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An analysis is made of the compression wave generated when a high speed train enters
a tunnel. Operations in the near future are expected to be at Mach numbers M ranging
in value up to 0·4. Non-linear steepening of the wave in a very long tunnel exacerbates the
environmental damage caused by the subsequent radiation of an inpulsive micro-pressure
wave from the far end of the tunnel. The compression wave profile depends on train speed
and the area ratio of the train and tunnel, and for MQ 0·2 can be estimated to a good
approximation by regarding the local flow near the tunnel mouth during train entry as
incompressible. The influence of higher train Mach numbers is investigated for the special
case in which the tunnel is modelled by a thin-walled circular cylinder, of the type frequently
used in model scale tests. This is done by representing the nose of the train by a distribution
of monopole sources, and calculating their interaction with the mouth of the tunnel by
using the exact acoustic Green’s function for a semi-infinite, circular cylindrical tunnel.
Empirical formulae valid up to M=0·6 are obtained for the compression wave amplitude
and for the maximum initial pressure gradient (which determines the amplitude of the
micro-pressure wave). Predictions of the theory are found to be within 5% of measurements
made in recent experiments.
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1. INTRODUCTION

The amplitude of the compression wave produced when a high speed train enters a tunnel
depends principally on the speed U of the train at the tunnel entrance and on the ratio
Ao /A of the train cross-sectional area Ao to that of the tunnel A [1–10]. The wave
propagates one-dimensionally ahead of the train at about the speed of sound co . When
A0/A�1 and for train Mach numbers M0U/co Q 0·2, the pressure rise across the wave
is approximately equal to roU2Ao /A0M2(Ao /A)po , where ro and po are, respectively, the
mean air density and pressure, which typically is of the order of 1 % of atmospheric
pressure. Part of the wave energy is radiated from the far end of the tunnel as a spherically
spreading pulse, known as the micro-pressure wave [1, 2]. In a very long tunnel (3 km or
more in length) with concrete slab track, non-linear steepening of the compression wave
can result in micro-pressure wave amplitudes (proportional to the compression wave
pressure gradient at the end of the tunnel) in excess of 1 lb/ft2 near the tunnel exit, which
is comparable to the disturbance produced by the sonic boom from a supersonic aircraft.
The minimization of the environmental damage caused by micro-pressure waves (first
recognized in Japan in 1975) requires, in the first instance, a proper understanding of the
mechanism of compression wave generation [3, 11].
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The wave is generated by the interaction of the non-uniform pressure field of the train
(which is frozen in a frame fixed with a uniformly translating train) with the tunnel
entrance. At Mach numbers less than about 0·2, the compression wave thickness is very
much larger than the tunnel entrance diameter, and the local motion in the neighborhood
of the tunnel mouth during the interaction is effectively the same as if the fluid were
incompressible. In this limit, it was shown in reference [10] that the wave generated by
tunnel entrance ‘‘scattering’’ can be expressed in terms of a simple, general formula (in
which the influence of tunnel inlet geometry is specified independently of the subsequent
propagation of the wave within the tunnel) involving the convolution product of a compact
Green’s function with a distribution of sources representing the moving train. According
to this approach, the influence of tunnel entrance geometry is completely defined by a
velocity potential (solution of Laplace’s equation) describing a hypothetical incompressible
flow from the tunnel mouth.

Future high speed trains (including ‘‘MAGLEV’’ systems) are expected to operate at
Mach numbers approaching 0·4 [12]. The influence of compressibility on train-mouth
‘‘scattering’’ will then be significant, and the simple theory of reference [10] will supply only
a crude first approximation. In these circumstances, the theory of compression wave
generation can be developed formally as in the low Mach number limit, but the tunnel
mouth velocity potential must now be determined from the solution of the acoustic wave
equation rather than Laplace’s equation. This potential can be obtained for any particular
tunnel entrance geometry by numerical integration, and can incorporate such effects as,
for example, the presence of steep-sided cuttings extending outward from the tunnel portal.
However, it is often desirable to have predictions in analytical form for specific tunnel
geometries. These can be used to benchmark numerical solutions, and to make preliminary
estimates at high Mach numbers. Recent numerical and experimental studies have involved
axisymmetric scale model trains projected at high speed along the axis of symmetry of a
tunnel consisting of a long cylinder of circular cross-section [4–8]. The exact acoustic
Green’s function is known for this geometry, and is applied in this paper to obtain an
analytic representation of compression wave generation.

To do this, a circular symmetric ‘‘train’’ is represented by a continuous distribution of
monopole sources along its axis of symmetry. For the slender nose profiles used in the
experiments, which are characteristic of modern high speed locomotives, the source density
is locally proportional to the rate of change of cross-sectional area of the train with
distance from the nose. The adequacy of this approximation is confirmed by the results
of full numerical simulations of the tunnel entry problem and by model tests when
Ao /AE 0·2 [4, 5]. The dependence of the compression wave on Mach number is then
determined by making use of Green’s function for a semi-infinite circular cylinder. Results
are given for a train with a snub nose, which can be modelled by a translating point source,
and these are used to determine the Mach number dependence of both the compression
wave amplitude and the peak pressure gradient. Application is also made to axisymmetric
model trains with conical, parabolic and elliptic nose profiles; absolute predictions of the
compression wave gradient (that ultimately controls the magnitude of the micro-pressure
wave) are within 5% of corresponding experimental data given in reference [4].

The analytical problem is formulated and solved in section 2 in terms of the Green’s
function for a semi-infinite rigid cylinder. The snub nosed train modelled by a point source
is discussed in section 3, where simple empirical formulae are obtained for the Mach
number dependence of the peak pressure and pressure gradient, and a comparison made
with the zero Mach number theory of reference [10]. In section 4 application is made to
model train nose profiles studied in reference [4], and a comparison made with that
experiment.
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2. THE CIRCULAR CYLINDRICAL TUNNEL

2.1. 

The model experiments conducted by Maeda et al. [4] involve the projection of
axisymmetric model ‘‘trains’’ along the axis of a tunnel formed by a long, thin-walled
circular cylinder. The generation of the compression wave in this case will be investigated
analytically by considering a semi-infinite, unflanged circular cylindrical tunnel of radius
R (A= pR2), that extends along the negative x-axis of the rectangular system x=(x, y, z),
with the co-ordinate origin O taken on the axis of symmetry in the plane of the tunnel
mouth (see Figure 1). Let the train enter the tunnel at constant speed U. The train
cross-section is taken to be constant and of area Ao 0 ph2 at a distance L from the nose,
where h is its maximum radius. In typical applications the ratio Ao /A is small.

The nose profile is assumed to be streamlined and the aspect ratio h/L sufficiently small
to ensure that flow separation does not occur. The displacement of air by the moving train
may then be represented by a distribution of time-independent, monopole volume sources
convecting in the negative x-direction at the speed U of the train. The source strength will
be denoted by q(x+Ut, y, z), where q(x) is the source distribution at time t=0, when
the nose of the train will be supposed to enter the tunnel. The monopoles are non-zero
only in the vicinities of the nose and tail of the train, where the cross-sectional area varies.
When Ao /A is small, it was shown in reference [10] that q can be approximated by a line
source on the axis of symmetry of the train, namely

q(x)=UAoQ(x)d(y− yT )d(z), Q(x)=
1

Ao

1AT

1x
(x), (1)

where AT (x) is the train cross-section at distance x from the nose (so that AT (L)0Ao )
and, for generality, the axis of the train is permitted to be offset a distance yT from the
tunnel axis.

The motion of the air produced by these sources is described by a velocity potential
f(x, t), which satisfies the inhomogeneous acoustic equation

01
c2

0

12

1t2 −921 f=−q(x+Ut, y, z), (2)

Figure 1. Axisymmetric model train projected along the axis of symmetry of a circular cylindrical tunnel.
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where the normal derivative 1f/1xn =0 on the interior and exterior circular cylindrical
tunnel walls. The solution of this equation is written

f(x, t)=−g g G(x, x'; t− t)q(x', t) d3x' dt, x'= (x', y', z'), (3)

where G(x, x'; t− t) is Green’s function, which is the solution of equation (2) with
outgoing wave behaviour when the right hand size is replaced by d(x−x')d(t− t). G is
required to satisfy 1G/1xn =0 and 1G/1x'n =0 when the field points x, x' lie respectively
on the tunnel walls, and the integrations in equation (3) are over the whole of the fluid
and all times t. It may be remarked that the formal representation (3) is also applicable
for more complex interaction problems, for example, when two trains travelling in opposite
directions pass in the neighborhood of the tunnel entrance (although this would require
modification of boundary conditions).

Equation (2) is applicable within the tunnel only when the progressive, non-linear
steepening of the compression wave front is ignored. Steepening is important in long
tunnels, but only at large distances in front of the train. Within an extensive intermediate
region, many tunnel diameters ahead of the train, the unsteady motion is one-dimensional
and of small amplitude, and the perturbation pressure p(x, t) is given to a good
approximation by the linearized Bernoulli equation p=−ro 1f/1t.

The micro-pressure wave p'(x, t) radiated from the far end of the tunnel (at x= xE , say)
when the compression wave arrives, is given in a crude first approximation by [3, 13, 14]

p'(x, t)1 A
Vco&

1p
1t

(xE , t−&/co ), &�R, (4)

at distance & from the tunnel exit, where V is the effective solid angle into which the wave
radiates (which depends on local conditions, such as the presence of embankments, etc.,
near the exit). Because of non-linear steepening, the value of the derivative on the
right-hand side cannot normally be evaluated from the linear theory pressure determined
from equation (3). However, the solution (3) determines the initial waveform that defines
initial conditions for a one-dimensional, non-linear model of propagation that can be used
to determine the pressure at the far end of the tunnel, although this aspect of the problem
is not discussed here.

2.2. ’ 

The calculation of Green’s function is simplified by noting that, in practice, it is required
to calculate the compression wave only at large distances from the tunnel mouth, where
three-dimensional features of the solution (which decay exponentially fast with distance
into the tunnel) are negligible. Thus it may be assumed that the field point x in equation
(3) lies within the tunnel at =x=�R. The functional form of G may then be deduced from
standard results given by Noble [15].

If we set

G(x, x'; t− t)=−
1
2p g

a

−a

G�(x, x'; v)e−iv(t− t) dv, (5)

then G� satisfies the inhomogeneous Helmholtz equation (92 + k2
0 )G� = d(x− x'), ko =v/co .

The characteristic frequency of the compression wavefront prior to steepening 0U/2R,
so that for MQ 0·6, koRE 1·89Q 3·83. This condition ensures that the acoustic motions
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within the tunnel consist primarily of axially propagating plane waves [15]. In practice the
principal compression wave frequency rarely exceeds about 20 Hz, and koRQ 1·7.

To calculate the field G�(x, x'; v) produced by the point source d(x− x') at x' when the
observation point x is within the tunnel, far from the mouth, we consider the reciprocal
problem in which the source is regarded as placed at x and the solution G�(x', x; v) is found
as a function of x', where x' may be regarded as located in the vicinity of the tunnel mouth.
According to the reciprocal theorem Ḡ(x', x; v)= Ḡ(x, x'; v) [13].

Only plane waves can propagate when koRQ 3·8, so that the reciprocal source at x
generates the plane wave eik0(x'− x)/2ikoA which is incident on the tunnel mouth from x'Q 0.
We therefore write, near the tunnel entrance,

G�(x', x; v)=
e−ikox

2ikoA
{eikox' +C(x'; v)} (6)

where the function C(x'; v) represents the influence of the mouth, including radiation
losses into free space. Noble (reference [15], section 3.4) shows that, for
r'0z(y'2 + z'2)QR,

C(x'; v)=
ikoRK+(ko )

2p g
a

−a

I0(gr')K−(k)
gI1(gR)

eikx' dk, (7)

where I0, I1 are modified Bessel functions (reference [16], section 9.6). The function
g=z(k2 − k2

0 ) has branch cuts extending from k=2ko to 2ia, respectively, in the
upper and lower halves of the complex k-plane, such that on the real axis, g is real and
positive when =k=q =ko =, and g=−isgn (ko )z(k2

0 − k2) for =k=Q =ko =. The functions K2(k)
are respectively regular and non-zero in Im km 0, and satisfy

K+(k)K−(k)=2I1(gR)K1(gR), for real k,

where K1 is a modified Bessel function. In all of these formulae, divergent integrals are
avoided by assigning to v a small positive imaginary part which is subsequently allowed
to vanish. This ensures that C(x'; v) satisfies the radiation condition.

The substitution of these expressions into the right-hand side of equation (5) supplies
the Green’s function in the form

G(x, x'; t− t)=Go (x, x'; t− t)+Gs (x, x'; t− t), (8)

such that, for xQ x' within the tunnel,

Go (x, x'; t− t)=
co

2A
H 0t− t+

x− x'
co 1 ,

Gs (x, x'; t− t)=
−R
8p2A g g

a

−a

I0(gr')K+(ko )K−(k)
gI1(gR)

e−iv(t− t+ x/co )+ ikx' dk dv, (9)

where H(x)=0, 1 accordingly as xM 0 is the Heaviside step function.

2.3.   

The pressure wave p(x, t) radiated ahead of the train as it enters the tunnel may now
be calculated by use of equations (1), (3), (9) and the relation p=−ro 1f/1t. However,
the integration with respect to k in the definition (9) of Gs (x, x'; t− t) must be evaluated
numerically, and the computations are simplified (because singularities on the real k-axis
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as Im v:+0 are then absent) if we first calculate numerically the compression wave
pressure gradient 1p(x, t)/1t, and then use

p(x, t)=g
t

−a

1p
1t'

(x, t') dt'. (10)

When the various integrations are cast in non-dimensional forms, we find

0 RA
roU3Ao1 1p

1t
(x, t)=

1
2pz(1−M2) g

a

0

lI0((lyT /R)z(1−M2))
I1(lz(1−M2))

×Re 6Q� (l)K+0lM
R 1K−0l

R1 e−ilU[t]/R7 dl, (11)

where yT QR is the offset between the axes of the train and tunnel, [t]= t+ x/co is the
retarded time, and

Q� (l)=g
a

−a

Q(x')eilx'/R dx'. (12)

The functions K+(lM/R) and K−(l/R) are evaluated by the Cauchy integral method
described by Noble [15] from the formulae

K+(lM/R)= exp 6−ilM
p g

a

0

ln [2I1(z(m2 − l2M2))K1(z(m2 − l2M2))]
m2 − l2M2 dm7 ,

K−(l/R)=z2I1(lz(1−M2))K1(lz(1−M2))

×exp 6ilp g
a

0

ln $I1(z(m2 − l2M2))K1(z(m2 − l2M2))
II (lz(1−M2))K1(lz(1−M2)) % dm

m2 − l27 , (13)

where, in the interval 0Q mQMl,

I1(G)K1(G)=−
p

2
(J1(=G=)Y1(=G=)− iJ2

1 (=G=)), G=z(m2 − l2M2),

J1, Y1 being ordinary Bessel functions [16].

3. SNUB NOSED TRAIN MODELLED BY A POINT SOURCE

3.1.   

Consider a long, snub nosed train entering the tunnel, for which the aspect ratio h/L
is very large. In the limit L:0, the source density Q(x)0 (1/Ao ) 1AT /1x:d(x), and the
nose of the train becomes equivalent to a single point source q(x)=AoUd(x) of strength
AoU. When the train travels along the axis of symmetry of the tunnel, the compression
wave pressure gradient 1p/1t is calculated from equation (11) by setting yT =0 and
Q� (l)=1. The pressure gradient and the compression wave profile p(x, t) (obtained from
equation (10)) are plotted against U[t]/R in Figure 2 for Mach numbers M between 0·1
and 0·4. These results confirm that the compression wave rise time is essentially
independent of Mach number (i.e., of the compressibility of the motion in the
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Figure 2. Pressure wave p/(roU2Ao /A) and pressure gradient (1p/1t)/(roU3Ao /RA) profiles generated by a
snub nosed train approximated by a point source for different Mach numbers M=U/co .

neighbourhood of the tunnel mouth), being equal to the effective transit time 02R/U of
the nose across the entrance plane of the tunnel.

The net pressure rise Dp, say, across the wave front is given by the limiting value of the
integral in equation (10) as t:a. This integral yields a d-function d(l) when the
representation (11) of 1p/1t' is used. Since K2(k):1 as k:0 (reference [15], section 3.4),
it then follows that

Dp=
roU2Ao /A

1−M2 . (14)

This formula is actually valid for any train profile when the equivalent source distribution
is approximated as in equation (1), because in all cases Q� (l):1 as l:0. The dependence
of Dp on M predicted by numerical evaluation of equations (10) and (11) is plotted as the
solid curve in Figure 3 for comparison with equation (14) (shown dotted).

The rate of non-linear steepening of the compression wave in a long tunnel depends
critically on the initial value of the maximum pressure gradient (1p/1t)max . This is also
plotted (for the point source/snub nose approximation) as a solid curve in Figure 3. It is
well approximated by the empirical formula (dotted in the figure)

01p
1t1max

=0roU3Ao

RA 1 0·64+1·3M6

1−M2 , 0QMQ 0·6. (15)
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3.2.  

In the limit in which the compression wave thickness (0R/M) is very much larger than
the tunnel diameter, it is possible to use the so-called compact approximation to Green’s
function. This was done in reference [10], where it was shown that

G(x, x'; t− t)1 co

2A
{H(t− t− =f*(x)−f*(x')=/co )−H(t− t+(f*(x)+f*(x'))/co )},

(16)

where f*(x) is that solution of Laplace’s equation that describes a hypothetical
incompressible, irrotational flow out of the tunnel mouth, normalized such that

f*(x)1 x− l, as x:−a inside the tunnel,

1O(1/=x=), as =x=:a outside the tunnel.

The formulae are applicable for any tunnel whose interior cross-sectional area ultimately
becomes constant and equal to A. The length l is the tunnel-mouth ‘‘end-correction’’ [13],
which has order of magnitude 0zA, the precise value being determined by the tunnel
entrance geometry. f*(x) varies continuously through the tunnel mouth, increasing from
−a at x=−a within the tunnel, to zero at =x==a outside. It is numerically of order
zA in the neighbourhood of the mouth, where its rate of change depends on the shape
of the mouth and its environment. The approximation (16) is uniformly valid when
regarded as a function of either x or x' provided at least one of these points lies within
the tunnel at a large distance compared to the tunnel diameter.

Figure 3. Predicted dependence on Mach number of the pressure rise Dp/(roU2Ao /A) and the maximum
pressure gradient (1p/1t)max/(roU3Ao /RA) for a snub nosed train approximated by a point source. The dotted
curves are the corresponding predictions of equations (14) and (15).
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Figure 4. Comparison of the compact approximation (17) for the pressure p/(roU2Ao /A) and pressure
gradient (1p/1t)/(r0U3Ao /RA) (—) for a train modelled by a point source with exact predictions based on
equation (11) (WWWW) for (a) M=0·1, (b) 0·2; t'= t−0·61R/co .

Proceeding by the method of section 2, writing the solution of the wave equation as in
equation (3), the compression wave pressure gradient is now found to be given by (see
reference [10] for details)

1p
1t

(x, t)1−
roU2

A g q(x'+U[t'], y', z')
12f*
1x'2

(x') d3x',

where
[t']= t+(x− l)/co .

(17)

The solid curves in Figure 4 are predictions of this formula for the snub nosed train
modelled by the point source q(x)=UAod(x) entering the circular cylindrical tunnel,
which has the end-correction l1 0·61R. The dotted curves are the results of the exact
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calculation given by equation (11) for Mach numbers M=0·1 and 0·2. Predictions of the
compact approximation are seen to be adequate for practical purposes; indeed, according
to Figure 3 the error in the compact approximation does not exceed 5% until Mq 0·3.

4. SCALE MODEL EXPERIMENTS

Consider next the axisymmetric model ‘‘trains’’ investigated experimentally by Maeda
et al. [4] using the arrangement illustrated schematically in Figure 1. The nose profiles
studied included the cone, and the paraboloid and ellipsoid of revolution, with respective
cross-sectional areas given by

AT (x)
Ao

=
x2

L2 ,
x
L

,
x
L 02−

x
L1 , 0Q xQL,

=1, xeL,

and corresponding source densities Q (equation (1))

Q(x)=
2x
L2 ,

1
L

,
2
L 01−

x
L1 , 0Q xQL,

=0, elsewhere. (18)

Typical predictions of the compression wave pressure and pressure gradient from
equation (11) are illustrated in Figures 5 and 6, respectively, for M=0·2, 0·4 and L/R=2
when the train travels along the axis of the cylinder (yT =0). Corresponding
non-dimensional pressure gradients (1p/1t)/(roU3Ao /RA) increase by about 15% when M
increases from 0·2 to 0·4, in agreement with the empirical formula (15). The three pressure
gradient profiles always have a common point of intersection because the source strength
for the paraboloid is the mean of those for the cone and the ellipsoid. Also, the
compression wave pressure rise Dp= roU2(Ao /A)/(1−M2) is the same for all three
models (i.e., areas under the pressure gradient curves are equal), in accordance with the
remark in section 3 following equation (14).

The data points plotted in Figure 7 are for measured values of the pressure gradient
1p/1t at about 1 m from the inlet of a thin walled, circular cylindrical tunnel 7 m long and
radius R=0·0735 m. Model trains of aspect ratio h/L=0·2 and area ratio Ao /A=0·116
were projected along the tunnel axis at U=230 km/h (M=0·188). For all of the pressure
gradient profiles, the peak values of 1p/1t calculated from equation (11) are found to be
just under 5% smaller than the corresponding measured value. For the ellipsoid, the peak
measured pressure gradient is about 275 kPa/s; the calculated value is 263 kPa/s. The solid
curves in Figure 7 represent the theoretical predictions increased uniformly by
multiplication by the ratio 275/2631 1·045. Also the retarded time origin of the theoretical
curves has been shifted so that the peaks for theory and experiment coincide for the
ellipsoid. This adjustment gives excellent overall agreement for all three cases.

The small systematic difference between theory and experiment is probably associated
with the approximation (1), in which the displacement effect of the train is modelled by
a line source distributed along the axis of symmetry of the nose. A more accurate
representation would involve the placement of monopole sources on the actual surface of
the nose. The closer proximity of these sources to the edges of the tunnel mouth during
entry of the train into the tunnel should account for most of the 5% error.
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Figure 5. (a) Compression wave pressure p/(roU2Ao /A) and (b) pressure gradient (1p/1t)/(r0U3Ao /hA)
for model conical, paraboloidal and ellipsoidal nose profiles when M=0·2 and L/R=2.

Figure 7 exhibits the largest differences between theory and experiment in the tail region,
beyond t=0·01 s. Inspection of the data given in reference [4] reveals that these tails
extend out to t1 0·014 s. Whereas the areas bounded by the theoretical curves and the
time axis are equal, and so, therefore, are the net predicted pressure rises Dp, the presence
of these tails is responsible for small differences in the measured values of Dp for the three
cases. The overall effect is that the measured pressure rises are about 12% larger than the
prediction of 0·62 kPa obtained after increasing the theoretical result by 4·5%. The tails
are presumably the result of a reverberant wave generated by the compressed air projection
mechanism used in the experiments, or may be attributable to boundary layers or
separation, either behind the compression wave or on the train.

5. CONCLUSION

Future high-speed trains are expected to operate at Mach numbers close to 0·4. At such
speeds, special consideration must be given to controlling the impact of the large amplitude
compression wave generated when the train enters a tunnel. The expansion wave reflected
from the far end of the tunnel, and waves reflected from tunnel discontinuities, can be a
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Figure 6. (a) Compression wave pressure p/(roU2Ao /A) and (b) pressure gradient (1p/1t)/(r0U3Ao /hA)
for model conical, paraboloidal and ellipsoidal nose profiles when M=0·4 and L/R=2.

serious source of passenger discomfort. Similarly, non-linear steepening of the compression
wave in a very long tunnel can exacerbate environmental problems associated with the
impulsive micro-pressure wave radiated from the end of the tunnel.

Full scale numerical simulations of tunnel–train interactions will be necessary to predict
high Mach number compression wave characteristics in practical situations. However,
analytical predictions for simple geometries can be used to guide and interpret results of
scale model tests. In this paper, such predictions are made of the influence of train Mach
number M on the compression wave generated when an axisymmetric model train is
projected into a thin-walled circular cylindrical tunnel. For a train whose cross-sectional
area is small, (Ao /AQ 0·2, for example) Mach number effects become significant when
M exceeds about 0·25. Empirical formulae valid up to M=0·6 have been given for
predicting the pressure rise across the wavefront and the initial maximum pressure gradient
(which determines the amplitude of the micro-pressure wave). These results are derived by
representing the nose of the train by a distribution of monopole sources along its axis of
symmetry, and by use of the exact acoustic Green’s function for a semi-infinite, circular
cylindrical tunnel. The theory has been validated for this case by comparison with model
scale experiments conducted by Maeda et al. [4]; pressure gradient predictions are found
to be within 5% of the observations.
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Figure 7. Comparison of measured [4] and predicted (—) pressure gradients 1p/1t for model conical (r),
paraboloidal (q) and ellipsoidal (w) nose profiles when Ao /A=0·116, R=0·0735 m, M=0·188 and
h/L=0·2. The theoretical predictions have been increased by 4·5 %.
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