
Journal of Sound and Vibration (1998) 212(1), 37–59

TRANSIENT BEHAVIOUR OF ACOUSTIC
GYROMETERS

P. D  M. B

Laboratoire d’Acoustique de l’Université du Maine, U.M.R. C.N.R.S. 6613, I.A.M.,
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Acoustic gyrometry has been developed during the past 15 years as a new miniaturized
or low-cost technology. The operation of acoustic gyrometers employs acoustic fields inside
fluid-filled resonant cavities to determine angular velocities. Until now, research efforts and
design methodology have concentrated both on trapezoidal miniaturized gyros (etched on
silicon chips) as well as on cylindrical gyros designed by using classical techniques. These
approaches are restricted to the frequency domain which involves only the steady Coriolis
effect (constant rotation rate). Nowadays, the need for a time domain solution for inertial
effects on acoustic fields clearly arises when dealing with applications involving strong
variations of the rotation rates. This paper aims at providing such advances in
‘‘inertial–acoustic’’ theory and modelling. The discussion covers cylindrical gyros because
the presence of an unsteady rotational velocity gradient (with respect to the radial
co-ordinate) of a gas in a cylindrical cavity adds one of the most important features both
in the basic physics underlying ‘‘inertial–acoustic’’ transient processes and in the behaviour
of the gyros.
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1. INTRODUCTION

In recent years, there has been a very strong motivation for designing new sensors involving
smaller dimensions, lower manufacturing cost and lower power consumption, as well as
higher reliability and improved lifetime. During the past decade, work has been carried
out on a new kind of rate gyro, the acoustic gyro, which may be of practical use where
simplicity, reliability, miniaturization or low cost is more important than the highest
sensitivity. Attempts to develop practical devices have been concentrated both on
miniaturized gyros etched on silicon chips as well as on gyros designed by using classical
techniques.

The operation of acoustic gyrometers employs acoustic fields inside fluid-filled resonant
cavities to determine angular velocities. Until now, research efforts have been concentrated
both on the inertial effects on acoustic fields inside trapezoidal ultra-miniaturized cavities
(on silicon chips) or inside rectangular and cylindrical cavities (typically less than 1 cm3)
[1–3], as well as on the behaviour of rectangular miniaturized microphones and
loudspeakers [4]. But progress towards a theoretical description of the phenomena has been
restricted to the frequency domain which involves only steady angular velocity (i.e.,
constant rotation rate). A deeper understanding requires investigation in the time domain.
Apart from this, practical applications sought for this kind of gyro are additional reasons
that serve as motivation to understand in some detail the complex phenomena that are
involved in the transient processes (for strong variations of the rotation rates) and then

0022–460X/98/160037+23 $25.00/0/sv971440 7 1998 Academic Press Limited



Rotation

(a)

(b)

(c)

.   . 38

to interpret experimental results. This paper aims at providing such advances in
‘‘inertial–acoustic’’ theory and modelling. The discussion covers cylindrical gyros because
the presence of an unsteady velocity, which depends on the location (r, z) of the particle
of the fluid considered in a cylindrical cavity and which is imposed by the transient
variation of the rotation of the walls around the axis of the cavity, adds one of the most
important features both in the basic physics underlying ‘‘inertial–acoustic’’ transient
processes and in the behaviour of the gyros.

2. BRIEF REVIEW OF THE BEHAVIOUR OF THE STATIONARY ROTATING GYRO

A rate gyro provides signals that are measures of angular rates with respect to an inertial
frame. The heart of the acoustic gyro under consideration in this paper (see Figure 1) is
a thin cylindrical cavity, typically 1·5 cm in diameter with a height h much less than half
the wavelength (0·4 cm for example), filled with a suitable working fluid [1] (SF6 under
2·5 bars for example). Using an acoustic driver coupled to the cavity through a hole
roughly 0·05 cm in diameter set at the point 8=0, the fluid within the cavity is excited
to generate an acoustic standing wave, corresponding typically to the resonance of the first
azimuthal mode labelled C010 and given by the eigenfunction J1 (g01 r/R0) cos 8, where J1

is the first order cylindrical Bessel function of the first kind, g01 the first zero of the first
derivative of J1 (g01 r/R0) with respect to the radial co-ordinate r, R0 the radius of the cavity
and 8 the azimuthal co-ordinate (a list of symbols is given in the Appendix). Actually,
the viscous and thermal dissipation in the boundary layers are taken into account in the
formalism. When the cavity rotates around the z-axis of the cylindrical cavity, the angular
velocity V of the non-inertial frame linked to the cavity, with respect to the inertial frame,
being constant (dV/dt=0), the Coriolis effect on the acoustic field is the only one to be
considered, as the other terms vanish as far as the linear approximation is valid (the
acceleration linked to the time rate of change of the angular velocity is equal to zero and
the centripetal acceleration, proportional to V2 times the particle displacement, is negligible
in most applications). This Coriolis effect leads to energy transfer from the mode C010

mentioned above to the orthogonal mode labelled S010 and given by the eigenfunction
J1 (g01 r/R0) sin 8, which can be measured with a microphone set at the point 8= p/2, even
if its amplitude is much lower than the amplitude of the primary mode C010 generated by
the loudspeaker (which is null at 8= p/2).

Figure 1. Schematic view of the cavity of the gyrometer: (a) the loudspeaker located at 8=0; (b) the
measurement microphone located at 8= p/2; (c) the reference microphone.
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These two modes C010 and S010 are almost sufficient to describe a stationary solution for
the steady state acoustic response of the rotating cavity, in the ‘‘ideal’’ case of a perfectly
shaped cavity. Actually, in order to take into account unavoidable small perturbations,
more terms must be included into the eigenfunctions expansion which is used to describe
the acoustic field [2].

Moreover, the Coriolis force fc can be interpreted in the wave equation as a source term
given by div fc =2 div (V× v)=−2V .curl v=−2V .curl vv , emphasizing that the only
vortical component vv of the particle velocity v is involved in the Coriolis coupling (the
acoustic and entropic components of the particle velocity do not play any direct role in
the inertial coupling process). This vortical component is negligible except inside the
viscous boundary layers, which therefore play an important role in the process. Hence, the
energy transfer from the mode C010 to the mode S010 due to the Coriolis phenomena takes
place only in the very thin boundary layers or, in other words, the equivalent ‘‘Coriolis
sources’’ are distributed only at the boundaries in such a way that the mode S010 is
generated. On the other hand, the strength of this ‘‘Coriolis resonant field’’ created in the
cavity is proportional to both the amplitude of the primary resonant mode C010 generated
by the loudspeaker and the rotation rate of the cavity [1, 2]. Then the transfer function
between the output signal of the microphone set at 8= p/2, which measures the amplitude
of the Coriolis mode S010, and the output signal of another microphone set at 8= p,
which measures the amplitude of the primary mode C010, provides the value of the rotation
rate V.

The theory developed in the following sections, devoted to the description of the
inertial–acoustic coupling, when strong unsteady and r-dependent variations of
the rotation rates (which depend both on the time and the location in the cavity) occur,
can be considered in some respect as an extension beyond the steady state ‘‘theory’’ briefly
mentioned above (which assumed a constant rotation rate). Therefore, details needed to
understand more deeply the preceding summary, describing stationary phenomena, are
included in the remainder of the paper.

3. THE GENERAL PROBLEM

3.1.   

The cavity studied here is a cylindrical one (height h, radius R0), in which transducers
are flush-mounted to the base (z=0) near the circular lateral wall (r3R0). We shall use
an inertial reference frame whose origin is located at the centre of the base of the cylinder.
The natural co-ordinates chosen are Cartesian (X, Y, Z) or cylindrical (r, u, z) and the
(Oz/OZ) axis is aligned along the geometric axis of the cylinder, which itself is coincident
with the rotation vector of the moving cavity V (see Figure 2).

The cavity is excited by the loudspeaker on its first acoustic azimuthal mode
(0, 1, 0), in such a way that the measurement microphone, which is located at a right
angle from the loudspeaker, sets on a node of pressure of that mode when the cavity is
at rest.

At time t=0, the cavity is set impulsively in rotation, with its angular speed being
brought from zero to V0 (see Figure 3). Then, the fluid motion goes through a transient
stage where particles are gradually driven by the walls, acquiring the angular velocity
V(r, z, t), up to reaching the ultimate state of rigid body rotation (when the cylinder and
the fluid rotate together with the uniform angular velocity V0). As the system has an axial
symmetry, this angular velocity is assumed to be independent of the u-co-ordinate.
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Figure 2. Schematic views of the cavity showing the systems of Cartesian and cylindrical co-ordinates, the
loudspeaker (a) and the measurement microphone (b).

3.2.    

The motion of the fluid can be described as the superposition of a circular flow (here
linked to the boundary conditions expressing the rotation of the cavity (see equation (14)))
and an acoustic perturbation generated by the acoustic source which is the rate of mass
density creation rT qs . It is governed by the following set of fundamental equations: the
Navier-Stokes equations,

rT dt VT = rT [1t VT +(VT · grad)VT]=−grad PT + mDVT +0h+
m

31 grad (div VT ); (1)

the conservation of mass equation,

dt rT + rT div (VT )= rT qs ; (2)

the heat conduction equation,

rT T dt ST = lDT. (3)

Here VT , rT , and PT are respectively the particle velocity, the density and the pressure
associated to the fluid motion, l, m and h are respectively the coefficients of thermal
conductivity, shear viscosity and bulk viscosity of the fluid, qs being the rate of creation
of fluid per unit volume of the loudspeaker, and ST and T being respectively the entropy
per unit volume and the temperature.

The study presented in the next section (3.3) concerns only the circular flow: that is, the
motion of the fluid driven by the walls of the cavity in the absence of any acoustic source.

Figure 3. Angular velocity of the cavity walls as a function of time.
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Figure 4. System of cylindrical co-ordinates.

This study enables one to determine the expression of the angular velocity V(r, z, t) of the
fluid as function of position in space (r, z) and time (t) during the transient period.

3.3.    

In this section, the fluid motion is studied in the absence of any acoustic source. A
particle of fluid at the point M is located by its position vector

OM= rer + zez , (4)

where (er , eu , ez ) are the three unit vectors of the system of cylindrical co-ordinates chosen
(see Figure 4).

When the cavity is suddenly set in rotation around the (Oz) axis, the fluid element
acquires a velocity V(r, z, t)=dt OM and an acceleration which can be written (with the
Eulerian description) as

dt V(r, z, t)=d2
tt OM= 1t V+(V · grad)V. (5)

The set of fundamental equations governing the fluid motion (which are just particular
cases of equations (1) and (2)) is the following:
the Navier-Stokes equation

dt V=−
1
rE

grad P+ nDV+0 h

rE
+

v
31 grad (div V); (6)

the conservation of mass equation,

dt rE + rE div (V)=0. (7)

Here P is the pressure of the fluid, rE its density and v= m/rE its coefficient of kinematic
viscosity.

By neglecting the fluid compressibility (density is supposed to be independent of spatial
co-ordinates and time: rE 3 r0) and by assuming consequently that the radial component
Vr of the particle velocity V vanishes, this last equation (7) simplifies to

div V=0. (8)

This neglect of compressibility and radial velocity here is reasonable because to a first order
the fluid motion caused by the cavity’s rotation will be a pure shear flow.

Equation (8) can be written with the cylindrical co-ordinates (r, u, z) as

1
r

1r (rVr )+
1
r

1u Vu + 1z Vz =0, that is
1
r

1r (rVr )=0, (9)
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because of the cylindrical symmetry (V is independent of u and Vz =0). The solution of
this equation can be formulated as Vr =C/r, where the constant C must be equal to zero
in order to satisfy the condition Vr =0 on the walls (at r=R0).

Therefore, the velocity V has only one non-vanishing component Vu (r, z, t), which
denotes a pure shear motion in conformity with the hypothesis chosen, and which leads
to the expression

V(r, z, t)=dt OM=V(r, z, t)×OM=V(r, z, t)reu . (10)

Note that this relationship satisfies equation (8):

div V=div (V×OM)=
1
r

1u (rV(r, z, t))=0. (11)

Then, the acceleration of the fluid element can be expressed as

dt V=d2
tt OM=dt V×OM+V×dt OM=dt V×OM+V×(V×OM), (12)

where the first expression (dt V×OM) represents the angular acceleration of the particle
and the second one (V×(V×OM)) the centripetal acceleration. One can easily verify
that this last expression is equivalent to equation (5).

Finally, the radial and azimuthal components of the Navier-Stokes equations can be
written respectively as

V2
u

r
=

1
r0

1r P, 1t Vu = n $12
rr +

1
r

1r −
1
r2 + 12

zz% Vu . (13)

The first relationship shows that the centripetal acceleration creates a radial pressure
gradient (with which no density gradient is associated as the hypothesis of incompressible
fluids has been assumed). The solution of the second equation gives a general expression
for the flow velocity Vu .

The boundary and initial conditions to be satisfied by the angular velocity of the fluid
and the walls are as follows, the rotation rate of the walls of the cavity involving the
Heaviside step function at t=0:
the velocity of the fluid

Vu (r, z, tE 0)=0, Vu (r, z, tq 0)=V(r, z, t)r;

the velocity of the walls

Vu (r, z, tQ 0)=0, Vu (r, z=0, te 0)=V0 r,

Vu (r, z= h, te 0)=V0 r, Vu (r=R0, z, te 0)=V0 R0. (14)

The solution Vu of the set of equations (13) which satisfies these boundary conditions
(14) can be expressed as a double Fourier-Bessel expansion [5]:

Vu (r, z, t)=V0 r01+
R0

r
s

m=1,3 . . .

s
n=1,2 . . .

8
mp

sin 0mp

h
z1 J1 (ln r/R0)

ln J0 (ln )
e−k2

mn nt1U(t), (15)

with k2
mn =(mp/h)2 + (ln /R0)2 and where the coefficients ln are the zeros of the Bessel

function of first order (J1 (ln )=0). The Heaviside step function U(t) ensures the causality
of this solution. Then, the expression for the angular velocity V(r, z, t) takes the form
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V(r, z, t)=V001+
R0

r
s

m=1,3 . . .

s
n=1,2 . . .

8
mp

sin 0mp

h
z1 J1 (ln r/R0)

ln J0 (ln )
e−k2

mn nt1U(t). (16)

One can easily verify that at time zero, this solution V is equal to zero everywhere except
on the walls, because

s
m=1,3 . . .

4
mp

sin 0mp

h
z1=1 and

R0

r
s

n=1,2 . . .

2J1 (ln r/R0)
ln J0 (ln )

=−1.

3.4.    

3.4.1. Circular flow and ‘‘acoustic’’ motion
In this section, the whole motion of the fluid is studied. It includes the unsteady circular

flow presented in the previous section and an ‘‘acoustic’’ motion (the word ‘‘acoustic’’ is
taken here globally and includes the thermal and vorticity motions which accompany the
acoustic movement itself). The instantaneous position of the particle is described by means
of the vector OP=OM+MP, where OM is the position vector of the particle driven
along the circular streamlines of the flow without acoustic displacement, and where MP
represents the displacement of the element of fluid due to the acoustic motion.

As the fundamental Navier-Stokes equations (1) and conservation of mass equation (2),
which describe the particle motion, are expressed in an inertial reference frame, the
operator ‘‘dt’’ giving the material derivative will now be denoted ‘‘d(i)

t ’’, and the particle
velocity and the acceleration associated to the global motion are written respectively as:

VT =d(i)
t OP, d(i)

t VT =d2(i)
tt OP. (17, 18)

Then, the Navier-Stokes equations (1) and the conservation of mass equation (2) take the
following forms:

rT d2(i)
tt OP=−grad PT + mD(d(i)

t OP)+0h+
m

31 grad [div (d(i)
t OP)], (19)

d(i)
t rT + rT div (d(i)

t OP)= r0 qs . (20)

Furthermore, both quantities PT , rT can be separated into two parts:

PT =P+ p, rT = r0 + r, (21, 22)

where P and r0 are the pressure and density associated with the circular flow only and
where p and r are the pressure and density variations due to the acoustic movement
superposed to the flow.

In order to reveal the expected inertial factors explicitly, the quantities which occur in
the fundamental equations above must be expressed as functions of the corresponding
quantities relative to a moving reference frame.

3.4.2. The inertial factors
The equations of motion are expressed by using a moving reference frame (m), chosen

in such a way that it is linked at each time t to the motion of a fluid element located at
the same distance r and the same z-co-ordinate of the z-axis (i.e., situated on the same
circular streamline). Therefore, the rotation velocity V(r, z, t) of the moving frame is equal
to that of the element of fluid at the time and the position considered. The origin O of
this moving frame is the same as that of the fixed reference system (see Figure 5).
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The particle velocity relative to the inertial frame can be expressed as a function of
quantities relative to the moving frame [5] as

d(i)
t OP=V(O)+d(m)

t OP+V×OP, (23)
where d(m)

t is the operator giving the material derivative in the moving reference frame. In
our particular case, the translational velocity V(O) of the origin of the moving frame is
equal to zero and as this frame is linked to the unsteady circular motion of the particle,
the velocity corresponding to this circular motion in the moving frame is equal to zero:
d(m)

t OM=0. Then, this last expression (23) simplifies to

d(i)
t OP=(d(m)

t +V×)OP=d(m)
t MP+V×OP. (24)

The acceleration of the particle is determined by applying once again the operator
[d(i)

t =d(m)
t +V×] to the last result (24):

d2(i)
tt OP=d(i)

t (d(i)
t OP)= [d(m)

t +V×] [d(m)
t MP+V×OP]

=d2(m)
tt MP+2V×d(m)

t MP+d(m)
t V×OP+V×(V×OP). (25)

In this last expression, one can recognize the usual inertial factors: the Coriolis
acceleration (2V×d(m)

t MP), the centripetal acceleration (V×(V×OP)), and the
transient factor (d(m)

t V×OP) linked to the angular acceleration of the particle.

3.4.3. Linearization of the fundamental equations
The expressions of velocities and accelerations (24) and (25) are introduced in the

Navier-Stokes (19) and conservation of mass (20) equations, which then may be
respectively written as

rT d2(m)
tt MP+2rT V×d(m)

t MP+ rT d(m)
t V×OP+ rT V×(V×OP)

=−grad (P+ p)+ mD d(m)
t MP+ mD(V×OP)

+0h+
m

31 grad (div (d(m)
t MP))+0h+

m

31 grad (div (V×OP)), (26)

d(m)
t rT + rT div (d(m)

t MP)+ rT div (V×OP)= r0 qs , (27)

where d(i)
t rT =d(m)

t rT because the time variation of rT for a given particle is the same in
the inertial frame and in the moving one.

In the following, the ‘‘acoustic’’ particle displacement is denoted j=MP and the
‘‘acoustic’’ particle velocity relative to the moving frame is denoted v= d(m)

t MP, the word

Figure 5. Reference frames: fixed frame (O, X, Y, Z) and moving frame (0, x, y, z).
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‘‘acoustic’’ being still taken globally: i.e., including the thermal and vorticity motions which
accompany the acoustic motion itself. Nevertheless, one can note that d(i)

t V=
d(m)

t V= 1(m)
t V (which can be written either dt V or 1t V).

Therefore, linear Navier-Stokes equation (26) and linear conservation of mass equation
(27) are written, taking into account the equation div (V×OP)=0 (see equation (11)),
as

1(m)
t v+2V× v+dt V×OP+V×(V×OP)

=−
1
r0

grad (P+ p)+ nDv+ nD(V×OP)+0 h

r0
+

n

31 grad (div (v)), (28)

and

1(m)
t r+ r0 div (v)= r0 qs . (29)

3.4.4. Fundamental equations governing the acoustic motion
Actually, the complete motion (circular flow and ‘‘acoustic’’ motion) of the element of

fluid located at the position P in the cavity satisfies equations (28) and (29). But upon
taking into account equation (8) div (V)=0 and expression (12) of the acceleration of the
circular flow, the Navier-Stokes equation governing the motion of the circular flow without
acoustic perturbation (6) can be written as

dt V×OM+V×(V×OM)=−
1
r0

grad P+ nD(V×OM). (30)

Combining this last equation (30) and equation (28), and taking into account that
OP=OM+ j leads to the Navier-Stokes equation for the ‘‘acoustic’’ motion, namely

1(m)
t v+2V× v+dt V× j+V×(V× j)=−

1
r0

grad p+ nD(v+V× j)

+0 h

r0
+

n

31 grad (div (v)). (31)

The conservation of mass equation (29) for the ‘‘acoustic’’ motion remains unchanged.
Finally, the viscous and thermal dissipative processes inside the cavity are always

negligible in comparison with those which take place in the boundary layers near the walls.
Therefore, the factors which denote these dissipative processes in the fundamental equation
(31) are neglected in the following. This assumption enables one to simplify greatly the
expression for the problem under consideration. Actually, the Navier-Stokes equation for
the acoustic motion (and only it) reduces to the Euler equation and the hypothesis of
adiabatic compressibility can then be assumed in the continuity equation for the entropy
(3). In the following sections, the Green function is chosen in such a way that it includes
the dissipative processes in the boundary layers.

Hence, by reducing the notation 1(m)
t to the more simple notation 1t in the following, the

set of fundamental equations which remains finally is the following:
the Euler equation

1t v+2V× v+dt V× j+V×(V× j)=−
1
r0

grad p; (32)

the conservation of mass equation,



.   . 46

1t r+ r0 div (v)= r0 qs ; (33)

the equation characterizing adiabatic compressibility (entropy fluctuation dST =0),

p= rc2, (34)

where c=zg/r0 xT is the adiabatic speed of sound.
As has been noted previously, the predominant dissipative processes linked to the

viscosity and the heat conduction of the fluid are those which occur in boundary layers
near the walls of the cavity (the dissipative processes in the bulk of the cavity are then
negligible). They are taken into account in the appropriate impedance-like boundary
condition [6]. But because the inertial factors, which represent the inertial acoustic mode
coupling, depend strongly on not only acoustic movement (subscript ‘‘a’’), but also the
vorticity (subscript ‘‘v’’) and the thermal (subscript ‘‘h’’) movements, these components
of the particle motion in the boundary layers must be explicitly taken into account when
one calculates the effect of the fluid rotation on the acoustic field.

4. THE ACOUSTIC WAVE MOTION

4.1.  

4.1.1. The equation of propagation
The propagation equation for the pressure variation is readily obtained from the three

equations (32), (33) and (34). By regrouping the factors linked to rotation and the source
factor in the second member, it takes the form

0D−
1
c2 12

tt1p(r, t)=−r0 1t qs − r0 div g (35)

in the domain D (the bulk of the cavity), where

g= gco + ga + gce , (36)

with for tq 0 (g=0 for tQ 0)

gco =2V× v, ga = dt V× j, gce =V×(V× j). (37–39)

The factor gco represents the Coriolis acceleration, gce the centripetal acceleration and ga

the transient factor linked to the angular acceleration.
The problem must be solved in the time domain by using real functions and not the

associated analytic functions because of the complexity of the Hilbert transformation of
the right side of the propagation equation. Even if this method leads to heavier expressions
to write down, it greatly simplifies all the calculations.

4.1.2. The Green function
In the time domain, the Green function associated to the problem considered satisfies

the wave equation

0D−
1
c2 12

tt1G(r, t; r0, t0)=−d(r− r0)d(t− t0), in the domain D. (40)

In the frequency domain, this Green function is chosen to satisfy the boundary conditions
of the problem. It is then the solution of the set of equations
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(D+ k2)G(r, r0)=−d(r− r0), in the domain D, (41a)

(1n +ikb)G(r, r0)=0, on the walls 1D, (41b)

where k=v/c.
In equation (41b), the term b denotes a boundary specific admittance, which takes into

account the effects of the viscous and thermal boundary layers. For vq 0, it can be written
as [6]

b=(1+ i)zv
1

z2c $01−
k2

_

k21zl'v +(g−1)zlh%, (42)

where k_ is the component normal to the walls of the wavenumber k, and where l'v and
lh are the characteristic lengths defined as l'v = m/r0 c and lh = l/r0 cCp , m being the shear
viscosity coefficient, l the heat conduction coefficient, and Cp the heat coefficient at
constant pressure per unit of mass of the fluid.

The Green function is expressed as an eigenfunction expansion where the orthonormal
eigenfunctions Cn (r, 8, z) are solutions to the Neumann’s boundary value problem:

(D+ ko2
n )Cn (r)=0, in the domain D,

1n Cn (r)=0, on the boundaries 1D. (43)

The Green function in the time domain is given by integrating its expression in the
frequency domain, by using the residue integration method, leading to

G(r, t; r0, t0)= c2U(t− t0) s
n

sin (vn (t− t0))
vn

e−gn (t− t0)Cn (r0)Cn (r), (44)

where vn =v0
n − gn , with

gn =zv0
n

zc
2z2 gg

1D
$01−

k2
_

k21zl'v +(g−1)zlh%C2
n (r) dr. (45)

Note that as the derivative normal to the walls ‘‘1n’’ of the truncated Green function
is equal to zero, it might happen that, in some calculations, this approximation would not
be relevant, especially when some factors in the integrals of coupling (see further) become
very important just near the walls. In these cases, the normal derivative ‘‘1n’’ must be
replaced by its expression (−ikb) from the boundary conditions (41b) when the operator
acts on analytical functions, or by (k Im (b)) when it acts on real functions.

4.1.3. The integral equation
The solution of the non-homogeneous wave equation (35) which satisfies some boundary

conditions specified further, can be obtained, for te 0 (the time interval in which the
problem is considered) from the integral equation [7]

p(r, t)=g
+a

0

dt0 ggg
V

W(r0, t0)G(r, t; r0, t0) dr0

+g
+a

0

dt0 gg
S

dS0 · (G(r, t; r0, t0)90 p(r0, t0)− p(r0, t0)90 G(r, t; r0, t0))
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−
1
c2 ggg

V

dr0 [p(r0, t0)1t0 G(r, t; r0, t0)−G(r, t; r0, t0)1t0 p(r0, t0)]t0 =0, (46a)

where

W(r0, t0)= r0 1t0 qs + r0 div (g). (46b)

The first integral can be interpreted as the effect of the real and image sources, i.e., the
inertial sources (r0 div (g)) which begin to occur from the time t=0, and the loudspeaker
for tq 0 only. The second integral contains the correction to take into account if the
boundary conditions chosen for the Green function and the real boundary conditions are
not the same. This second integral is here equal to zero as the impedance-like boundary
condition chosen for the Green function rightly corresponds, in a first approximation, to
the real boundary conditions. The third integral represents the effect of the initial
conditions, due to the energy provided by the loudspeaker at tE 0.

The upper integration limit (t0 =a) is in fact t0 = t because of the principle of causality
(given by the Heaviside step function U(t− t0) in the expression of the Green function).
The lower integration limit (−a) is replaced by t0 =0 (the origin of the time).

The solution for the pressure variation can be expressed as an eigenfunction expansion,

p(r, t)= s
n

Fn (t)Cn (r), (47)

where the eigenfunctions Cn are those of the cavity (see section 4.1.2) and where the
coefficients Fn depend on the time. Introducing this last expression (47) and that of the
Green function (44) in equation (46a), and making use of the orthogonality property of
the eigenfunctions, leads to the equation satisfied by the coefficients Fn (t) for te 0:

Fn (t)=
c2

vn g
t

0

dt0 sin (vn (t− t0)) e−gn (t− t0) ggg
V

W(r0, t0)Cn (r0) dr0

+ e−gn t60cos (vn t)−
gn

vn
sin (vn t)1Fn (0)+

1
vn

sin (vn t)1t0 Fn (t0) =t0 =07. (48)

One can note that this expression is indeed equal to Fn (0) for t=0.

4.2.  

4.2.1. Eigenfunctions
Upon using the cylindrical co-ordinates, the eigenfunctions Cn , which are the solutions

of the Neumann’s boundary problem, take the forms CC
n and CS

n , as follows:

Cn $CS%(r, 8, z)=
1

anr an8
anz

Jn8 0gnrn8

R0
r1$cos

sin%(n8 8) cos 0nz p

h
z1, (49)

with

a2
nr
=g

G

G

F

f

R2
0

2 $1−0 n8

gnrn81
2

% J2
n8

(gnr n8
),

R2
0

2
,

if gnr n8
$ 0,

if gnr n8
=0

h
G

G

J

j

, (50)
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Figure 6. The angular co-ordinate 8 of a point M of the cavity.

and a2
n8

=(1+ dn80)p, a2
nz
= h/(2− dnz 0). The factor gnr n8

is the (n+1)th zero of the spatial
derivative of the cylindrical Bessel function Jn8

. The integers nr , n8 , nz are associated
respectively with the co-ordinates r, 8, z and to the eigenvalue k°2

n :

k°2
n =(gnr n8

/R0)2 + (nz p/h)2. (51)

Then, the pressure expansion can be written as

p(r, t)= s
n

[Fc
n (t)Cc

n (r)+Fs
n (t)Cs

n (r)]. (52)

4.2.2. Restriction to the two first azimuthal modes
In the following, the pressure expansion is truncated to include only the first two

resonant azimuthal modes n=1, ‘‘C’’ and ‘‘S’’, which correspond to the quantum
numbers nr =0, n8 =1, nz =0 and the same eigenvalue g01 =1·84. The other modes,
including the mode (0, 0, 0), are assumed to be negligible. This assumption can be made
only if the azimuthal angular co-ordinate 8 has its origin on the (Oxs ) axis which is linked
to the loudspeaker. Then, the source and the microphone are located respectively at
8Loudspeaker =0 and 8micro = p/2 (see Figure 6).

Furthermore, the height of the cavity is assumed to be much smaller than its diameter,
enabling one to neglect the influence of the acoustic modes nz $ 0 at the operating
frequency of the gyrometer (that is, the frequency of the first resonant mode (0, 1, 0) for
the cavity under consideration).

Then, upon assuming these approximations, the eigenfunction expansion of the acoustic
pressure may be written as

p(r, t)=Fc
1 (t)Cc

1 (r)+Fs
1 (t)Cs

1 (r), (53)

where
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C1 $CS%(r, 8, z)=
1

a0rzhp
J1 0g01

R0
r1$cos 8

sin 8%, (54a)

with

a0r =R0 J1 (g01) zg2
01 −1/z2g01. (54b)

The mode ‘‘C’’ (cos 8) represents the acoustic field provided by the loudspeaker (located
at 8=0) and the mode ‘‘S’’ the field due to the inertial effects (measured by the
microphone situated at 8= p/2).

4.2.3. The integral equation
For the n=1 (mode (0, 1, 0)), the pressure amplitude of the main mode (cos 8)

generated by the loudspeaker is given by the coefficient Fc
1 (t), and the amplitude of the

other mode (sin 8) corresponding to the signal measured by the microphone is given by
the coefficient Fs

1 (t). This last function Fs
1 (t) satisfies the integral equation (48), written

for this coefficient by restricting the expansion of p to the first azimuthal modes n=1 in
the factor W(r0, t0): i.e.,

Fs
1 (t)=

c2

v1 g
t

0

sin (v1 (t− t0)) e−g1 (t− t0) ggg
D

W(r0, t0)Cs
1 (r0) dr0 dt0

+ e−g1 t60cos (v1 t)−
g1

v1
sin (v1 t)1 Fs

1 (0)+
1
v1

sin (v1 t) [1t0 Fs
1 (t0)]t0 =07, (55)

with

g1 =zv°1
zc
z2 $0 1

R0 (g2
01 −1)

+
1
h1zl'v +

g2
01

R0 (g2
01 −1)

+
1
h1(g−1)zlh%. (56)

The initial conditions vanish because the function Fs
1 (0) and its derivative are equal to

zero. Actually, at time t=0, the microphone, which is located on a node of pressure of
the main mode, does not detect anything.

Therefore, by using the notation

Ss
1 (t0)=ggg

D

W(r0, t0)Cs
1 (r0) dr0, (57a)

the integral equation (55) for the coefficient Fs
1 (t) becomes

Fs
1 (t)=

c2

v1 g
t

0

sin (v1 (t− t0)) e−g1 (t− t0)Ss
1 (t0) dt0. (57b)

4.3.    Fs
1 (t)

The ‘‘source’’ factor denoted Ss
1 (t) (equation (57a)) depends on the function W(r0, t),

which involves the effects of the loudspeaker and the inertial effects. Upon denoting
j= 1−1

t v the acoustic particle displacement, its expression (46b) is given by

W(r0, t)= r0 1t qs +2r0 div (V× v)+ r0 div (1t V× 1−1
t v)+ r0 div (V×(V× 1−1

t v)).
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The source function Ss
1 (t) can be written as the sum of the factor Qs

1 (t), which denotes
the energy transfer from the loudspeaker to the mode n=1 ‘‘S’’, and of three other terms
Cos

1 (t), Aas
1 (t) and Ces

1 (t) which represent the coupling associated to the effects of the
rotation of the fluid:

Ss
1 (t)=Qs

1 (t)+Cos
1 (t)+Aas

1 (t)+Ces
1 (t), (58a)

with

Qs
1 (t)= r0 ggg

V

1t qs (r0, t)Cs
1 (r0) dr0, Cos

1 (t)=2r0 ggg
V

div (V× v)Cs
1 (r0) dr0,

(58b, c)

Aas
1 (t)= r0 ggg

V

div (1t V× 1−1
t v)Cs

1 (r0) dr0, (58d)

Ces
1 (t)= r0 ggg

V

div (V×(V× 1−1
t v))Cs

1 (r0) dr0. (58e)

Then, the solution Fs
1 (t) is the sum

Fs
1 (t)=Fs

Q1
(t)+Fs

C01
(t)+Fs

Aa1
(t)+Fs

Ce1
(t), (59a)

of the integrals

Fs
Q1

(t)=
c2

v1 g
t

0

sin (v1 (t− t0)) e−g1 (t− t0)Qs
1 (t0) dt0, (59b)

Fs
C01

(t)=
c2

v1 g
t

0

sin (v1 (t− t0)) e−g1 (t− t0)Cos
1 (t0) dt0, (59c)

FAas
1 (t)=

c2

v1 g
t

0

sin (v1 (t− t0)) e−g1 (t− t0)Aas
1 (t0) dt0, (59d)

FCes
1 (t)=

c2

v1 g
t

0

sin (v1 (t− t0)) e−g1 (t− t0)Ces
1 (t0) dt0. (59e)

In section 4.3, these integrals are calculated successively in order to provide an analytical
form for the solution Fs

1 (t), which permits one to obtain the pressure amplitude measured
by the microphone as a function of the time.

4.3.1. The loudspeaker contribution
The rate of volume creation by the loudspeaker, which is considered as a point source

at r= rs , can be expressed as

qs =Q0 cos (v1 t)d(r− rs ), (60)

where Q0 represents the amplitude of the rate of volume creation provided by the acoustic
source.
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For te 0, the acoustic source, which is flush-mounted to the base of the cavity (z=0),
near the lateral wall (rs 3R0), rotates with the angular speed V0. Its rate of volume creation
takes the form

qs =Q0 cos (v1 t)
1
r

d(r−R0)d(8)d(z). (61)

Therefore, the term source Qs
1 (t) (equation 58b) becomes

Qs
1 (t)= r0 Q0 1t ggg

D

cos (v1 t)d(r− rs )Cs
1 (r) dr, (62)

which can be written, after integration over the volume D of the cavity, as

Qs
1 (t)=−v1 r0 Q0 sin (v1 t)Cs

1 (R0, 8=0, z=0). (63)

As the eigenfunction Cs
1 (R0, 8=0, z=0) is equal to zero on the loudspeaker, the inertial

source factor Qs
1 (t), which expresses the energy transfer from the loudspeaker to the mode

Cs
1, vanishes (as assumed in section 4.2.3). Therefore, Qs

1 (t)=0.

4.3.2. Acoustic, entropic and vortical particle velocities
The inertial factors (equations (58c), (58d) and (58e)) involve the expression of the whole

‘‘acoustic’’ particle velocity. This particle velocity is written as the sum of the laminar
acoustic and laminar thermal velocities va and vh and the vortical velocity vv [8].

The real expressions of these three velocities are determined by assuming the Born
approximation. The particle velocity v in equations (58c), (58d) and (58e) is assumed to
be the acoustic velocity of the main mode (generated by the loudspeaker): that is, the
pressure variation p(r, t) is replaced by its initial value at t=0. At the resonant radian
frequency v1 3v0

1 − g1, its real expression takes the form

p(r, t)=Ac
1 cos (v1 t)Cc

1 (r, 8, z), (64a)

with

Ac
1 = r0 c2Q0 Cc

1 (rs )
v1

2g1 v0
1
3 r0 c2

2g1
Q0 Cc

1 (rs ). (64b)

Figure 7. Walls SH1, SH2, and SL of the cavity.
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The real function for the laminar acoustic velocity can then be expressed as:

1r J1 (k01 r) cos 8er

va (r, t)=−
1
r0

sin (v1 t)
v1

Ac
1

a0r zhp
g
G

G

G

G

F

f

−
1
r

J1 (k01 r) sin 8e8 h
G

G

G

G

J

j

(65)

60ez

(−vh − vv )ez

in the domain D
over the surfaces SH1 and SH2

where k01 = g01 /R0 and SH1 and SH2 are the surfaces of the cavity located at z=0 and z= h
(see Figure 7).

The thermal and vortical velocities are negligible in comparison with the laminar
acoustic velocity in the whole volume under consideration except in the boundary layers
near the walls. On these walls, the particle velocity vanishes: va + vh + vv =0. As the
thermal and vortical velocities in the boundary layers represent a diffusing motion along
the direction normal to the wall, these velocities have different expressions when they are
expressed near the cylindrical lateral wall (SL) or near the horizontal upper (SH1) and lower
(SH2) surfaces of the cavity.

Therefore, the real expressions for the laminar thermal velocity are given near the wall
SH1, by

v(H1)
h =−

lh
r0 c

(g−1)
Ac

1

a0r zhp
ehh(z− h)

cos (v1 t+ hh (z− h))1r J1 (k01 r) cos 8er

×g
G

G

F

f

−cos (v1 t+ hh (z− h))
1
r

J1 (k01 r) sin 8e8 h
G

G

J

j

,

+ hh [cos (v1 t+ hh (z− h))− sin (v1 t+ hh (z− h))]J1 (k01 r) cos 8ez

(66)

and near the wall SL by

v(L)
h =

lh
r0 c

(g−1)
Ac

1 J1 (g01)
a0r zhp

ehh (r−R0)

hh [cos (v1 t+ hh (r−R0))− sin (v1 t+ hh (r−R0))] cos 8er

×g
G

G

F

f

−cos (v1 t+ hh (r−R0))
1
r

sin 8e8 h
G

G

J

j

(67)

+0ez

with hh =zv1/2clh .
The real expressions for the vortical velocity are given near the wall SH1 by
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F J
v(H1)

v =
1
r0

Ac
1

a0r zhp
ehv (z− h)H H

H H
H H

1r J1 (k01r) cos 8 $ 1
v1

sin (v1 t+ hv (z− h))+
lh
c

(g−1) cos (v1 t+ hv (z− h))% erH H
H H
H H

−
1
r

J1 (k01r) sin 8 $ 1
v1

sin (v1 t+ hv (z− h))H H
H H
g h×

+
lh
c

(g−1) cos (v1 t+ hv (z− h))% e8H H
H H
H H
H H+

k2
01

2hv
J1 (k01r) cos 8 $0 1

v1
+

lh
c

(g−1)1sin (v1 t+ hv (z− h))

,

H H
H H
H H

+0−1
v1

+
lh
c

(g−1)1 cos (v1 t+ hv (z− h))% ezH H
f j

(68)

and near the wall SL by

v(L)
v =

1
r0

Ac
1

a0r zhp
J1 (g01) ehv (r−R0)

cos 8
1

2hv r2 $$ 1
v1

+
lh
c

(g−1)% sin (v1 t+ hv (r−R0))

g
G

G

G

G

G

G

G

G

F

f

+$−1
v1

+
lh
c

(g−1)% cos (v1 t+ hv (r−R0))% er

h
G

G

G

G

G

G

G

G

J

j

,×

−
1
r

sin 8 $ 1
v1

sin (v1 t+ hv (r−R0))+
lh
c

(g−1) cos (v1 t+ hv (r−R0))% e8

+0ez

(69)

with hv =zv1 /2cl'v .
Note that the three components of each velocity have been calculated, although some

of them are a priori negligible in comparison with others.

4.3.3. The contribution of the Coriolis acceleration
The coupling factor Cos

1 (t) (equation (58c)), which accounts for the effects of the
Coriolis acceleration, can be separated into three integrals which correspond to the three
‘‘components’’ of the particle velocity: namely,

Cos
1 (t)=Cos

1a (t)+Cos
1h (t)+Cos

1v (t), (70a)
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with

Cos
1a (t)=2r0 ggg

V

div (V× va )Cs
1 (r) dr, (70b)

Cos
1h (t)=2r0 ggg

V

div (V× vh )Cs
1 (r) dr, (70c)

Cos
1v (t)=2r0 ggg

V

div (V× vv )Cs
1 (r) dr. (70d)

Upon using the relationship

div (V× v)Cs
1 (r)=div [(V× v)Cs

1 (r)]− (V× v) · grad Cs
1 (r), (71)

and Ostrogradsky’s law, the integral Cos
1 (t) takes the form

ggg
D

div (V× v)Cs
1 (r) dr=ggg

D

div [(V× v)Cs
1 (r)] dr−ggg

D

(V× v) · grad Cs
1 (r) dr

=gg
1D

(V× v)Cs
1 (r) dS−ggg

D

(V× v) · grad Cs
1 (r) dr (72)

and as the particle velocity vanishes on the walls, it simplifies to

Cos
1 (t)=−2r0 ggg

V

(V(r, t)× v) · grad Cs
1 (r) dr=2r0 ggg

V

(grad Cs
1 (r)× v) · V(r, t) dr.

(73)

The function FCos
1
(t) can then be calculated by replacing Cos

1 (t) by this expression (73) in
equation (59c).

4.3.4. The contribution of the angular acceleration
The factor FAas

1
(t) (equation (59d)) is determined in the same manner as the Coriolis

factor (equation (59c)) in section (4.3.3). The time derivative of the angular velocity
V(r, z, t) is expressed as

1t V(r, z, t)=V001+
R0

r
s

m=1,3 . . .

s
n=1,2 . . .

8
mp

sin 0mp

h
z1 J1 (ln r /R0)

ln J0 (ln )
e−k2

mn nt1d(t)

−U(t)V0
R0

r
s

m=1,3 . . .

s
n=1,2 . . .

k2
mn n

8
mp

sin 0mp

h
z1 J1 (ln r/R0)

ln J0 (ln )
e−k2

mn nt, (74)

where d(t) is the Dirac distribution. Then, the integral Aas
1 (t) (equation (58d)) can be

written as
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Aas
1 (t)=+r0 ggg

V

1t V · (grad Cs
1 (r0)× 1−1

t v) dr0, (75)

and the function FAas
1
(t) is calculated by introducing expression (75) in equation (59d).

Note that the contribution of the first term of the left side of equation (74) is null because
the particle displacement 1−1

t v vanishes at time t=0.

4.3.5. The contribution of the centripetal acceleration
The centripetal acceleration has no acoustic influence, because the intergral Ces

1 (t) and
then the function Fces

1
(t) are equal to zero. This can be demonstrated in the following

manner.
The integral Ces

1 (t) (58e) can be expressed in the same way as both integrals (58c) and
(58d):

Ces
1 (t)=−r0 ggg

V

V×(V× 1−1
t v) · grad Cs

1 (r0) dr0. (76)

The relationship V×(V× 1−1
t v)=−V2(1−1

t vr er + 1−1
t v8 e8 ) permits one to write the

integrand as

V×(V× 1−1
t v) · grad Cs

1 (r0)=−V201−1
t vr 1r C

s
1 (r)+ 1−1

t v8

1
r

18 Cs
1 (r)1. (77)

The expressions for the velocities (equations (65)–(69)), and that for the eigenfunction
Cs

1 (r) (equation (54)), show that this last equation (77) includes the scalar product of
orthogonal eigenfunctions (with cos 8 and sin 8). Hence, the coefficient Ces

1 (t) and the
function FCes

1
(t) vanish.

The analytical expressions for the functions FCos
1
(t) and FAas

1
(t) have been determined

after some lengthy calculations. Nevertheless, some spatial integrals involving Bessel
functions had to be calculated numerically as no analytical solutions were found for them.

5. RESULTS AND CONCLUSION

A discussion of the transient behaviour of the cylindrical acoustic gyro in detail is
beyond the scope of this paper. Thus the aim has been only to address new requirements
that have to be taken into account in the design of acoustic gyros and that arose during
the analysis presented in this paper. So far there is no ‘‘model’’ available to describe the
response of the acoustic gyro for strong variations of the rotation rates. The design
requirements, for the optimum response of the gyro, had concerned only the steady
response and was mainly governed by the quality factor of the cavity which depends on
the acoustic modes generated, the dimensions of the cavity, the ambient temperature, the
static pressure, the specific heat ratio, the Prandtl number, and so on [1].

Now, one can identify more design requirements for the ‘‘optimum’’ response of the
gyro. An example of the contribution of the Coriolis effect to the transient response of
the gyro is given in Figure 8, showing the sensitivity increasing regularly. As expected, the
asymptotic value of this sensitivity obtained for the transient response is exactly equal to
the one obtained from the method used to calculate the steady state behaviour, which was
itself in very good agreement with experimental results [2]. This transient response is clearly
governed by the velocity distribution (with circular streamlines), generated by the rotation
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Figure 8. Root mean square of the amplitude (linear scale) of the acoustic pressure due to the Coriolis mode
coupling, normalized to the acoustic pressure generated by the loudspeaker (sensitivity), as a function of time.
Cavity filled with SF6: h=2×10−3 m; R0 =7×10−3 m.

of the rigid boundaries, which reaches steady motion after roughly one second for a cavity
2 mm high.

The contribution of the term which involves the time rate of change of the angular
velocity (1V/1t), proportional to the acoustic particle displacement, reaches its maximum
value at the beginning of the transient and vanishes as the unsteady rotational velocity
gradient vanishes. The acoustic effect of the third inertial term linked to the centripetal
acceleration is negligible as long as the rotation rates remain low enough so that the inertial
acoustic modes coupling remains linear.

The parameters which govern the transient responses mentioned above depend strongly
on both the dimensions of the cavity and the shear viscosity coefficient of the fluid (among
others). These parameters permit the modification of the shape of the transient response,
in such a way (for example) that the stabilization time can be reduced.
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APPENDIX: LIST OF SYMBOLS

Ac
1 amplitude of the initial acoustic field generated by the loudspeaker

c adiabatic speed of the sound
Cp heat coefficient at constant pressure per unit of mass of the fluid
dt =d/dt material derivative
1t = 1/1t time partial derivative
1n spatial derivative normal to the walls
d(i)

t material derivative relative to the inertial frame
d(m)

t =dt material derivative relative to the moving frame
D integration domain, the bulk of the cavity
1D surface containing the domain D (the walls of the cavity)
er , eu , ez unit vectors of the system of cylindrical co-ordinates
G(r, t; r0, t0) Green function in the time domain
h height of the cavity
i i=z−1
J0 Bessel function of the first kind and order zero
J1 Bessel function of the first kind and first order
k=v/c wavenumber associated to the adiabatic motion
k_ component normal to the wall of the wavenumber k
k01 k01 = g01 /R0

l'v l'v = m/rc, characteristic length linked to viscosity
lh lh = lh /rcCp , characteristic length linked to heat conduction
nr , n8 , nz quantum numbers associated to the modes of acoustic pressure inside the cavity
OM= r mean position vector of a fluid element
OP instantaneous position vector of a fluid element including the acoustic motion
p(r, t) pressure variation
P pressure associated to the circular fluid motion
PT whole pressure associated to the fluid motion
qs rate of volume creation of fluid per unit volume of the loudspeaker
Q0 amplitude of qd

r radial co-ordinate of the point M inside the cavity
r position vector of the point M inside the cavity
R0 radius of the cylindrical cavity
ST entropy
SH1, SH2 upper and lower ‘‘horizontal’’ walls of the cavity
SL lateral cylindrical wall of the cavity
T temperature
U(t) Heaviside step function
v particle velocity v=dt MP= va + vh + vv

va laminar acoustic velocity
vh laminar entropic velocity
vv vortical velocity
VT whole particle velocity
V velocity of the fluid (without acoustic movement)
b boundary specific admittance
g=Cp /Cv specific heat ratio
ga factor of angular acceleration
gco Coriolis acceleration
gce centripetal acceleration
h coefficient of bulk viscosity of the fluid
h−1

h thickness of the thermal boundary layer
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h−1
v thickness of the viscous boundary layer

l coefficient of thermal conductivity of the fluid
m coefficient of shear viscosity of the fluid
n= m/r0 coefficient of cinematic viscosity of the fluid
j=MP particle displacement
r density variation
rT whole density of the fluid
r0 mean density of the fluid
xT isothermal compressibility
v= kc radian frequency
V0 angular velocity of the walls of the cavity
V(r, z, t) angular velocity of the fluid inside the cavity.


