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The formulae of power flows among three non-conservatively series coupled oscillators
excited by random forces have been derived and analyzed. The analysis results show that
the theory of the power flows of both three conservatively series coupled oscillators and
two non-conservatively coupled oscillators are special examples of the theory of the power
flows of three non-conservatively series coupled oscillators, and the reciprocity of the
indirect power flows among three non-conservatively series coupled oscillators is untenable.
The relationships between the power flows and the parameters of coupling have been
studied by means of the numerical method. The numerical results show that the indirect
power flows correspond to the resonant transmission between the indirectly coupled oscil-
lators, and the indirect power flows should not be ignored in strong coupling conditions.
Using the definition of the direct coupling loss factors (coupling loss factor in classical
Statistial Energy Analysis) and the power flows of three non-conservatively series coupled
oscillators, the influence of the indirectly coupled oscillators on the direct coupling loss
factors has been studied by means of the numerical method. It is shown that the existence
of the indirectly coupled oscillators has great influence on the direct coupling loss factors.
The direct coupling loss factors in multi-coupled oscillator system are different from the
coupling loss factors of the two coupled oscillators, and it is necessary to modify the direct
coupling loss factors when the energy balance equations of SEA are modified. Experimental
verification has been carried out with a floating raft isolation system. The agreement
between the results estimated by SEA and those experimentally measured are good.
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1. INTRODUCTION

Since Lyon and Maidanik [1] and Lyon [2] proposed the idea of Statistical Energy Analysis
(SEA), SEA has not only been widely applied to the prediction of sound and vibration
response [3–5], but it has also been developed and improved continuously by many
researchers [6–22]. Recently, Heron [9], Finnveden [10] and some other researchers have
found the existence of indirect power flows in multistructure systems, and the mechanism
of the indirect power flows has been studied. In order to extend the energy balance
equations of the classical SEA to multistructure systems, the power flows among three
conservatively series coupled oscillators have been investigated by Sun and his
co-researchers [17, 18]. The results show that the power flows among coupled oscillators
include both direct and indirect power flows: the direct power flows correspond to resonant
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Figure 1. A mechanical model of three non-conservatively series coupled oscillators.

energy transmission between the physically coupled oscillators, and the indirect power
flows correspond to non-resonant transmission between the indirectly coupled oscillators.
Recently, Beshara and Keane [21] have studied SEA of multiple, non-conservatively
coupled systems and some meaningful results have been obtained. However, the influence
of the multiple non-conservatively coupled substructures on the power flows has not been
studied. By using SEA for non-conservatively coupled systems, it is possible to study the
power flows among three non-conservatively series coupled oscillators. Moreover, the
energy balance equations of the classical SEA could be modified for the non-conservatively
coupled multistructure systems if knowledge of the power flows among three
non-conservatively series coupled oscillators are available. In order to apply SEA to
predict the responses of non-conservatively and strongly coupled structures, the strong
coupling loss factors have been modified by some researchers [11–14], and this modification
has improved the precision of prediction to a certain extent. Thus, the energy balance
equations of SEA are of universal significance. However, only the coupling loss factors
have been modified in this modification, and the energy balance equations of SEA have
not been improved essentially. In recent years, indirect power flows have been discovered.
The important influence of indirect power flow on the prediction of structural vibration
response has been studied [14, 15, 19, 20]. The energy balance equations of SEA have been
modified correspondingly. Other wide ranging studies have also been carried out by many
researchers [16–18] so as to extend the application of SEA. For example, coupling damping
loss factors have been introduced into the main SEA energy balance equations for the
limiting case of weak coupling by Beshara and Keane [21]. However, there has been still
no research on the influence of indirectly coupled structures on the coupling loss factors

Figure 2. Ratios of direct power flow to input power versus v2
1 /v2

3 for selected m2. Key: ––, m2=2m1;
---, m2 =3m1; · · ·, m2 =5m1; –,–, m2�10m1; –q–, 2 oscillators.
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Figure 3. Ratios of indirect power flow to input power versus v2
1 /v2

3 for selected m2. Key: ––, m2=2m1;
---, m2 =3m1; · · · , m2 =5m1; —— -- ——, m2 =10m1; — - —, m2 =100m1.

of conservatively or non-conservatively coupled structures, and such influence can be
found in Figure 3 and Figure 4 of reference [16].

In this paper, the power flows among three non-conservatively series coupled oscillators
are analyzed. The formulae for power flows among three non-conservatively series coupled
oscillators are presented. The relationships between power flows and the difference of the
stored energies are given. The influence of the parameters of the oscillators and couplings
on the power flows and the direct coupling loss factors has been investigated by the
numerical method.

Lastly, experimental verifications have also been carried out with a floating raft isolation
system. The data obtained corroborate the finding of this paper. The authors hope that
this paper would be helpful in the further application of SEA.

2. THE THEORETICAL ANALYSIS

The mechanical model of three non-conservatively series coupled oscillators is shown
in Figure 1. The equations of motion of the masses are:

Figure 4. Ratios of direct power flow to input power versus v2
1 /v2

2 for selected m3. Key: ––, m3=2m1;
–––, m3 =3m1; · · · , m3 =5m1; –·–·–, m3 =10m1.



100

0.01

ω2
1/ω2

2

P
i/P

in

10.01

0.001

1E–005

1E–006

0.0001

100

1

ω2
1/ω2

3

P
d
/P

in

10.01

0.01

0.0001

1E–006

. .   .234

Figure 5. Ratios of indirect power flow to input power versus v2
1 /v2

2 for selected m3. Key as for Figure 4.

m1 ẍ1 =−k1 x1 − c1 ẋ1 − k3 (x1 − x3)− c3 (ẋ1 − ẋ3)+F1(t),

m2 ẍ2 =−k2 x2 − c2 ẋ2 − k4 (x2 − x3)− c4 (ẋ2 − ẋ3)+F2(t),

m3 ẍ3 =−k3 (x3 − x1)− c3 (ẋ3 − ẋ1)− k4 (x3 − x2)− c4 (ẋ3 − ẋ2)− k5 x3

− c5 ẋ3 +F3 (t). (1)

Here mi denotes the mass of oscillator i. ki , k4 and k5 symbolize the stiffness coefficients.
ci , c4 and c5 are the damping coefficients, and Fi (t) is the random force supplied to
oscillator i (i=1, 2, 3). New parameters are as follows:

v2
1 = (k1 + k3)/m1, v2

2 = (k2 + k4)/m2, v2
3 = (k3 + k4 + k5)/m3,

D1 = (c1 + c3)/m1, D2 = (c2 + c4)/m2, D3 = (c3 + c4 + c5)/m3, v1 = k3 /m1,

v2 = k4 /m2, v3 = k3 /m3, v4 = k4 /m3, m1 = c3 /m1, m2 = c4 /m2,

m3 = c3 /m3, m4 = c4 /m3, f1 =F1 (t)/m1, f2 =F2 (t)/m2, f3 =F3 (t)/m3.

Figure 6. Ratios of direct power flow to input power versus v2
1 /v2

3 for selected c3. Key: ––, c3=c1;
· · · , c3 =0·1c1; –q–, c3 =0·01c1; –r–, c3 =0·001c1.
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Figure 7. Ratios of indirect power flow to input power versus v2
1 /v2

3 for selected c3. Key as for Figure 6.

Thus equations (1) may be rewritten as

ẍ1 +D1 ẋ1 +v2
1 x1 − m1 ẋ3 − v1 x3 = f1, ẍ2 +D2 ẋ2 +v2

2 x2 − m2 ẋ3 − v2 x3 = f2,

ẍ3 +D3 ẋ3 +v2
3 x3 − m3 ẋ1 − v3 x1 − m4 ẋ2 − m4 x2 = f3. (2)

By assuming that the external forces are harmonic with zero averaged value and
statistical independence, of which the spectral densities are si (i=1, 2, 3) allows the time
averaged responses to be obtained by using equations (A1–4) of reference [17] and
which are given in Appendix A. Here, as a simplified but general example, suppose
that only oscillator 1 is excited by an external force, that is s1 $ 0, s2 =0, s3 =0.
Similar to the derivation of reference [17], the total power input to the system can be
obtained.

Pin =(c1 + c3)�ẋ2
1 �− c3 �ẋ1 ẋ3 �+ k3 �x1 ẋ3 �, (3)

and the power flow from oscillator 1 to oscillator 3 (reaching ocillator 3) may be obtained

�P13 �= b(�E1 �− �E3 �)+ g(�E1 �− �E2 �). (4)

Figure 8. Ratios of direct power flow to input power versus v2
1 /v2

3 for selected c4. Key: ––, c4=c1;
· · · · , c4 =0·1c1; –q–, c4 =0·01c1; –r–, c4 =0·001c1.



100

ω2
1/ω2

3

P
i/P

in
1E–007

0.1

0.01

10001010.10.010.001

1E–006

1E–005

0.001

0.0001

100
1E–010

ω2
1/ω2

3

P
d
/P

in

1

0.01

0.0001

1E–006

1E–008

10.01

. .   .236

Figure 9. Ratios of indirect power flow to input power versus v2
1 /v2

3 for selected c4. Key as for Figure 8.

Here

b=[A− g(A1 −A2)]/(A1 −A3),

g=D1 {−k4 [m2 m2
3 l2 + (v2

2 m2
3 − v2

3 −D2)m2 l3 + (D2 v2 v2
3 −v2

2 v2
3 m2)l4]

+ c4 [(m2
3 v2 −D2 m4

3 m2 − m2
2 m2

3 )l2 + (D2 m2 v2
3 +v2

2 m2
3 v2 − v2 v2

3 − m2
2 v2

3

+ m2
3 v2

2 )l3 + (v2 v2
2 v2
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2 v2

3 )l4]}/[m1 D6 (A1 −A2)],

A= k3 s
4

n=1

b11n ln + c3 s
4

n=1

b31n ln + c3 s
4

n=1

b71n ln , �Ei �=Ai
ps1

m1D1
, (i=1, 2, 3),

A1 =m1 s
4

n=1

b51n ln , A2 =m2 s
4

n=1

b61n ln , A3 =m3 s
4

n=1

b71n ln .

Figure 10. Ratios of direct power flow to input power versus v2
1 /v2

3 for selected k3. Key: —, k3 = k1; - - -,
k3 =0·1k1; · · · , k3 =0·01k1; –·–·, k3 =0·001k1.
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Figure 11. Ratios of indirect power flow to input power versus v2
1 /v2

3 for selected k3. Key as for Figure 10.

The power flow from oscillator 2 to oscillator 3 (reaching oscillator 3) can be obtained
from

�P23 �= b'(�E2 −E3 �)+ g'(�E2 �− �E1 �) (5)

b'= [B− g'(A2 −A1)]/(A2 −A3),

g'=D1 {−k4 [m2 m2
3 l2 + ((v2

2 m2
3 − v2

3 )m2 −D2 m2)l3 + (D2 v2 v2
3

−v2
2 v2

3 m2)l4]+ c4 [(m2
3 v2 −D2 m4

3 m2)l2 + (D2 m2 v2
3 + v2 (v2

2 m2
3 − v2

3 ))l3

+v2 v2
2 v2

3 l4]− (m2
2 m2

3 l2 + m2
2 v2

3 − m2
3 v2

2 )l3 − v2
2 v2

3 l4}/[m1 D6 (A2 −A1)],
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4

n=1
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4
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b41n ln + c3 s
4
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b71n ln .

Here ps1 /m1D1 is called the time averaged total energy of the uncoupled oscillator 1 when
subjected to external force. The coefficients bijk , ln and the time averaged response are given
in Appendix A. The first items in equation (4) and (5) are the direct power flows, and the

Figure 12. Ratios of direct power flow to input power versus v2
1 /v2

3 for selected k4. Key: ––, k4=k1;
--, k4 =0·1k1; · · · , k4 =0·01k1; –·–·, k4 =0·001k1.
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Figure 13. Ratios of indirect power flow to input power versus v2
1 /v2

3 for selected k4. Key as for Figure 12.

second items are the indirect power flows. For an arbitrary system of three non-
conservatively series coupled oscillators, the equation g= g' is no longer available. There-
fore, the amplitudes of the indirect power flows in different directions are not the same.

Equations (4) and (5) are very revealing. They indicate that:
(1) The power flows among three non-conservatively series coupled oscillators include

the direct and indirect power flows. The direct and indirect power flows are proportional
to the differences of the stored energies in the directly and indirectly coupled oscillators
respectively. The proportional coefficients are not only related to the parameters of the
directly coupled oscillators and couplings, but also related to the parameters of the
indirectly coupled oscillators and couplings.

(2) The reciprocity, which exists in three conservatively series coupled oscillators, is
untenable.

(3) When the coupling damping coefficients c3 = c4 = c5 =0, it can be verified that
equation (4) is the same as equation (12a) of reference [17]. Additionally, when m2 tends
to reach infinity, equation (4) reduces to the expression of the power flows with coservative
coupling (see equation (17) of reference [11] and equation (15) of reference [12]). If the
coupling damping coefficients c3 = c4 =0 and m2 tends to reach infinity, equation (4) is the

Figure 14. The influence of c2 on hd /h12 for conservative coupling (c3 = c4 =0). Key: ––, c2=c1; –––, c2 =0·1c1;
· · · , c2 =0·01c1; –·–·, c2 =0·001c1.
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Figure 15. The influence of c2 on hd /h12 for non-conservative coupling (c3 = c4 = c1). Key as for Figure 14.

same as the expression of the power flows between two conservatively coupled oscillators
(see equation (3.3) of reference [1]).

3. THE NUMERICAL RESULTS

The power flows of three non-conservatively series coupled oscillators are complex
functions of the parameters of the oscillators and couplings. Therefore, it is difficult to
obtain the relationships between the power flows and the parameters of the oscillators and
couplings theoretically. Meanwhile, in order to understand the general characteristics of
power flows penetratively, it is necessary to carry out some further analysis on the power
flows of three non-conservatively series coupled oscillators. The main purpose of the
numerical analysis is to research in greater depth the power flows of three
non-conservatively series coupled oscillators, especially the relationships between the
indirect power flows and the parameters of the oscillators. Thus, knowledge of the power
flows, especially the indirect power flows, can be available.

In reference [17], the relationship between the power flows of the three conservatively
series coupled oscillators and the parameters of the oscillators and couplings have been
investigated in detail. Here the emphasis has been laid on the study of the influence of the
coupling stiffness and the coupling damping on the direct and indirect power flows of three
non-conservatively series coupled oscillators. As a general example, suppose that only

Figure 16. The influence of k2 on hd /h12 for conservative coupling (c3 = c4 =0). Key: —, k2=2k1; ---, k2 = k1;
· · · , k2 =0·5k1; –·–· k2 =0·25k1.
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Figure 17. The influence of k2 on hd /h12 for non-conservative coupling (c3 = c4 = c1). Key as for Figure 16.

oscillator 1 is excited by the external force and the basic parameters used here are,
m1 =1·5 kg, m2 =m3 =3m1, c1 =0·15 Nsm−1, c2 = c3 = c4 = c5 = c1, k1 =104 N/m,
k2 = k5 = k1, k3 = k4 =0·1 k1, s1 =1·0. There are supplements in each figure if the
parameters have been changed. The ratios of the direct power flow Pd to the input power
flow Pin versus the ratios of v2

1 to v2
3 (that is m3 /m1) for selected m2 are shown in Figure 2.

The power flow between two non-conservatively coupled oscillators is shown in Figure 2
as well [11, 12]. It indicates that the direct power flows of three non-conservatively series
coupled oscillators tends to reach the power flows of two non-conservatively coupled
oscillators when m2 q 5m1. From the numerical analysis, conclusions are as follows.

(1) Figures 2, 3 show that, for fixed m2, the direct and indirect power flows vary slowly
when v2

1 /v2
3 Q 1. The direct and indirect power flows decrease obviously with the increase

in m2 when v2
1 /v2

3 q 1, and reach their extreme values when v2
1 /v2

3 =1. These show that
the direct and indirect power flows are related to resonant energy transmission between
the directly coupled oscillators, and there are similar results in Figures 4–13. The bigger
m2 is, the less the ratio of the indirect power flow to the direct power flow, and the same
results are shown in Figure 3 of reference [17]. If v2

1 /v2
3 is constant, the influence of m2

on the power flows is small for non-resonant frequency and great for resonant frequency,
and the bigger m2 is, (which means the natural frequency of oscillator 2 is far away from
the natural frequencies of oscillator 1 and 3), the higher the peak of the direct power flow

Figure 18. The influence of k4 on hd /h12 for conservative coupling (c3 = c4 =0). Key: × , k4 = k1; – –w– –,
k4 =0·8k1; t–––t, k4 =0·5k1; · · · , k4 =0·1k1; –·–·, k4 =0·01k1; ———, k4 =0·001k1; r––r, k4 =0·0001k1.
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Figure 19. The influence of k4 on hd /h12 for non-conservative coupling (c3 = c4 = c1). Key as for Figure 18.

becomes. The curve tends to reach the curve of the power flow of two non-conservatively
coupled oscillators when m2 tends to reach infinity. However, the indirect power flow
decreases rapidly as m2 increases (which could be seen from Figures 4, 5 as well).

(2) When m3 is constant (see Figures 4, 5), the direct and indirect power flows vary slowly
as the change in v2

1 /v2
2 when v2

1 /v2
2 Q 1, and reach their maxima at the resonant frequency.

Pd /Pin decreases rapidly with the increase in m2, and then reaches a new steady value.
However, Pi /Pin decreases linearly and rapidly when v2

1 /v2
2 q 1. Similar results obtained

when m2 is fixed show that the direct and indirect power flows reach their extreme values
when v2

1 /v2
2 =1, and the direct and indirect power flows are also related to resonant

energy transmission between the indirectly coupled oscillators. Additionally, the indirect
power flow is less than the direct power flow when m3 is big, and the same result are shown
in Figure 9 of reference [17]. For fixed v2

1 /v2
2 , the direct power is approximately inversely

proportional to m3. When v2
1 /v2

2 q 1, the indirect power flow is influenced slightly by m3.
When v2

1 /v2
2 Q 1, the indirect power flow is approximately inversely proportional to m3.

(3) The influence of the coupling dampings on the direct and indirect power flows is
relatively small (see Figures 6–9). The direct and indirect power flows increase a little with
a decrease in c3. The influence of c4 on the direct and indirect power flows are small.

(4) The direct and indirect power flows are approximately proportional to k3 (see
Figures 10, 11). It is shown that the coupling between the oscillators decreases as k3

Figure 20. The influence of c4 on hd /h12 for non-conservative coupling (c3 = c1). Key: ––, c4=c1; –––, c4 =0·1c1;
· · · , c4 =0·01c1; — · —, c4 =0·001c1.
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decreases. Therefore, the indirect power flow cannot be ignored in the condition of strong
coupling. The indirect power flows are of the same level as the direct power flows even
if k3 is very small.

(5) The indirect power flows decrease as k4 decreases, while the direct power flows
increase as k4 decreases. The indirect power flows are less than the direct power flows when
k4 is very small and thus may be ignored.

4. THE INFLUENCES OF THE INDIRECTLY COUPLED OSCILLATORS ON THE
DIRECT COUPLING LOSS FACTORS

According to the definition of coupling loss factor [2], the direct coupling loss factor
from oscillator 1 to oscillator 3 is given

hd = b/v1, (6)

where b is expressed in equation (4).
Reference [7] gives the coupling loss factor of two coupled oscillators

h12 = g12 (7)

where g12 is expressed in reference [7]. hd and h12 are complex functions of the parameters
of the oscillators and couplings. Therefore, it is difficult to analyze the difference between
hd and h12 theoretically. In order to study the influence of the parameters of the oscillators
and couplings on the direct coupling loss factor, numerical calculations are carried out.
The basic parameters used here are m1 =1·5 kg, m2 =m1, m3 =3m1, c1 =0·15 Nsm−1,
c2 = c3 = c4 = c5 = c1, k1 =104 N/m, k2 = k5 = k1, k3 = k4 =0·1 k1, s1 =1·0. There are
supplements in each figure if the parameters have been changed.

The ratios of hd to h12 are shown in Figures 14–21 for selected values of the parameters
c2, k2, c4 and k4 respectively. For graphs with abscissa v2

1 /v2
2 , m2 is varied. The

influence of m2 on the direct coupling loss factor is negligible when v2
1 /v2

2 is small. As
v2

1 /v2
2 tends to reach 1, hd /h12 increases obviously. When v2

1 /v2
2 =1, hd /h12 shows a peak,

which illustrates that hd /h12 reaches an extreme value when the indirectly
coupled oscillators are in resonance. As v2

1 /v2
2 increases, hd /h12 decreases. The difference

between hd and h12 is maximum when the directly or indirectly coupled oscillators are in
resonance.

Figure 21. The influence of c4 on hd /h12 for non-conservative coupling (c3 = c1, k4 =0·01k1). Key as for
Figure 20.
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Figure 22. Schematic diagram of the floating raft isolation system.

The influences of the idividual parameters are:
(1) it is shown from Figure 14 that the damping of oscillator 2 affects hd /h12 greatly when

the oscillators are conservatively coupled. However, this influence is very little when the
oscillators are non-conservatively coupled (see Figure 15).

(2) Figures 16 and 17 show the influence of k2 on the direct coupling loss factor. The
relationship between hd /h12 and k2 is complicated. It is shown that hd /h12 increases with
the decrease in k2 when v2

1 /v2
2 Q 1, and hd /h12 is maximum when the parameters of

oscillator 1 and 2 are the same. Since the stiffness of indirectly coupled oscillator affects
the direct coupling loss factor greatly, it is necessary to make a further investigation.

(3) Figures 18 and 19 show the influence of k4 on the direct coupling loss factor. When
k4 is small, hd /h12 changes slightly with v2

1 /v2
2 . hd /h12 tends to reach 1 for conservative

couplings and tends to reach 0·7 for non-conservative couplings. When the directly or
indirectly coupled oscillators are in resonance, the difference between hd and h12 becomes
more and more obvious as k4 increases. Furthermore, when k4 is large ( for example
k4 q 0·1k1), hd /h12 changes greatly with v2

1 /v2
2 , and tends to become greater than 1 for both

conservative and non-conservative couplings.

Figure 23. The mechanical model of the floating raft isolation system used for SEA.
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Figure 24. The energy of the structure 1. Key: r, power injection method; ––, experiment; w, CSEA;
· – · –, SEA.

(4) Figure 20 shows the influence of c4 on hd /h12, which increases with the decrease of
c4. hd /h12 is maximum when the directly or indirectly coupled oscillators are in resonance.

(5) Figure 21 shows the influence of c4 on hd /h12 when the coupling stiffness k4 =0·01k1.
When k4 is small, hd /h12 increases with the decrease of c4 and tends to reach 1. However,
hd /h12 varies slightly with the change of v2

1 /v2
2 even though the directly or indirectly

coupled oscillators are in resonance.

5. ENERGY BALANCE EQUATIONS OF SEA

The energy balance equations for a N substructures system in the classical Statistical
Energy Analysis (CSEA) have been modified by using the equations of the power flows
among three series coupled oscillators [18], and are given

P1 811 −821 · · · −8N1 E�1

P2 −812 822 · · · −8N2 E�2G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

···
=v ···

···
···

···
···

PN −81N −82N · · · 8NN E�N

or written as

[P]=v[F] [E] (8)

Figure 25. The energy of the structure 2. Key as for Figure 24.
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Figure 26. The energy of the structure 3. Key: · · · , power injection method; ––, experiment; w, CSEA;
– · – · –, SEA.

Here

8ii = hi + s
k+N

k=1
k$ i

(hik + h'ik ), (i=1, 2, 3, . . . , N),

g
G

G

F

f
h
G

G

J

j8ij = hij + h'ij , ( j=1, 2, 3, . . . , N, j$ i),
(9)

Here hi is called the effective internal loss factors [15]. hik and h'ik are called the direct
and indirect coupling loss factors respectively. The indirect coupling loss factors could
also be expressed by using the direct coupling loss factors and the internal loss
factors. Equation (8) is also called the modified energy balance equations of the SEA
and suitable for the multiple, strongly coupled systems, because the influence of the
strong and non-conservative couplings on the power flows have been taken into
account here. Moreover, the effective internal loss factors derived by Sheng [22] are
used in these equations. When the influence of the indirectly coupled substructures on the
direct coupling loss factors are considered, the power injection method could be used to
determine the effective loss factors and coupling loss factors [15].

Obviously, with the coupling damping loss factors being taken into account, the energy
balance equations of SEA could also be modified as the form given by Beshara and Keane
[21].

Figure 27. The energy of the structure 4. Key as for Figure 26 except –––, CSEA.



5000

1E–009

1E–013
100

f (Hz)

E
n

er
gy

1000

1E–011

. .   .246

6. EXPERIMENTAL VERIFICATION

A floating raft isolation system mounted on a damped plate is used (as shown in
Figure 22) to verify the influence of the non-conservative coupling and the indirectly
coupled oscillators on the power flows of the multiple, non-conservatively coupled
system. The floating raft isolation system consists of three plates and two beams. Two of
the plates are used to simulate two machines, and the other plate is used to simulate the
raft. The beams act as the foundations and the damped plate serves as the shell of a
ship. Because of the use of isolators, the connections between the components
become non-conservative. Thus the whole system is a multiple, non-conservatively coupled
system.

A SEA model of the floating raft isolation system is shown in Figure 23. The third octave
band data are obtained when substructures 1 and 2 are excited. The power injection
method [14] has also been used here.

Figures 24–29 show the vibrational energies of substructures 1–6 respectively.
The test frequency range is from 100–5 kHz. The data of the third octave band are
given. The dotted line denotes the estimated vibrational energy by means of the
power injection method. The solid line denotes the measured vibrational energy
averaged by time and space. The dashed and the dash dot line denote the theoretically
predicted results with or without considering the indirect power flows and the influence
of the indirectly coupled structures of multiple, non-conservatively coupled system
respectively.

Figures 24 and 25 show the estimated results of SEA, CSEA [15] and the power injection
method (see Figures 24 and 25), which indicates that the results are identical in the directly
excited substructures. In Figure 26, the results estimated by SEA and CSEA are similar
except for a few points. For the indirectly excited substructures, because the indirect
power flows have not been taken into account in the CSEA method, the results
obtained by the SEA method are almost always greater than the results by CSEA (see
Figures 27–29). These figures show that when the influence of the indirectly coupling
structures on the loss factors is considered, the estimated data agree well with the test
data. However, for the indirectly excited structures, there is great difference between
the experimental results and the theoretical results when the influence of the
indirectly coupled structures are not considered, and the more the substructures between
the directly and indirectly excited structures are, the greater the difference is (see
Figures 27–29).

Figure 28. The energy of the structure 5. Key as for Figure 27.
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Figure 29. The energy of the structure 6. Key as for Figure 27.

Because of the errors caused by the measured input power and vibrational energies, there
is some difference between the estimated results and the experiments results. However, such
a difference is acceptable in SEA.

7. CONCLUSIONS

According to the analysis of the characteristics of three non-conservatively series
coupled oscillators and the influence of the indirectly coupled oscillator on the direct
coupling loss factor it is possible to draw the following conclusions.

The theories of the power flows of both three conservatively series coupled oscillators
[17] and two non-conservatively coupled oscillators [1] are special examples of the theory
of the power flows of three non-conservatively series coupled oscillators [11, 12]. The
reciprocity of the indirect power flows among three non-conservatively series coupled
oscillators is untenable.

The theory of the power flows of three non-conservatively series coupled oscillators
provides the theoretical basis for the modification of the energy balance equations of
non-conservatively coupled systems, and it is the basis of Statistical Energy Analysis under
general conditions.

The indirect power flow reaches its maximum when the indirectly coupled oscilators are
in resonance, which illustrates that the indirect power flow corresponds to resonant
transmission between indirectly coupled oscillators.

If the parameters of oscillators are fixed, the indirect power flows are mainly dependent
on the coupling stiffness coefficients k3 and k4, and slightly affected by the coupling
damping coefficients c3 and c4. The indirect power flows cannot be ignored in the condition
of strong coupling.

The difference between hd and h12 is maximum when the directly or indirectly coupled
oscillators are in resonance. For conservative coupling, the influence of the indirectly
coupled oscillator on the direct coupling loss factor could be neglected if the indirect
coupling stiffness is small. The influence must be taken into account when the
indirect coupling stiffness is large. For non-conservative coupling, the influence of the
indirectly coupled oscillator on the direct coupling loss factor can be ignored provided that
both the indirect coupling stiffness and damping are small.

The stiffness of the indirectly coupled oscillator has a great influence on the direct
coupling loss factor. When the indirect power flows and the influence of the indirectly
coupled structures of multiple, non-conservatively coupled systems are taken into account
in the SEA model, better agreements between the predicted result and the experimental
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result are obtained. It is necessary to modify the direct coupling loss factors when energy
balance equations of SEA are modified.
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APPENDIX A: THE TIME-AVERAGED RESPONSES

When the three non-conservatively series coupled oscillators are excited by external
forces with zero-average value, which are statistically independent and of spectral densities
si , i=1, 2, 3, the time-averaged responses can be obtained by using equations (A1–4) in
reference [17].

�x3 ẋ1 �= s
3

i=1 0 psi

m2
i D61 s

4

n=1

b1in ln , (A1)

where

D6 = a2
6a3

1 +3a6a5a4a1a0 −2a6a5a2a2
1 − a6a4a3a2

1 − a6a
3
3a0 + a6a2

3a2a1

+ a3
5a2

0 −2a2
5a4a1a0 − a2

5a3a2a0 + a2
5a2

2a1 + a5a4a2
3a0 − a5a4a3a2a1

l0 =−a6 a3 a1 a0 + a6 a2 a2
1 − a2

5 a2
0 +2a5 a4 a1 a0 + a5 a3 a2 a0

− a5 a2
2 a1 − a2

4 a2
1 − a4 a2

3 a0 + a4 a3 a2 a1,

l1 =−a5 a1 a0 + a4 a2
1 + a2

3 a0 − a3 a2 a1, l2 =−a6 a2
1 − a5 a3 a0 + a5 a2 a1,

l3 = a6 a3 a1 + a2
5 a0 − a5 a4 a1, l4 = a6 a5 a1 − a6 a2

3 − a2
5 a2 + a5 a4 a3,

l5 = a2
6 a2

1 + a6 a5 a3 a0 −2a6 a5 a2 a1 −2a6 a4 a3 a1 + a6 a2
3 a2

− a2
5 a4 a0 + a2

5 a2
2 + a5 a2

4 a1 − a5 a4 a3 a2,

a0 =1, a1 =D1 +D2 +D3

a2 =v2
1 +v2

2 +v2
3 +D1 D2 +D2 D3 +D1 D3 − m1 m3 − m2 m4,

a3 =D1 (v2
2 +v2

3 )+D2 (v2
1 +v2

3 )+D3 (v2
1 +v2

2 )+D1 D2 D3 − m1 v3

− m3 v1 − m2 v4 − m4 v2 −D2 m1 m3 −D1 m2 m4,

a4 =v2
1 (v2

2 +D2 D3)+v2
2 (v2

3 +D1 D3)+v2
3 (v2

1 +D1 D2)− v1 v3 − v2 v4

−D2 (m1 v3 + m3 v1)−D1 (m2 v4 + m4 v2)−v2
1 m2 m4 −v2

2 m1 m3,

a5 =D1 (v2
2 +v2

3 − v2 v4)+D2 (v2
1 +v2

3 − v1 v3)+D3 v2
1 v2

2 −v2
2 (m1 v3 + m3 v1)

−v2
1 (m2 v4 − m4 v2)

a6 =v2
1 v2

2 v2
3 −v2

2 v1 v3 −v2
1 v2 v4, b111 =−m3,

b112 = m3 (D2
2 −2v2

2 −v2
3 + m2 m4)+D3 v3,

b113 = m3 [v2
3 (D2

2 −2v2
2 )−v4

2 ]−D3 v3 (D2
2 −2v2

2 )− m2 v4 v3 + v2 (m4 v3 − m3 v4)

+ m2 m3 m4 v2
2 +D2 m2 (m4 v3 − m3 v4)−D2 m3 m4 v2,

b114 = (v2 v4 −v2
2 v2

3 ) (D2 v3 + m3 v2
2 )+ v3 v2

2 (D2 v2
3 +D3 v2

2 − m2 v4 − m4 v2),

b121 =0, b122 =−m1 m2
4 , b123 =D1 m2

4 v1 − m1 (m2
4 m2

1 − v2
4 ),

b124 = v2
1 (m1 v2

1 −D1 v1), b131 = m1, b132 = m1 (2v2
2 −D2

2 )+ m1 v2
1 −D1 v1,

b133 = m1 v4
2 + (D1 v1 − m1 v2

1 ) (D2
2 −2v2

2 ), b134 =v4
2 (m1 v2

1 −D1 v1).
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3 −D1 D3)+ (v2
1 D3 −v2

3 D2 − m1 v3 − m3 v1)2,
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1 v2
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2 ,

b632 =−[v2
2 + m2

2 (D2
1 −2v2
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1 v2
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where

b710 =0, b711 = m2
3 , b712 =−[v2

3 + m2
3 (D2

2 −2v2
2 )],

b713 = v2
3 (D2

2 −v2
2 )+ m2

3 v4
2 , b714 =−v4

2 v2
3 , b720 =0, b721 = m2

4 ,

b722 =−[v2
4 + m2

4 (D2
1 −2v2

1 )], b723 = v2
4 (D2

1 −v2
1 ), b724 =−v4

1 v2
4 , b730 =−1,

b731 = (D1 +D2)2 −2(v2
1 +v2

2 +D1 D2),

b732 =2(D1 +D2) (v2
1 D2 +v2

2 D1)− (v2
1 +v2

2 +D1 D2)2 −2v2
2 v2

3 ,

b733 =−2v2
1 v2

2 (v2
1 +v2

2 +D1 D2)+ (v2
1 D2 +v2

1 D1)2, b734 =−v4
2 v4

3 .


