= lim

T(E):a

1
T(E) g

t0 +T(E)

t0

{ · } dt , (10)
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where the integration is performed over explicit time t, and E is the energy envelope. That
is, z(0)

1 =U(0) =E. If the quantities in equations (8) and (9) are periodic, with period T0 (E)
for example, then equation (10) becomes

Tav
t0{ · }=

1
T0 (E) g

t0 +T0 (E)

t0

{ · } dt (11)

and the results are independent of t0.
It should be emphasized that if g(x) is a linear function the above SAMEE reduces to

the CSA method in reference [1]. However, g(x) in equation (1) is a non-linear function
and, therefore, the phase angle z(0)

2 =F(0) = u is not a slowly varying random process. This
complicates the determination of the drift and diffusion coefficients defined by equations
(8) and (9). To circumvent this difficulty, various expressions for T0 (E) have been given
in reference [2–13] such that determination of the drift and diffusion coefficients then
requires either approximation to the phase angle u [2–5, 11] or the assumption that the
random energy E and the random phase u are deterministic with respect to the
mathematical expectation operator [10].

A strategy adopted in the present analysis is to eliminate the rapid oscillations and
rapidly varying components of the phase angle u in every cycle. Applying this strategy,
which is consistent with that adopted by Stratonovich [15] and which is closely parallel to
that presented in reference [3], no evaluation of the period of oscillation T0 (E) is necessary.

Thus, the phase angle is now written as u=U(t)+8, where 8 is the slowly varying
random phase angle, while U(t) is the integral, with respect to time t, of the rapidly varying
term on the right side of the first order differential equation for the phase angle u. In other
words, the term U(t)1v(E)T0 (E), where v(E) is the energy dependent frequency of
oscillation and T0 (E) is the period of oscillation. Superficially, both sides of the
approximately equal sign are inconsistent as the left side is a function of time t, whereas
the right side is a function of total energy E. However, as Roberts pointed out in reference
[3], the error incurred in this approximation can be assessed by a Taylor expansion of v(E).
He reasoned that if the assumption is made that the stationary probability density function
exists, which implies the existence of stationary motion, v(E) is indeed approximately
time-independent within every cycle. Thus, the stationary probability density function for
the total energy E is given by [1–3, 6, 10]

p(E)=CT0 (E)/b11 (E) e2 g
E

0

[a1 (n)/b11 (n)] dn

, (12)

where C is the normalization constant. From the signal processing point of view, this
strategy may be regarded as low-pass filtering in which the high frequency components
in the response are eliminated so that only low frequency or slowly varying components
are retained.

The stationary joint probability density function of x and ẋ can be shown to be

p(x, ẋ)= p(E)/T0 (E)=
C

b11 (E)
e2 g

E

0

[a1 (n)/b11 (n)] dn

. (13)

3. 

Two examples are included in the following for illustration of the technique introduced
in section 2 above. They have important applications in many areas of engineering and
physics.
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3.1. Van der Pol–Duffing oscillator
A Van der Pol–Duffing oscillator under white noise excitation is considered here. This

non-linear oscillator has been considered by the author in reference [16]. The only
difference here is that the non-linear damping term and external white noise excitation of
the governing equation of motion contain a small parameter e. That is, the equation of
motion consider here becomes

ẍ+ e(a+ bx2)ẋ+ gx+ dx3 =zew(t), (14)

where a, b, g, and d are real constants of order 1; w(t) is a zero mean white noise process
such that Qw(t)w(t+ t)q=2pSd(t)= Id(t), in which d(t) is the Dirac delta function.

To begin with the following co-ordinate transformation is assumed:

ẋ=z2U sin F, x=zz(4U/d) cos F−(g/d), (15a, b)

such that the total energy of the system becomes

U= ẋ2/2+ (d/4) (x2 + g/d)2. (16)

Without loss of generality U and F will be replaced by E and u henceforth. Thus,

ẋ=z2E sin u, x=zz(4E/d) cos u−(g/d) (17a, b)

and

E= ẋ2/2+ (d/4) (x2 + g/d)2. (18)

By making use of equations (14), (17), (18), and equation (4) one can obtain the equation
in standard form for the energy E as

E� =−e(2E) [(a− bg/d) sin2 u+(bz4E/d ) sin2 u cos u]+ze (z2E sin u)w(t). (19)

The last equation can be defined as

dE/ dt= ef1 (E, u)+ e1/2g11 (E, u)w, (20)

where

f1 (E, u)=−2E[(a+ bg/d) sin2 u+(bz4E/d ) sin2 u cos u], (21a)

and

g11 (E, u)=z2E sin u. (21b)

After some lengthy algebraic manipulation, the complementary equation to equation (20)
can be reduced to

d8/dt= ef24 (E, u)+zeg22 (E, u)w, (22)

where

f24 =−1
2[a+ b(z4E/d cos u− g/d)] sin 2u, g22 (E, u)= cos u/z2E . (23a, b)

Equations (20) and (22) are a pair of first order differential equations which can be applied
to describe completely the behaviour of the oscillator governed by equation (14).
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Upon application of equations (8), (21) and (23), it reduces to

a1 =Tav
s {Qf1 (E, u)q}+Tav

s 6g
0

−a

1g11

1E
g11(E, u, s+ t)Qw(s)w(s+ t)q dt7

+Tav
s 6g

0

−a

1g11

1u
g22(E, u, s+ t)Qw(s)w(s+ t)q dt7

=Tav
s {Qf1 (E, u)q}+Tav

s 61
2 g

a

−a

(2pS)d(t) dt7
=Tav

s {Qf1 (E, u)q}+Tav
s {I/2}. (24)

By making use of the relation

1
T0 (E) g

T0 (E)

0

f(t) dt=
1
2p g

2p

0

f(u) du, (25)

and substituting equation (21a) into equation (24), one has

a1 =−(a− bg/d)E+ I/2. (26)

Application of equation (9) gives

b11 =Tav
s 6 g

a

−a

(2E) sin u sin (u+ t)Id(t) dt7
=

EI
p g

2p

0

sin2 u du=EI. (27)

Clearly, the first order differential equation for the energy envelope E is uncoupled from
that for the phase angle 8. Thus, the FKP equation for E is

1p/1t=−e1/1E{[−(a− bg/d)E+ I/2]p}+(e/2) (12/1E2) (EIp). (28)

To obtain the stationary probability density function p(E) one may apply equation (12)
or equation (28) directly with its left side set to zero to give

p(E)=CT0 (E)/I e−(1/2pS) (a−(bg/d)) [ẋ2 + (d/2) (x2 + g/d)2]. (29)

Upon application of equation (13), the stationary joint probability density of displacement
and velocity becomes

p(x, ẋ)= (C/I) e−(1/2pS) (a−(bg/d)) [ẋ2 + (d/2) (x2 + g/d)2]. (30)

This result agrees with that given in reference [16] in which the statistical non-linearization
technique was applied. The result given in reference [16] holds for all time t whereas
equation (30) is valid in a slow time et. Of course, the limiting case is a= bg/d and when
aQ bg/d the constant C in equation (30) cannot be normalized. This is the case where
bifurcation occurs.

It may be appropriate to emphasize that the solution above for the system described
by equation (14) cannot be obtained by other SAMEE quoted in this paper.
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3.2. Non-linear ship rolling in random seas
This model is similar to that investigated in reference [17] except that for the present

problem the small parameter e in the non-linear damping and the square root of this small
parameter in the external random excitation are included. Thus, the equation of motion
for this model becomes

ẍ+ eb =ẋ2= sgn (ẋ)+ gx+ hx3 =zew(t), (31)

where b, g, and h are constants of order 1. The last equation, with due modification to
the signs of the constant parameters, can be employed to model and analyse the non-linear
rolling motion of a ship in random seas [3].

To evaluate the stationary joint probability density function of x and ẋ in the above
equation one applies the co-ordinate transformation

ẋ=z2E sin u, zG(x)=zE cos u, (32a, b)

in which

E= 1
2 ẋ2 +G(x), G(x)=g g(x) dx, g(x)= gx+ hx3. (32c–e)

By making use of equations (31), (32), and equation (4) one can obtain the first equation
in standard form for the energy E as

dE/ dt= ef1 (E, u)+ e1/2g11 (E, u)w, (33)

where

f1 (E, u)=−b(2E)3/2=sin u = sin2 u, g11 (E, u)=z2E sin u. (34a, b)

With some lengthy algebraic manipulation the complementary equation to equation (33)
can be obtained as

d8/ dt= ef2 (E, u)+ e1/2g22 (E, u)w, (35)

where

f2 (E, u)=−(b/2)z2E sin 2u =sin u =, g22 (E, u)= cos u/z2E . (36a, b)

Equations (33) and (35) are a pair of first order differential equations which can be applied
to describe completely the behaviour of the oscillator governed by equation (31).

Upon application of equations (8), (34) and (36), one has

a1 =Tav
s {Qf1 (E, u)q}+Tav

s 6g
0

−a

1g11

1E
g11(E, u, s+ t)Qw(s)w(s+ t)q dt7

+Tav
s 6g

0

−a

1g11

1u
g22(E, u, s+ t)Qw(s)w(s+ t)q dt7

=Tav
s {Qf1 (E, u)q}+Tav

s 61
2 g

a

−a

(2pS)d(t) dt7
=Tav

s {Qf1 (E, u)q}+Tav
s {I/2}. (37)
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By making use of equation (25) and substituting equation (33) into equation (37), leads to

a1 =−(8b/3p) (2E)3/2 + I/2. (38)

By making use of equation (9) gives

b11 =Tav
s 6 g

a

−a

(2E) sin u sin (u+ t)Id(t) dt7
=

EI
p g

2p

0

sin2 u du=EI. (39)

Note that the first order differential equation for the energy envelope E is uncoupled from
that for the phase angle 8. Therefore, the FKP equation for the energy envelope E is

1p/1t=−(e1/1E){[−(8b/3p) (2E)3/2 + I/2]p}+(e/2) (12/1E2) (EIp). (40)

The stationary probability density function p(E) may be obtained by applying either
equation (12) or equation (40) directly with its left side set to zero giving

p(E)=C[T0 (E)/I] e−(8b/9p2S) (ẋ2 + gx2 + 1
2
hx4)3/2. (41)

The stationary joint probability density function of displacement and velocity, from
equation (13), thus is

p(x, ẋ)= (C/I) e−(8b/9p2S) (ẋ2 + gx2 + 1
2
hx4)3/2. (42)

Equation (42) agrees with that presented in reference [17] except that it is valid in the slow
time et while the result in reference [17] is valid for all time t.

It is also important to mention that equation (42) agrees with equation (5.61) in reference
[18] in which equation (5.61) was verified by Monte Carlo simulation. Thus, one can
conclude that the present SAMEE can give correct solutions.

4. 

In the foregoing a stochastic averaging method of energy envelope (SAMEE) has been
presented. Two non-linear oscillators have been included to demonstrate the usefulness of
the proposed SAMEE. The solution for the first example agrees with that in reference [16].
This particular example cannot be solved by previous SAMEE available in the literature.
The solution for the second example agrees with that in references [17] and [18] in which
Monte Carlo simulation data were used to verify the solution. This, in turn, indicates that
the present SAMEE is able to provide correct solutions.

Furthermore, the SAMEE proposed in the foregoing has the advantages that: (a) its
standard form equations, drift and diffusion coefficients are defined in line with those of
the CSA and therefore it is easy to apply; (b) it does not require the evaluation of the period
of free oscillation of the system of interest; and (c) it is general in that it can be applied
to systems with small non-linear dampings which are functions of both displacement and
velocity, and large non-linear restoring forces under small stationary random excitations.
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