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The transmission of vibrations in the vicinity of a rectangular harmonic vertical load,
acting on a damped elastic layer overlying a damped elastic half-space of different material,
is investigated theoretically, by using a semi-analytical approach. The solution involves a
double Fourier transform with respect to two of the space variables of Navier’s
elastodynamic equations. The inverse double Fourier transform is achieved with the FFT
algorithm. Results presented include transformed displacements in the wavenumber
domain, actual displacements in the near field of the load, and the direct receptance at the
load. Comparisons are made with results for a half-space and a layer over a rigid
foundation, and with some experimental results.
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1. INTRODUCTION

The original motivation for the work described in this paper was concern about vibrations
caused by rail and road transport. Theoretical models which simulate the propagation of
such vibration will be of use in optimizing the application of defensive measures such as
trenches, or vibration absorbing material placed under either the source of vibration or
a protected structure.

The ground is modelled as an hysteretically damped elastic layer overlying an
hysteretically damped elastic half-space of different material, with an harmonic vertical
load in the form of a rectangle. A rectangular load is more typical of those encountered
in practice than the commonly used disc load. Equally, a flexible interface represents a
closer approximation to reality than either a layer over a rigid foundation, or a simple
half-space. The load boundary condition is defined as a force rather than a displacement,
to avoid mixed boundary conditions. A double Fourier transform is used to find the
transformed displacements in the wavenumber domain. Explicit expressions for the three
components of transformed displacements are found as functions of the two transform
variables, which are the wavenumbers in the two horizontal directions. The actual
displacements are then found by using a numerical inverse Fourier transform.
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In most previous work involving three-dimensional modelling of the ground structure
considered here, the load has been modelled as either a point or a disc, to maintain
cylindrical symmetry; see references [1] and [2] for example. The simpler two-dimensional
(plane) problem has been considered by, among others, Newlands [3] and Israil and
Ahmad [4]. An interesting alternative ground structure caled Gibson soil, in which the
shear modulus varies in proportion to the depth, was modelled by Awojobi [5].

2. FOURIER TRANSFORM OF THE GOVERNING EQUATIONS

The model of the ground, co-ordinate system and load are shown in Figure 1. The
rectangle has sides of length 2b and 2c, and is aligned with respect to the co-ordinate axes
as shown. It rests on an homogeneous, isotropic layer, with material properties E (Young’s
modulus), r (density) and n (Poisson ratio), which overlies a half-space with corresponding
properties E', r' and n'. Throughout, quantities in the half-space are denoted with a prime.
The layer and the half-space exhibit hysteretic damping characterized by loss factors h and
h', and as a result the constants E, l and m (see equations (2) and (3) for the definitions
of l and m) are each multiplied by a factor (1+ ih), and likewise the half-space parameters
E', l', and m', are multiplied by (1+ ih'), causing these constants to become complex. An
harmonic vertical load acts uniformly over the rectangle, and no shear stresses exist at the
surface. The first part of the approach is similar to that in reference [6], and will be
summarized.

The behaviour of the layer is described by Navier’s elastodynamic equations (see
reference [7] Appendix A, for example). In the absence of a body force, and assuming the
motion is harmonic, one obtains the following vector equation for the displacement vector
u in the layer, which has components (u, v, w):

(l+ m)9D+ m92u+ rv2u= 0, (1)

in which l and m, the Lamé constants, are defined as

l=
nE(1+ ih)

(1+ n) (1−2n)
, m=

E(1+ ih)
2(1+ n)

. (2, 3)

Similar equations relate the primed constants (E', etc.) in the half-space. In equation (1)
9 is the gradient, 92 is the Laplacian operator, and D is the dilatation, defined by

D= 1u/1x+ 1v/1y+ 1w/1z. (4)

Taking the divergence of equation (1) and dividing by r gives

(92 + k2
1 )D=0, (5)

Figure 1. A diagram of the model.
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where k1 =v/c1 and c2
1 = (l+2m)/r. To solve equation (5), the double Fourier transform

is used, which is defined as

f�(b, g, z)=g
a

−a g
a

−a

f(x, y, z) e−i(bx+ gy) dx dy. (6)

With the above definition of the Fourier transform, the corresponding inverse transform
will include a factor 1/(4p2). Applying the Fourier transform to equation (5) yields a simple
differential equation for the transform of the dilatation, the solution of which is

D� =A e−a1 z +B ea1 z, (7)

where

a2
1 = b2 + g2 − k2

1 . (8)

Taking the Fourier transform of equation (1), substituting for D� and solving the resulting
differential equation in z leads to

2 ūv̄w̄3= 2−ib
−ig

a13 A
k2

1
e−a1 z + 2−ib

−ig
−a13 B

k2
1
ea1 z + 2CEG3 ea2 z + 2DFH3 e−a2 z, (9)

where A, B, . . . , H are functions of the wavenumbers b and g, and

a2
2 = b2 + g2 − k2

2 , (10)

where k2 =v/c2 and c2
2 = m/r. The constants G and H can be found in terms of the other

unknowns by transforming the dilatation (equation (4)), substituting for the transformed
displacements from equation (9), and equating the result to equation (7).

The stress–strain relations can be expressed as

tij = ldij D+ m(1ui /1xj + 1uj /1xi ), (11)

where tij is the stress tensor, dij is the Kronecker delta, and ui and xi are the ith components
of the vectors (u, v, w) and (x, y, z) respectively. The stress components txz and tyz are zero
at the surface, while the component tzz at the surface can be written as

tzz=z=0 =6−P/4bc,
0,

=x =Q b,
elsewhere

=y =Q c7. (12)

P is the total force acting on the rectangle, and is equally distributed over it.
Using equation (9) to replace ū, v̄ and w̄ in the transform of equation (11), and evaluating

the resulting expressions at z=0, leads to the following three equations:

2ia1 b

k2
1

(A−B)+
(b2 + a2

2 )
a2

(C−D)+
bg

a2
(E−F)=0, (13)

2ia1 g

k2
1

(A−B)+
bg

a2
(C−D)+

(g2 + a2
2 )

a2
(E−F)=0, (14)

0l−
2ma2

1

k2
1 1(A+B)−2mi(b(C+D)+ g(E+F))=−

P sin bb sin gc
bcbg

. (15)
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Because of possible over/underflow problems associated with terms of the form u2az for
large z, sub-layers of depth h are introduced such that d= nh. The stiffness matrix for a
sub-layer is then deduced and a global stiffness matrix for the entire physical layer
constructed.

3. STIFFNESS MATRIX FOR A SUB-LAYER

From the preceding, one can find the 6×6 matrix S of coefficients such that

t̄=SK, (16)

where

t̄=(−t̄zx (0), −t̄zy (0), −it̄zz (0), t̄zx (h), tzy (h), it̄zz (h))T (17)

and

K=(A B C D E F)T. (18)

The vector t̄ is defined as in equation (17) to make the stiffness matrix C, which is defined
below, symmetric. The transformed displacements at the top and bottom of a sub-layer
can be expressed as

U�=TK, (19)

where

U�=(ū(0), v̄(0), iw̄(0), ū(h), v̄(h), iw̄(h))T (20)

and T is the appropriate matrix of coefficients. Combining equations (16) and (19), and
introducing the stiffness matrix C such that

C=ST−1, (21)

gives

t̄=CU�. (22)

Equation (22) is for the first sub-layer of depth h; one can easily assemble a global equation
for n layers. The form of this global equation is

CG U�G = t̄G , (23)

where, for the simple case n=2,

C11 C12 C13 C14 C15 C16 0 0 0

C21 C22 C23 C24 C25 C26 0 0 0

C31 C32 C33 C34 C35 C36 0 0 0

C41 C42 C43 C44 +C11 C45 +C12 C46 +C13 C14 C15 C16

CG =G
G

G

G

G

G

G

G

G

F

f

C51 C52 C53 C54 +C21 C55 +C22 C56 +C23 C24 C25 C26 G
G

G

G

G

G

G

G

G

J

j

,

C61 C62 C63 C64 +C31 C65 +C32 C66 +C33 C34 C35 C36

0 0 0 C41 C42 C43 C44 C45 C46

0 0 0 C51 C52 C53 C54 C55 C56

0 0 0 C61 C62 C63 C64 C65 C66
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T 1

Parameters for the layer and half-space

E (Young’s modulus) 269 MN/m2

E' 1076 MN/m2

r (density) 1550 kg/m3

r' 2000 kg/m3

n (Poisson ratio) 0·257
n' 0·257
h (loss factor) 0·1
h' 0·1
P (total applied force) 1 N
d (layer depth) 7 m
b (rectangle dimension) 0·3 m
c (rectangle dimension) 0·3 m
f (frequency of excitation) 64 Hz

in which Cij is the element of C in the ith row and jth column, and

U�G =(ū(0), v̄(0), iw̄(0), ū(h), v̄(h), iw̄(h), ū(d), v̄(d), iw̄(d))T,

t̄G =(−t̄zx (0), −t̄zy (0), −it̄zz (0), 0, 0, 0, t̄zx (d), t̄zy (d), it̄zz (d))T.

The stresses at the layer/half-space interface are unknown, but they can be expressed in
terms of the displacements at the interface, as described in the next section.

4. EXPRESSIONS FOR THE TRANSFORMED STRESSES AT THE INTERFACE

With the assumption of a perfect bond between the layer and half-space, the stresses
and displacements at z= d and z'=0 must be identical: i.e.,

(ū(d), v̄(d), w̄(d))T = (ū'(0), v̄'(0), w̄'(0))T, (24)

or, symbolically,

U�(d)=U�'(0). (25)

Likewise

(t̄zx (d), t̄zy (d), it̄zz (d))T = (t̄'zx (0), t̄'zy (0), it̄'zz (0))T, (26)

or, symbolically,

t̄(d)= t̄'(0). (27)

The stresses in the half-space can be expressed as [8]

t̄'(0)=MK', (28)

where K'= (A', B', C') is a vector of unknown constants and

M= m' 2 2iba'1 /k'21

2iga'1 /k'21

i(k'22 −2(b2 + g2))/k'21

−(b2 + a'22 )/a'2
bg/a'2
2b

bg/a'2
−(g2 + a'22 )/a'2

2g 3. (29)

The displacements in the half-space can also be defined in terms of the vector K'; one can
write

U�'(0)=U�(d)=NK', (30)
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in which

N= 2−ib/k'21

−ig/k'21

ia'1 /k'21

1
0

−b/a'2

0
1

−g/a'23. (31)

Eliminating K' in equations (28) and (30) and using equation (27) gives

t�(d)=MN−1U�(d). (32)

The stresses at the interface can thus be replaced by zeros in equation (23), by subtracting
the symmetric matrix (MN−1) from the bottom right corner of the matrix CG .

5. RESULTS

The global stiffness matrix CG is diagonally dominant, and so no numerical difficulties
are encountered when solving equation (23) for the transformed displacements. The layer
in the ground was divided into seven sub-layers, giving a square global stiffness matrix with
24 rows. The parameters given in Table 1 have been used to produce the figures shown.
They correspond to a particular site named Clarborough, which was also used in references
[6] and [8], so aiding comparison with the results of those articles. The half-space
parameters have been chosen partly because they are physically realistic, and also so that
E'/E=4, which ensures results characteristic of this model, since for E'/Eq 10 the model
behaves like a layer over a rigid foundation. A square load has been preferred
(b= c=0·3 m) to emphasize the symmetry of the transformed displacements. Except
where stated otherwise, a relatively high frequency for ground vibration of 64 Hz has been
used, because with the chosen ground parameters this allows the development of several
propagating modes in the 7 m layer, which gives interesting behaviour in both domains.

The behaviour of the transformed displacements in the (b, g) plane is in itself
informative, but for brevity only two such surfaces are shown here. In Figure 2 is shown
the amplitude of the component w̄; only the positive quarter-plane is shown, because w̄

Figure 2. The amplitude of the transformed vertical displacement, v̄. Vertical scale×10−9.
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Figure 3. The imaginary part of the transformed transverse displacement, v̄. Vertical scale×10−9.

is symmetric with respect to both the b=0 and g=0 planes. The peaks are located where
the value of (b2 + g2)1/2 equals the wavenumber of one of the propagating modes in the
layer (the approximate location of these peaks could be calculated using a free vibration
analysis). The largest peak is located close to the wavenumber kR of the Rayleigh wave
(for zero damping and with the parameters used here, kR =1·67 m−1). This is because, for

Figure 4. The modulus of the direct receptance. ×××, Half-space; ––, elastic foundation; ***, inflexible,
bedrock.
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Figure 5. The amplitude of the vertical displacements along x=0 for 64 Hz. Key as Figure 4, but with +++,
no layer.

this combination of layer depth and frequency, the first mode is almost identical to the
Rayleigh wave.

The imaginary part of the component v̄ is shown in Figure 3. As in Figure 2, the
locations of the peaks and troughs are related to the wavenumbers of the propagating
modes in the layer. Both the real and imaginary parts of the component v̄ are
antisymmetric with respect to the b axis, and symmetric with respect to the g-axis.

Under certain conditions, a generalized Rayleigh wave known as the Stoneley wave may
exist at the interface. However, Scholte [9] has shown that Stoneley waves can exist only
if the compression wave speeds in each medium are nearly equal, and likewise for the two
shear wave speeds, which is not the case with the material properties used here.

The inverse transform was performed by using the Fast Fourier Transform (FFT)
algorithm (see reference [10], for example), with a grid of 2048 points by 2048 and a range
of −16Q b, gQ 16 to avoid aliasing and ensure an accurate representation of surfaces of
the type shown in Figures 2 and 3.

In Figures 4 and 5 are shown results compared with those from models of a half-space
[8], in which the layer material effectively extends to infinity, and a layer over an inflexible
foundation [6], or ‘‘bedrock’’. In Figure 5 are also given displacements for a half-space
of the material under the layer: that is, in which d shrinks to zero. In Figure 4 is shown
the modulus of the direct receptance: i.e., the displacement per unit load P at the centre
of the rectangular load for various frequencies. The data points have been joined by
straight lines, which explains some discontinuities of gradient. The static responses for each
model can be extrapolated from Figure 4 and, as expected, the simple half-space gives the
greatest static receptance, while the present model gives a greater static displacement than
the bedrock. The flexible interface used here can be seen as a compromise between the two
extremes of a half-space and a bedrock; the strong resonance peaks associated with the
bedrock are softened, because energy is now able to escape into the half-space below
through coupling with the body waves; this can happen if the speed of a given mode
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Figure 6. The amplitude of the vertical displacements along x=0 for 10 Hz. Key as Figure 5.

exceeds the wave speed of the coupling body wave in the half-space [11]. The variation
of both layer models from the half-space results is due to interference of the propagating
modes. One can also note that for higher frequencies (above 50 Hz) the three receptances
merge, because the wavelengths of the principal waves are too short for the interface to

Figure 7. The amplitude of the vertical displacements along x=0 for 4 Hz. Key as Figure 5.
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Figure 8. The results with the parameters in Table 2. Frequency (Hz): ––, 16; ×××, 32; ***, 44; +++, 64.

have a significant effect (at 50 Hz with the parameters used here, the Rayleigh wavelength
is less than 5 m, whereas the layer is 7 m deep).

In Figure 5 the three models up to 25 m from the load centre, along the x-axis, are
compared. The displacements have been ‘‘clipped’’ to show the detail; the actual
displacements at the load centre are all close to 6·25×10−9 m, with the exception of the
‘‘no layer’’ results (corresponding to d=0), for which the displacement at the centre of
the load is 1·61×10−9 m. Again, the elastic interface is a compromise between the other
two models: the modes propagating over the elastic boundary produce a softer interference
pattern than the bedrock model. The differences in the three displacements would be
greater at the resonant frequencies, which can be deduced from Figure 4. The ‘‘no layer’’
results have been included to emphasize that, at 64 Hz, the behaviour is close to that for
a layer extending to infinity, so that the half-space below has little effect on the
displacements at the surface. Auersch [2] has stated the general rule that only the material
to a depth of one half the Rayleigh wavelength lR has an effect on the surface
displacements. At a frequency of 64 Hz, lR =3·8 m, and since d=7 m the results in
Figure 5 confirm Auersch’s rule. To verify that this rule applies at lower frequencies,
similar comparisons were undertaken for 10 Hz and 4 Hz, and are shown in Figures 6 and
7. At 10 Hz lR =24·2 m, so that more than two thirds of the Rayleigh wavelength extends
into the half-space below the layer. More than 40 m from the load, it is clear that the
response is very similar to that for d=0 (‘‘no layer’’). However, within 5 m of the load,
the material immediately below the load is decisive; the maximum response for the three
models which include the layer material is close to 6·6×10−9 m, whereas the ‘‘no layer’’
model gives a corresponding displacement of 6·3×10−9 m. It may be noted that, at this
low frequency, the ‘‘inflexible bedrock’’ model inhibits vibration propagation. For this
reason, it has not been included in Figure 7, which is for 4 Hz, at which frequency
lR =60 m. In Figure 7 it is shown that, for a sufficiently low frequency, the layer material
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Figure 9. A comparison with the experimental data (vertical component).

only affects the surface response close to the load. At 10 m from the load and beyond,
the response is practically identical to that for d=0.

Figures 8, 9 and 10 have been included to allow a comparison with some experimental
results [12]. In Figure 8 are shown vertical displacements up to 25 m from the load for
four frequencies, and in Figures 9 and 10 the vertical and horizontal displacements,
respectively, 15 m from the load, compared with the experimental data. For this
comparison, the elastic foundation model had a layer depth of 1·98 m; the other
parameters used are given in Table 2. They correspond to a site named Checkerhouse. The
damping loss factor was proportional to frequency, as shown in the table. In Figure 8 it
is shown that the displacements are sensitive to the distance from the load, because of the
interference of the propagating modes in the layer. For example, at 44 Hz, a pronounced

Figure 10. A comparison with the experimental data (horizontal component).
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Parameters for experimental comparison

E (Young’s modulus) 157 MN/m2

E' 1063 MN/m2

r (density) 1517 kg/m3

r' 1759 kg/m3

n (Poisson ratio) 0·180
n' 0·253
h (loss factor) 0·00041× f
h' 0·00041× f
P (total applied force) 1 N
d (layer depth) 1·98 m
b (rectangle dimension) 0·177 m
c (rectangle dimension) 0·177 m

local minimum amplitude of displacement is found 24 m from the load. The experimental
results were produced using a disc load of radius 10 cm, and so a square having the same
surface area has been used as an approximation. The measured data are for transfer
mobilities at 15 m from the load, given as dB re 10−6 m/s/N, and the matching vertical
mobilities calculated with the present model at 15 m for the frequencies 16, 32, 44 and
64 Hz are, respectively, −50, −31, −14 and −15 dB. These compare well with the
experimental data, as shown in Figure 9, in which the calculated values are shown with
plus signs. The experimental results show a steep low frequency cut-off, with a maximum
response near 44 Hz, and the results here follow this pattern. The corresponding calculated

Figure 11. The amplitude of the vertical displacements (w) around the load. Vertical scale×10−9; all scales
in m.
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Figure 12. The amplitude of the transverse displacements (v) around the load. Scales as Figure 11.

horizontal mobilities are −45·6, −24·3, −23·0 and −20·5 dB, and in Figure 10 it is shown
that these too compare well with the experimental data.

Finally, in Figures 11 and 12 are shown, respectively, vertical and transverse components
of displacements (w and v) over the surface surrounding the load. The horizontal
component u is not shown because, for a square load, this is identical to Figure 12 rotated
through 90°. The displacements are clipped to show the detail; the actual maximum
displacement in Figure 12, which occurs at the load edge, is 1·07×10−9 m. The vertical
excitation produces a greater vertical than horizontal or transverse displacement at the
surrounding surface, and the transverse component is zero along the line y=0, as required
physically.

6. CONCLUSIONS

A theoretical model of ground vibrations caused by an harmonic, vertical and
rectangular load acting on a damped layer over a damped elastic half-space of different
material has been developed. Results produced with the model have been compared with
those for a simple half-space, and a damped elastic layer over a rigid foundation. The
results presented show the form of the transformed displacements, the amplitudes of the
components of actual surface displacments along the line x=0, and also plotted as
surfaces over the (x, y) plane, and the direct receptance of the rectangular load. Although
the material in the layer always dictates the surface response close to the load, the response
in the further field is dominated by the material in the half-space below for low frequencies,
and by the layer material for high frequencies. The results compare well with published
experimental work. Although results have been presented only for frequencies below
100 Hz, it may be remarked that the model could be applied to higher frequencies and thus
to modelling ground-borne noise.
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D. V. Jones and D. Le Houédec acknowledge the support of the British Council and
APAPE in France, for funding a travel grant which made much of this work possible.

REFERENCES

1. L. G 1981 Annales de l’ITBTP, Sols et Fondations 397, 31–66. Propagation des vibrations
dan les sols homogènes ou stratifiés.
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